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Abstract. The Nancy Grace Roman Space Telescope will carry a coronagraph instrument
(CGI) that will serve as a demonstrator for technologies needed for future high-contrast imaging
missions in space, including deformable mirrors (DMs) to correct high-order wavefront errors
that would otherwise limit the achievable contrast. The CGI has three baselined interchangeable
observing configurations, one of which is a bowtie shaped pupil coronagraph for high-contrast
spectroscopy. We present the flight designs for two closely related mask configurations of the
bowtie shaped pupil coronagraph: a baseline 0-deg mask configuration for the technology dem-
onstration and a 60-deg mask configuration contributed by the NASA Exoplanet Exploration
Program. The shaped pupil mask and Lyot stop for each mask configuration result from an iter-
ative process that maximizes the core throughput subject to constraints on other performance
metrics, such as the contrast: a linear program optimizes the shaped pupil mask for a given Lyot
stop, and the optimization repeats for various Lyot stops until the highest-throughput combina-
tion is identifiable. The flight designs for the baseline and rotated mask configurations have core
throughputs of 4.50% and 3.89%, respectively, at 4 % and are robust to conservative estimates
of potential pupil errors such as misalignments and manufacturing errors. If these estimates are
exceeded in flight, the DMs can be used to mitigate the effects of the excess error. © The Authors.
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1 Introduction

Since time immemorial, people have looked to the stars and wondered if there might be life
elsewhere in the universe. This question has appeared in some form in every decadal survey for
astronomy since 1972,'° and over the decades, multiple techniques have been developed to
detect exoplanets, including those in the habitable zone of their parent star.”"'* Two of these
techniques, transits and direct imaging, can be used to spectroscopically analyze the light from
the exoplanet, thereby enabling a search for biomarkers that suggest the possibility of life.
Currently, a space-based direct imaging mission provides one of the best paths to the ultimate
goal of searching for life on an exoplanet similar to Earth, an exoplanet of Earth-like size in the
habitable zone of a Sun-like star.'® Large space-based direct imaging mission concepts, such
as the Habitable Exoplanet Observatory (HabEx)'* and the Large UV/Optical/IR Surveyor
(LUVOIR)," are being developed with this goal in mind, and a 6-m class infrared/optical/
ultraviolet telescope for high-contrast imaging and spectroscopy is listed in the most recent
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decadal survey as the highest-priority recommendation for space frontier missions.® However,
the challenge of directly imaging and spectroscopically characterizing an Earth-like exo-
planet is not insignificant; there are currently numerous technical gaps that will need to be
addressed.'®!”

To advance our general understanding of high-contrast imaging in space, NASA’s Nancy
Grace Roman Space Telescope will carry a coronagraph instrument (CGI) that will serve as
a demonstrator for some of the technology that will be needed for future missions. Notably,
the CGI will be the first space-based coronagraph to use deformable mirrors (DMs) to correct
high-order wavefront errors that would otherwise limit the achievable contrast, to incorporate
low-order wavefront sensing and control, and to use precision-fabricated masks specifically
designed to maximize the throughput.'®!® As a technology demonstrator, the CGI has three base-
lined interchangeable observing configurations, one of which is for high-contrast spectroscopy.
(The other two observing configurations are for imaging: a narrow-field-of-view hybrid Lyot
coronagraph designed for a 10% spectral band centered at 575 nm, and a wide-field-of-view
shaped pupil coronagraph designed for a 10% spectral band centered at 825 nm; imaging over
other spectral bands is possible but unsupported.’>->?) The spectroscopy configuration uses a
shaped pupil coronagraph to achieve a contrast of 3 x 10~ within a two-sided bowtie-shaped
region spanning 3.0 t0 9.0 % for wavelengths across a 15% spectral band centered at either 660 or
730 nm, and the coronagraph masks are followed by a slit-prism spectrograph with a spectral
resolution of R = 50 at the center of the selected spectral band.”*?">* Due to the shape of the
high-contrast region (also called the dark hole), this coronagraph is referred to as the bowtie
shaped pupil coronagraph.

The bowtie shaped pupil coronagraph has two closely related mask configurations: a base-
line mask configuration that will be used for the technology demonstration, and a mask con-
figuration that is rotated 60 deg relative to the baseline mask configuration. (To accommodate
two different 15% spectral bands, there are two variations of each of these mask configu-
rations. However, because the two variations of a given mask configuration differ only in their
physical scaling, we will not discuss them individually in this paper. A full list of every
designed configuration for the CGI may be found in a paper by Riggs et al.’!) The rotated
mask configuration is not part of the technology demonstration but contributed by the NASA
Exoplanet Exploration Program (EXEP) so that it can be available for use if scheduling and
funding constraints allow, and it is important to note that the rotated mask configuration is
being accommodated on the grounds that it does no harm to the baseline design and causes no
schedule delay.”* The rationale for contributing the rotated mask configuration is that it
improves the annular field of view coverage and increases the probability of detecting our
canonical target exoplanet, 47 Ursae Majoris ¢ (47 UMa c); with the two bowties and a £13-
deg roll, the detection probability during the nominal technology demonstration and beyond
is nearly as high as it would be if the coronagraph had a 360-deg field of view due to the
combination of the two bowtie openings, the bowties precessing, and orbital motion.>>
(However, we emphasize that no observing time is currently allocated to the rotated mask
configuration.)

The two mask configurations each produce an appropriately rotated dark hole by using a set
of three masks: a shaped pupil mask for the first pupil plane and bowtie-shaped masks for the
first focal plane and the Lyot plane (the focal plane mask and Lyot stop, respectively), as shown
in Fig. 1. The focal plane mask design is determined by a set of requirements on the field of view
and rotated to match the specified orientation; it is identical for the two mask configurations
except for the orientation. The shaped pupil mask and Lyot stop, by comparison, are products
of a design survey that searches for the combination with the highest throughput. In this survey,
a shaped pupil mask is optimized for a particular Lyot stop (Sec. 2), and the optimization is
repeated for a range of Lyot stops (Sec. 3). The final designs for the baseline and rotated mask
configurations have core throughputs of 4.50% and 3.89%, respectively, for an off-axis source at
4 %. These designs are robust to conservative (three-sigma) estimates of potential pupil errors
(such as misalignments and manufacturing errors), but in the event that these estimates are
exceeded, the DMs that correct for high-order wavefront errors may be used to mitigate the
effects of the pupil errors as well (Sec. 4).
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Fig. 1 Comparison of the masks in each plane for the baseline and rotated mask configurations of
the bowtie shaped pupil coronagraph. The bowtie shaped pupil coronagraph produces a dark hole
by using a shaped pupil mask in the first pupil plane, a bowtie-shaped mask in the first focal plane
(the focal plane mask), and a bowtie-shaped mask in the second pupil plane (the Lyot stop). The
Lyot stop is rotated 90 deg with respect to the focal plane mask, and the two bowties are not
necessarily identical. For the baseline mask configuration, the dark hole is symmetric about both
the horizontal (x) and vertical (y) axes, with the bowtie lobes along the horizontal axis. For the
rotated mask configuration contributed by EXEP, the shaped pupil mask, focal plane mask, and

Lyot stop are designed to produce a dark hole that is rotated 60 deg from the baseline. For refer-
ence, the nominal telescope pupil is also shown.

2 Shaped Pupil Mask Design Process

Due to computational constraints, the shaped pupil mask and the Lyot stop are designed using an
iterative optimization process that, subject to constraints on the contrast and other performance
metrics, seeks to identify the combination with the highest core throughput 7', which is defined in
the official CGI project requirements® as the ratio of the power passing through the half-max
core of the point spread function (PSF) in the final image plane, P} mayx, to the power passing
through the pupil plane in the absence of a shaped pupil mask, Ppypii total:

T — Phalfmax (1)

P pupil,total

Because the PSF for the bowtie shaped pupil coronagraph has multiple bright lobes, it is impor-
tant to note that the half-max core of the PSF is defined as the set of all points in the image plane
for which the intensity is at least half of the maximum value, not just the points in the main

lobe (Fig. 2).
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Fig. 2 Comparison of definitions of the half-max core of the PSF. The PSF for the bowtie shaped
pupil coronagraph (a) consists of three lobes, so two definitions of the half-max core exist.
Following the conventions set by the CGl Project, we define the half-max core as the set of all
points for which the intensity is at least half of the maximum value (b). A more restrictive definition
that is sometimes used includes only the points in the main lobe that have an intensity of at least
half of the maximum value (c). The three plots are each shown with a linear scale, with the dark
hole outlined in blue.
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The throughput value is dependent on the location of the point source used to calculate the
PSF, and we have selected a point source at 4 %. This value was chosen because it corresponds to
the location of 47 UMa c, our canonical target exoplanet that was chosen because it is a con-
firmed exoplanet around a star with a V magnitude of almost 5 and a small angular diameter.>

The emphasis on maximizing the core throughput was driven by the fact that it can be one of
the primary factors limiting the ability to take spectroscopic measurements; however, in scenar-
ios dominated by speckle instability, the effects of adjusting the throughput are more muted. This
metric changed from a more signal-to-noise ratio (SNR) metric (that accounted for PSF sharp-
ness) when the CGI switched from having an integral field spectrograph (IFS) to a slit spectro-
graph. For the IFS, the area of the PSF was a concern because observations were dark-current
limited. With the switch to the slit spectrograph, the planet PSF is no longer broken up across
several lenslets, thereby reducing the PSF area on the detector by a factor of a few. As a result, the
challenge is to increase the throughput to reduce the photon noise of the planet itself (which is
assumed to be faint, with a contrast on the order of 1 X 10~). Throughput is also an easy-to-use
proxy for sharpness, while sharpness makes optimizations intractable.

The first step of the design process is to construct an appropriate starting point for the shaped
pupil mask optimization by creating a representation of the telescope pupil with the correct ori-
entation (Sec. 2.2) and adding padding to compensate for potential pupil errors, such as clocking,
rotation, translation, and magnification (Sec. 2.3). The resulting padded telescope pupil serves as
the shaped pupil mask optimization starting point throughout an entire design survey, but the
padding may be adjusted for different surveys. To complete a design survey, an optimization
routine determines the highest-throughput shaped pupil mask for a given Lyot stop (Sec. 2.1),
and the optimization is repeated for a range of potential Lyot stops until the highest-throughput
combination can be identified (Sec. 3).

2.1 Optimizing a Shaped Pupil Mask

The bowtie shaped pupil masks are optimized using a linear program that maximizes the peak
pixel value for an off-axis planet (a proxy for the throughput) while also constraining the contrast
and the sensitivity to tip and tilt. This linear program (written in AMPL?®) treats all of the equa-
tions for propagating light through the coronagraph as constraints, and it incorporates tip and tilt
with the addition of separate propagations for each type of aberrated wavefront. A thorough
description of how to model the propagation of light through the coronagraph and the specific
techniques and equations used by the linear program may be found in papers by Zimmerman and
Riggs and are not repeated here.’'~*

Directly constraining the sensitivity to tip and tilt leads to shaped pupil masks that are more
robust to residual pointing jitter and resolved stellar diameters, but it also reduces the throughput.
It is therefore important to balance the benefits of reducing the tip and tilt sensitivity against the
benefits of increasing the throughput. The linear program includes a coefficient in the aberrated
wavefront propagations that allows the amount of tip and tilt in an optimization to be adjusted,
with higher amounts producing shaped pupil masks with lower sensitivity. For the final flight
shaped pupil masks, the value of this coefficient was selected based on the results of a limited
design survey conducted by the CGI Integrated Modeling Team that evaluated the overall per-
formance of masks optimized with various amounts of tip and tilt included.**

Because the linear program simulates propagating light through the coronagraph to evaluate
each potential shaped pupil mask design, it requires knowledge of the coronagraph masks in each
plane as well as the desired shape of the dark hole. As a result, two-dimensional arrays repre-
senting the shaped pupil mask starting point, the focal plane mask, and the Lyot stop are required
inputs to the linear program, and the shape of the dark hole is specified by a set of constraints. To
keep the optimization problem tractable, we require y-axis symmetry for each of the coronagraph
masks and the dark hole and exploit additional symmetry wherever possible.*

The y-axis symmetry requirement significantly reduces the size of the optimization problem,
but it also means that care must be taken when defining the arrays for the coronagraph masks. For
the baseline mask configuration, the dark hole and almost all of the coronagraph masks are
symmetric about the y axis due to the choice of orientation; the bowties for the focal plane mask,
Lyot stop, and dark hole each have two axes of symmetry, and these axes align with the x and y
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Optimization starting point Focal plane mask Lyot stop Dark hole

Fig. 3 Sample shaped pupil mask optimization starting points, focal plane masks, Lyot stops, and
dark holes used for the baseline and rotated mask configurations. Although the full-plane masks
are shown, the optimization process assumes y-axis symmetry and uses only the right half (or less
when additional symmetry can be exploited). For the baseline (0-deg) mask configuration, y-axis
symmetry is enforced using a symmetrized version of the telescope pupil as the starting point for
the shaped pupil mask optimization; the remaining masks and the dark hole require no modifica-
tion. To enforce symmetry for the rotated (60-deg) mask configuration, the telescope pupil is

rotated instead of the focal plane mask, Lyot stop, and dark hole; the optimization starting point
is a symmetrized version of the rotated telescope pupil.

Baseline
mask
configuration

Rotated
mask
configuration

axes for the O-deg orientation. The shaped pupil mask, by comparison, is symmetric only
because the linear program assumes it to be and outputs only one half of the mask. Because
the telescope pupil is slightly asymmetric, we use a symmetrized version as the shaped pupil
mask optimization starting point to ensure that the shaped pupil mask completely covers the
telescope pupil as assumed (Fig. 3). For the rotated (60-deg) mask configuration, neither the
dark hole nor any of the coronagraph masks are symmetric about the y axis (as illustrated
in Fig. 1). To satisfy the symmetry requirement, we optimize a shaped pupil mask for the rotated
mask configuration by rotating the telescope pupil 60 deg counterclockwise and keeping the
baseline orientation for the remaining planes; the shaped pupil optimization starting point is
therefore a symmetrized version of the rotated telescope pupil (Fig. 3). It is also worth noting
that although we can optimize shaped pupil masks for a 90-deg mask configuration because
the axes of symmetry for all three bowties again align with the x and y axes, the throughput is
significantly lower due to the less-advantageous orientation of the dark hole with respect to the
struts supporting the secondary mirror (Fig. 4).

2.2 Constructing an Appropriately Rotated Unpadded Telescope Pupil

The first step to generating the starting point for the shaped pupil mask optimization is to con-
struct a representation of the telescope pupil that has been rotated appropriately for the desired
mask configuration. This representation is based on a map of the nominal CGI entrance pupil
that was generated using the FRED raytracing software program.**=* With 7980 and 8054 illu-
minated pixels along the x and y axes, respectively, this pupil map has a much higher resolution
than the shaped pupil mask optimization process needs (1000 pixels along an axis is sufficient),
and because this map is provided as a single array for the entire pupil, it does not enable the
manipulation of individual elements, such as the struts, directly. However, the ability to arbi-
trarily modify any pupil element facilitates adding specialized pupil padding tailored to provide
the desired degree of robustness to individual pupil errors (Sec. 2.3); although pupil padding can
be added for global errors (translation, magnification, and clocking) by manipulating the pro-
vided array as a whole, adding specific pupil padding for component-level errors (misalignments
and errors in the sizes of the struts, central obscuration, and tabs) requires working with the in-
dividual components directly. The ability to manipulate individual pupil elements also facilitates
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Fig. 4 Sample shaped pupil masks optimized for 0-, 60-, and 90-deg mask configurations.
Although the 0-, 60-, and 90-deg mask configurations can all be set up to have the y-axis symmetry
required by the optimization routine, the resulting shaped pupil masks are not all equivalent. The
shaped pupil masks for the 0-deg and 60-deg mask configurations (a and b, respectively) have
comparable throughputs due to the nearly identical positioning of the dark hole relative to the struts.
The shaped pupil mask for the 90-deg mask configuration (c), however, has approximately half the
throughput, making it a less desirable option for the rotated mask configuration.

studying the impacts of both the pupil padding and any pupil errors (Sec. 4). It is therefore
preferable to work with a modifiable, lower-resolution representation generated by a telescope
pupil model that simplifies the true telescope pupil into a collection of well-defined lines and
shapes that can be individually manipulated as desired.

In the telescope pupil model, the pupil is divided into multiple components that are each
modeled individually: the primary mirror, the secondary mirror, the six struts that support the
secondary, and three tabs (which create small obscurations next to the secondary). The primary
and secondary mirrors are each represented by an ellipse, and the struts are each represented
(at least initially) by a rectangle. The tabs are then represented by sections of ellipses that fall
between the appropriate struts. The sets of parameters that define the individual ellipses and
rectangles are determined independently with one exception: the two tabs that are not located
on the y axis for a pupil orientation of O deg are assumed to share the same ellipse. A list of the
parameter values and an explanation of the methods used to infer them are provided in the
Appendix. Once defined, these component models are combined to form the full telescope pupil
model (Fig. 5).

To provide important cross-checks and additional insights into the behavior of the telescope
pupil as it is rotated (for optimizing a 60-deg shaped pupil mask) and padded (modified by
blocking additional regions of the pupil plane to enforce symmetry and account for potential
pupil errors), we use two independent methods to construct the specific telescope pupil models
for the baseline and rotated mask configurations. (The two mask configurations were also
designed semi-independently, with the baseline mask configuration primarily designed at the
Jet Propulsion Laboratory, JPL, and the rotated mask configuration primarily designed at
Princeton, as described in Sec. 3). For the baseline mask configuration, the telescope pupil model
is generated with PROPER,* a library of optical propagation routines developed at JPL, as
the superposition of elliptical and rectangular obscurations. For the rotated mask configuration,
the telescope pupil model consists of a set of algebraic equations (explained below) that allow the
individual edges of the obscurations to be manipulated directly, and the equations are written in a
way that allows the pupil to be rotated as needed. Although not identical, the telescope pupil
representations resulting from these two models agree very closely when generated for the same
orientation, with only negligible differences (Fig. 6).

In the algebraic model, we generate a binary representation of the telescope pupil by first
defining sets delineated by ellipses and lines that describe the clear area of the unobscured pupil,
Sunobsc» and the individual obscurations due to the secondary, struts, and tabs, and then applying
these set definitions to a grid of points. By binary, we mean that a point in the pupil plane is either
fully clear or fully obscured, with clear points assigned a value of 1 and obscured points (as well
as points in the pupil plane that fall outside S,,qs) assigned a value of 0. The total obscuration
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Fig. 5 Telescope pupil model. When optimizing the baseline and rotated mask configurations, it is
useful to work with a lower-resolution telescope pupil representation generated by a model that
divides the pupil into a set of individually modeled components: an elliptical primary mirror, an
elliptical secondary mirror, six initially rectangular struts, and three tabs that are sections of ellipses
between pairs of struts. For the baseline mask configuration, the telescope pupil model super-
poses elliptical and rectangular obscurations in PROPER. For the rotated mask configuration,
the telescope pupil model consists of a set of algebraic equations that define the set S, nopsc
of points in the unobscured primary, the set S/, of points not obscured by the secondary, the
set 8 Of points not obscured by the struts, and the set S/, . of points not obscured by the
tabs. The set of points S, in the clear area of the modeled telescope pupil is then defined
as Spup = Sunobse N Ssec N Seruts N Stans- When these set definitions are applied to a grid of points,
with a value of 1 assigned to points within S, and a value of 0 assigned to points within Sp,, =

nobse Y Ssec U Sstruts U Stans, the resulting binary array is the telescope pupil representation that,
in the absence of any pupil padding, becomes the starting point for the shaped pupil mask opti-
mization. (When pupil padding is added to enforce symmetry and account for potential pupil errors,
the set definitions are modified as described in Sec. 2.3 before generating the array that repre-
sents the telescope pupil during the shaped pupil mask optimization.) For illustrative purposes, the
modeled telescope pupil is shown here in the 0-deg orientation; for the rotated mask configuration,
the modeled telescope pupil is rotated 60 deg counterclockwise, as shown in Fig. 3.

0.4

0.2

Fig. 6 Difference between the algebraic and PROPER-generated representations of the tele-
scope pupil. The two representations agree very closely, with only minor variations along the
edges of the obscurations. These minor variations are due to slight differences in the way that
the two approaches interpret what it means to model the pupil: the algebraic representation uses
binary edges and covers every pixel of the original pupil map, while the PROPER-generated
representation uses gray edges and does not require every pixel of the original pupil map to
be covered. If the two representations had been identical, this figure would be uniformly gray.
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Sobsc 18 the union of all of the individual obscurations, and the clear area of the pupil is the set of
points that fall within S,o,.. but outside Sy, as illustrated in Fig. 5.

To allow the pupil to be rotated arbitrarily, the perimeters of the primary and secondary are
described by ellipses of the form

[(x = x.)cos 0+ (y —y.)sin 0] N [(x —x.)sin 6 + (y — y.)cos 6]
a? b? B

1, (@)

where, in the absence of any pupil errors or padding, a is the semiminor axis length, b is the
semimajor axis length, 4 is the orientation of the desired mask configuration (0 deg for the base-
line mask configuration and 60 deg for the rotated mask configuration), and x,. and y. are the
x and y coordinates, respectively, that specify the location of the ellipse center. Because any
collected light must land on the primary mirror, S,.ps consists of the set of points that fall
within the primary’s perimeter:

[(x=x.,)cos O+ (y =y, )sin 0] [(x—x,)sin O+ (y—y,,)cos 6 - l}

Sunobse = {(x!y): +
ay by

3

where the subscript p indicates parameter values specific to the primary. For the secondary, the
inequality follows the same pattern, but the meaning is reversed; the set names are chosen such
that, for any component : of the modeled telescope pupil, S, is the set of points within (or
obscured by) 1. The set Sy, therefore, describes the obscuration due to the secondary instead
of the clear area outside the secondary:

[(x=x. )cos O+ (y—y. )sin6 [(x—x. )sin@+ (y—y..)cos6]
Ssec:{(X,y): - 5 - + - : <153,

2
Asec b sec

“)

where the subscript sec indicates values specific to the secondary. The obscurations due to the
tabs are defined similarly, but additional logic is required to restrict each of these obscurations to
the subset of points within the ellipse that fall between the appropriate struts and outside S...
To determine the obscuration due to the struts, it is useful to start by modeling a generic strut
as a rectangle of length / and half width w,, centered on the origin. A particular strut can then be
modeled by rotating this generic rectangle by an angle 6., + 0, where 6., is the nominal
orientation of the specified strut, and translating the result so that its center is located at
cos  —sin 07 [x.
[ . ] [ ‘"“‘}, where x,.
sin@ cosé lly.,, ¢
specify the location of the strut’s center in the absence of any pupil rotation. This rectangular
strut model is useful for determining the locations of the strut’s four corners in the absence of any
pupil padding and misalignments. Because the addition of pupil padding can modify the shape of
the strut’s obscuration so that the long edges are no longer parallel, it is ultimately beneficial to
model the strut by using the corners to determine the lines that define the strut’s longer sides and
specifying the obscuration as the set of points that fall between these lines (truncated by the
perimeter of the primary on one side and the secondary on the other). The specific definition
for this set varies depending on the particular strut and the overall pupil orientation because these
factors affect which corners define the upper of the two lines as well as how to bound the set to
prevent it from poking through the opposite side of the secondary.

and y,  are the x and y coordinates, respectively, that

strut

2.3 Padding the Pupil

Once the telescope pupil model has been constructed, the next step in generating the starting
point for the shaped pupil optimization is to add the pupil padding. By padding, we mean that
additional regions of the pupil plane are blocked to enforce symmetry (symmetry padding) or to
ensure that the shaped pupil mask completely covers the telescope pupil even if errors are present
(error padding). The symmetry padding is required to satisfy an assumption made during the
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optimization process, and the amount that is needed depends on the pupil orientation
(Sec. 2.3.2). The error padding, however, is more discretionary; although we can apply enough
error padding to compensate for the maximum expected pupil error, we can also use less if there
are other means of compensating for at least part of the potential pupil error (Sec. 2.3.1). Both
types of pupil padding may be applied, but the application process varies depending on the type
of padding and the method used to generate the telescope pupil model.

2.3.1 Padding for pupil errors

Because the shaped pupil mask is optimized for a specific representation of the telescope pupil,
problems can arise when there is a mismatch between the modeled and true telescope pupils.
In particular, the contrast and throughput are no longer guaranteed to reach their design values if
part of the true telescope pupil is not covered by the shaped pupil mask. This scenario can be
caused by manufacturing uncertainties or misalignments, so a conservative approach to prevent-
ing the performance degradation is to add padding to the shaped pupil optimization starting point
to account for these potential errors up to some specified amount. Although this error padding
improves the robustness to pupil errors, it comes at the cost of some of the core throughput. The
list of errors and their tolerances therefore plays an important role in the performance of the final
design.

For both the baseline and rotated mask configurations, we pad for a total of seven errors.
Three of these are due to global misalignments (translations, clocking, and magnification), and
three are due to component-level manufacturing uncertainties (for the struts; the secondary, also
called the central obscuration; and the tabs). The final error, the rolloff, accounts for the fact that
light reflected from the very outer edge of the primary is unusable due to the process by which
the mirror was ground and polished. The conservative tolerance values assigned to each of these
errors are identical for the baseline and rotated mask configurations with one exception: the
baseline mask configuration uses a slightly higher value for the translation tolerance based
on a more conservative interpretation of a lateral pupil misalignment requirement (Table 1).
This choice was made to slightly increase the robustness of the baseline mask configuration
and reduce its technical risk. For the rotated mask configuration, which is contributed by
EXEP so that it can be available for use if scheduling and funding constraints allow and is not
part of the technology demonstration, the smaller value was selected to slightly increase the core
throughput (by two-tenths of a percentage point).

The error padding is applied to the shaped pupil optimization starting point in one of
two ways, both of which account for worst-case scenarios in which all of the errors are present
simultaneously at the most extreme values specified by the tolerances. For the baseline mask

Table 1 Tolerances used for error padding. The diameter D is the full aperture diameter including
the rolloff, not the diameter of the smaller aperture once the rolloff is masked.

Tolerance
Error type More conservative (baseline) Conservative (rotated)
Rolloff —0.5%D, increased based on —0.5%D, increased based on
max expected translation, max expected translation,
clocking, and magnification clocking, and magnification
Translation +0.1%D +0.062%D
Clocking +6 mrad +6 mrad
Magnification [+0.75 -1.05]%D [+0.75 -1.05]%D
Struts 0.129%D 0.129%D
Central obscuration 0.141%D 0.141%D
Tabs 0.141%D 0.141%D
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configuration, the error padding is applied by compiling multiple versions of the array that rep-
resents the modeled telescope pupil. First, the component-level error padding and the rolloff
padding are applied by modifying the telescope pupil model; the component-level error padding
is applied by increasing the widths of the struts and the sizes of the secondary and tabs by the
amounts specified in the tolerances, and the rolloff padding is applied by decreasing the radius of
the primary. The global error padding is then applied by using PROPER to generate versions of
the modified telescope pupil for a range of possible translation, clocking, and magnification
combinations and taking the union of the padding cases.

For the rotated mask configuration, the error padding is applied by modifying the sets of
equations used to generate the individual elements of the telescope pupil model. Following the
conventions established for the baseline mask configuration, we first account for the component-
level errors and rolloff and then pad for magnification, clocking, and translation. With all of the
types of error padding incorporated, the telescope pupil model is no longer a simple collection of
ellipses and rectangles, but it is still relatively straightforward.

The first modifications are made to the definition of S, With the goal of padding the
primary’s perimeter so that the unusable area is always completely blocked by the shaped pupil
mask even in the presence of pupil errors. If the primary had been modeled as the set of points
within a circle centered at the origin, the modifications would have been as simple as reducing
the circle’s radius to a value that accounts for the rolloff tolerance as well as the magnification
and translation tolerances. Conservatively, this value is

ry=14+m_)(r, —=)— 2, 5)

where r, is the radius of the unpadded circle, m_ is the negative magnification tolerance, 7 is the
absolute value of the translation tolerance, and - is the rolloff tolerance. The negative magni-
fication tolerance is used because the unusable portion of the primary comes into view as the
telescope pupil is demagnified, and the translation tolerance is multiplied by the square root of
two to reflect a conservative interpretation that the telescope pupil can translate by the tolerance
amount in x and y simultaneously.

However, because the primary is modeled as the set of points within a general ellipse, we
must also account for clocking and the projection effects that modify the shape of the unusable
region. We pad for clocking errors by considering the two boundary-case ellipses in addition to
the single ellipse that defined the primary. These boundary-case ellipses are rotated by the maxi-
mum and minimum values specified by the clocking tolerance, and the sets of points §,,, within
these ellipses are defined as

[(x- Xeps )cos(0 £+ 6.)+(y— y[.Pi) sin(0 +6,)]?

{(1 +m_)(a,, /A ) —t\/i} ’

_ . "po "
Spe = (x.¥): [(x=xc,, ) sin(0£0.) + (v =¥, ) cos(0 £ 6, < , (©)

|:(l+m_)( p—,”pii)_tﬁ]z

0

where the signs in the subscripts of S, x. , and y. reflect the sign of the clocking value used to
P P

define the boundary ellipse; 6, is the absolute value of the clocking tolerance; the factors of :l
Po
bP

and % scale the rolloff tolerance to the appropriate amount for each axis of the boundary ellipse;
Po

and x. and y. are the coordinates locating the center of the boundary ellipse:
Cpy Cpy

Xe, | 1 cos(@£6.) —sin(@£6.)][x, ;
[yc,,j = +m_)Lin(Qj:HC) cos(60 £6,) }[ycp]' (7N

The clear area of the unobscured primary is then the intersection of the sets of points contained
within each of the boundary ellipses and the original ellipse [Fig. 7(a)]:
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(a) Reducing the clear area (b) Expanding the obscuration

Fig. 7 Padding for regions defined by ellipses. Because the primary and secondary are both mod-
eled as ellipses instead of circles, their padding process must account for clocking. This is done in
part by considering two boundary ellipses (drawn with dashed lines): one that has the maximum
expected counterclockwise rotation and one that has the maximum expected clockwise rotation.
For the primary, the padding reduces the clear area to the intersection of the sets of points within
the two boundary ellipses and the original, unrotated ellipse; the result, S,nopbsc, iS illustrated by the
shaded region in (a). For the secondary, the padding increases the size of the obscuration to cover
all of the possible orientations spanned by the boundary ellipses. The result, Sse., shown by the
shaded region in (b), consists of the union of the sets of points within the two boundary ellipses as
well as the circular sectors swept out by the major axis as it is rotated from one extreme to the
other. (The arcs traced by the endpoints of the major axis are drawn with dotted lines.) Note that,
for illustrative purposes, the rotations and eccentricity in (a) and (b) are greatly exaggerated.

Sunobsc = Sunobsar N Sunobsc_ N Sunobsco’ (8)

where Synobse, TEPresents the set of points within the original, unrotated ellipse [Eq. (3)].

Although the secondary is also modeled as the set of points within a general ellipse, the
modifications to Sy, are the opposite of the modifications to Sy, because S is an obscura-
tion instead of a clear area. Instead of reducing the size of the boundary ellipses and taking the
intersection of the sets of points that fall within each ellipse, we now increase the size of the
boundary ellipses and take the union of the sets of points that fall within these ellipses and all of
the clocking cases that they bound [Fig. 7(b)]. Because the endpoints of the major axis of the
secondary’s ellipse trace arcs as the ellipse is rotated from one boundary case to the other, we can
represent the union of the sets of points that fall within all clocking cases as the union of the sets
of points S, that fall within the boundary ellipses and the sets of points Sy, and S, that fall
within the circular sectors swept out by the major axis:

SSEC = SS8C+ U SSSC, U SSCC] U SSECz' (9)

The sets Sy, are defined as

(¥ = Yoy, ) €OS(OE0,) + (v )sin(0:£0,)]

~Yeseo,

(14 m) (@gee +0ree) +1V2]
. ) sin(+€ :l:aQ,.) +(y ~Yeseey N CEAR ’ (10)

Sseci = (x’y): [(x=x
<
(1m0 (b +0riec) +1V2 :

+

Csec

where, as before, the signs of S, x._, and y._ reflect the sign of the clocking value used to
define the boundary ellipse; m is the positive magnification tolerance; r. is the absolute value
of the alignment tolerance for the secondary; and Xege, and Ve, ar€ the coordinates locating the

center of the boundary ellipse:

cos(0+6,) —sin(0+ 96)} {x

{yi] = +m+){sin(6j:66) cos(0 + 0,) ] (b

ycsec

To define Sy, and Sg.,, we first define a boundary line between the two circular sectors
swept out by the major axis:
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Ybound = tan O(x — cos @) + sin 0. (12)

Then, we consider each circular sector in turn. Although the specific equations and inequalties
that define the circular sectors depend on 6, the overall method for defining Sy, and S,

0

does not. For S , we locate the endpoints V.. . of the traced arc, define the lines V.

and V. O that connect these endpoints to the origin O, and identify the circle of which arc
Viee,, Viee, 18 apart. Then, we define S, as the set of points within this circle that fall between

Ve, O and V. O and are on the correct side of ypoung. The set S, is defined similarly.

The three sets Siyps, » Stabs,» a0d Siaps, that represent the obscurations due to the tabs are modi-
fied in the same manner as S.. The additional logic that bounds Sips, » Stans,» and Siyps, between
the appropriate struts is unaffected by the padding, although it does require the boundaries of
the padded struts to be defined first. The specific inequalities and equations are orientation-
dependent and vary by tab.

The six sets that represent the obscurations due to the individual struts are the most com-
plicated to define because there are multiple details that depend on the specific strut and the pupil
orientation. The first step is to follow the procedure outlined at the end of Sec. 2.2, with the strut

half width increased by éw,, to account for the strut tolerance. For simplicity, let Vi, Vsrui,

and Vi, Vi, be the boundary lines that define the longer sides of strut i, and let S, be the

set of points that fall between Vi, Vsrui, and Vg, Veu, » bounded by the perimeter of the
primary on one end and the perimeter of the secondary on the other (Fig. 8). Then, we pad for

each of the global errors in turn by identifying the boundary cases that move Vi, Vi, and

Vsruti, Ve, the farthest outside S, and updating the definitions of the lines and Sy, accord-
ingly. For example, to pad for magnification errors, we magnify one line by m, and the other by
m_, choosing the case that increases the strut width. Then, to pad for clocking errors, we rotate
one of the new lines by 6, and the other by —@,, again choosing the case that increases the size of
the obscuration. Finally, we pad for translation errors by shifting the resulting lines by =+ in x
and £z in y, with the sign for each shift chosen based on which moves the specified boundary
line away from Sy, . The signs chosen for one line will be the opposite of those for the other.

Fig. 8 Padding the struts. For simplicity, a strut is initially modeled as a rectangle placed between
the primary and secondary, as shown for an example strut by the solid lines. To define the obscu-
ration due to a padded strut, it helps to replace this rectangle with a pair of lines (dashed) that
define the longer sides; the obscuration is then defined as the set of points (shaded) between
these lines and between the perimeters of the primary and secondary, with an additional restriction
to ensure that the obscuration is limited to the correct side of the pupil. As each type of padding is
applied, the (dashed) lines move farther apart, and their angles also change once the clocking
padding is applied. Note that the strut width and padding are greatly exaggerated for illustrative
purposes.
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2.3.2 Padding for symmetry

Because the shaped pupil mask optimization algorithm requires that the pupil be symmetric
about the y axis (as explained in Sec. 2.1), the naturally asymmetric telescope pupil model
is forced to be symmetric through the addition of pupil padding. This padding is added by
manipulating the array that represents the modeled telescope pupil, so, for the analytically mod-
eled telescope pupil, the symmetry padding is applied after any error padding. The set of pixels
that correspond to the pupil asymmetries, Syqm, is identified by subtracting a mirror image of the
left half of the pupil from the right half. Padding is then added to the right half of the pupil by
setting the pixel value equal to zero wherever S,q, > 0. Similarly, padding is added to the left
half of the pupil by setting the pixel value equal to zero wherever the mirror image of Sygrm, is
negative. The two padded halves are then recombined to form the symmetrized version of the
telescope pupil. Although it is possible to achieve the same result by simply padding one side of
the pupil and combining the result with its mirror image, we track the amount of padding added
to each side of the pupil in order to transparently explain where each pixel of padding originates.

Unlike the error padding, the symmetry padding is affected by the pupil orientation due to the
lack of perfect rotational symmetry. (As noted in Sec. 2.1, we optimize shaped pupil masks with
the pupil rotated by the specified amount when needed to make the problem tractable; in reality,
the focal plane mask, Lyot stop, and dark hole are rotated.) The differences are noticeable even
between the 0-deg, 60-deg, and —60-deg orientations, which are all nearly symmetric about
the y axis (Fig. 9). The £60-deg orientations have significantly more symmetry padding than
the 0-deg orientation for three reasons, all of which are due to the CGI being mounted slightly
off-axis: the ellipses that describe the outer diameters of the primary, the secondary, and the tabs
are no longer symmetric about the y axis; the two tabs that do not fall on the y axis for the +60-
deg orientations are no longer fit to the same ellipse; and the strut pairs are less symmetric.
Ultimately, these changes lead to a throughput loss of about half a percentage point compared
with the throughput of the equivalent 0-deg mask configuration. For the rotated mask configu-
ration, the +60-deg orientation was selected over the —60-deg orientation due to its slightly
higher symmetry and therefore slightly better throughput.

3 Flight Design Selection

While the shaped pupil mask optimization determines the best shaped pupil mask for a given
Lyot stop, the design survey identifies the Lyot stop that leads to the highest-throughput design.
The Lyot stop for the bowtie shaped pupil coronagraph is a bowtie-shaped mask rotated 90 deg
relative to the focal plane mask; this orientation aligns the Lyot stop with the reflective regions of
the shaped pupil mask, and the bowtie shape is well-matched to the regions illuminated by off-
axis sources’” (Fig. 10). A Lyot stop is specified by three main parameters: the inner and outer
diameters of the opening and the opening angle [Fig. 11(a)]. These parameters determine the
basic perimeter of the bowtie, which consists of four line segments and four arcs. To improve
manufacturability and reduce the risk of damage during launch, the basic bowtie shape is modi-
fied slightly: the eight sharp corners where a line segment and an arc intersect are replaced by
fillets [Fig. 11(b)]. Each fillet is a section of a circle of radius dr that is tangent to the line
segment at one end and tangent to the arc at the other, allowing the perimeter to smoothly tran-
sition from the line segment to the arc. Although dr is adjustable, it is held constant unless being
optimized explicitly.

For the design surveys, we considered Lyot stops with inner diameters of 20%D to 43%D,
outer diameters of 76%D to 96%D, and opening angles of 80 deg to 100 deg. (The diameter D
is the full aperture diameter, not the smaller diameter once the rolloff is masked.) Due to time
constraints, this parameter space was sampled coarsely at first and then successively finely until
a maximum-throughput design could be identified in a parameter cube of resolution 1%D in the
inner and outer diameters and 1 deg in the opening angle; at this resolution, the throughput
changes very slowly around the maximum point, and additional refinement is unnecessary.
Although the design surveys for the baseline and rotated mask configurations (Secs. 3.1 and
3.2, respectively) all followed this basic procedure, the specific process varied because the two
mask configurations were designed semi-independently (with the baseline mask configuration
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Fig. 9 Padding variations due to orientation-dependent asymmetries. There are two types of pupil
padding: padding to enforce y-axis symmetry and padding to account for possible pupil errors. The
total pupil padding depends on the choice of mask configuration orientation because the pupil is
rotated for the shaped pupil optimization instead of the other masks. Although the amount of error
padding is consistent for 0-, 60-, and —60-deg orientations of the Roman pupil, the symmetry pad-
ding varies noticeably. The +£60-deg orientations require more symmetry padding than the 0-deg
orientation, with the —60-deg orientation needing the most, and the additional padding leads to
a throughput loss of about half a percentage point relative to the throughput of the 0-deg mask
configuration.

—

(@)

Fig. 10 Rationale behind the Lyot stop shape. A bowtie-shaped Lyot stop captures most of the
light from a planet (a), while blocking most of the starlight (b). To emphasize the regions illuminated
by the off-axis light as well as the rejection of the on-axis light, (a) is shown with a linear scale, while
(b) is shown with a logarithmic scale.
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Fig. 11 Lyot stop geometry. The Lyot stop is a bowtie-shaped mask rotated 90 deg relative to the
focal plane mask and specified by the inner and outer diameters (/D and OD, respectively) of the
open areas and the opening angle 6,5, as shown in (a). The sharp corners of the bowtie are
replaced with fillets; instead of transitioning abruptly from a line segment to an arc or vice versa,
the perimeter traces a small arc that is tangent to the line segment at one end and tangent to the
large arc at the other (b). This small arc is a section of a circle of radius dr, and this radius is called
the radius of curvature for the fillets.

primarily designed at JPL and the rotated mask configuration primarily designed at Princeton)
and under fluctuating time constraints. Despite the differences in the design methodologies, the
flight designs for the baseline and rotated mask configurations (Sec. 3.3) are strikingly similar,
as would be expected if the telescope pupil were perfectly rotationally symmetric.

3.1 Design Surveys for the Baseline Mask Configuration

To quickly narrow the parameter space for the baseline mask configuration, the design process
began with a preliminary design survey that coarsely sampled the set of possible Lyot stops while
generating shaped pupil masks with a lower resolution than the full manufacturing resolution.
Although the lower-resolution (250 pixel X 250 pixel) shaped pupil masks are not purely binary
as required, they offer comparable performance to full-resolution (1000 pixel X 1000 pixel)
shaped pupil masks in simulations while also being significantly faster to optimize. (The shaped
pupil mask optimization routine does not guarantee that the resulting shaped pupil mask will be
perfectly binary, but when the shaped pupil mask is optimized at the full manufacturing reso-
lution, the contrast does not degrade when the pixel values are rounded to produce a purely binary
mask.) The results of this survey suggest that the highest-throughput design corresponds to a Lyot
stop with an inner diameter of 41%D to 42%D, an outer diameter of 89%D, and an opening angle
of 87 deg to 88 deg (Figs. 12 and 13). In the interest of time, the parameter space for subsequent
design surveys was therefore narrowed to inner diameters of 39%D to 43%D, outer diameters of
87%D to 92%D, and an opening angle of 88 deg; the opening angle was fixed due to time con-
straints and the minimal benefit of varying it near the maximum-throughput point.

In response to concerns about launch stresses, we conducted an additional low-resolution
design survey to determine the radius of curvature for the Lyot stop fillets. The results of this
survey indicate that although a radius of 2%D leads to the highest throughput, the radius can be
increased to 3%D without a significant throughput loss (Fig. 14). We therefore selected a radius
of 3%D to reduce the risk of damage to the Lyot stop during launch. For this radius and an
opening angle of 88 deg, a Lyot stop with an inner diameter of 41%D and an outer diameter
of 89%D leads to the highest throughput for the baseline mask configuration, as confirmed by a
final high-resolution design survey (Fig. 15).
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Fig. 12 Preliminary low-resolution design survey results for the baseline mask configuration. The
results of this survey, which are used to narrow the parameter space for subsequent surveys,
suggest that the highest-throughput design corresponds to a Lyot stop with an inner diameter
of 41%D or 42%D, an outer diameter of 89%D, and an opening angle of 87 deg to 88 deg.
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Fig. 13 Identification of the maximum-throughput design point for the preliminary low-resolution
design survey for the baseline mask configuration. Because multiple design points can have a
similar throughput, it often helps to look at a set of three plots: the maximum throughput as a
function of inner diameter, the maximum throughput as a function of outer diameter, and the maxi-
mum throughput as a function of angle. For the preliminary low-resolution design survey for the
baseline mask configuration, an inner diameter of 42%D and an opening angle of 87 deg lead to
the maximum throughput, but the maximum throughput changes very slowly with variations in
these two parameters. An opening angle of 88 deg was selected for subsequent baseline design
surveys.
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Fig. 14 Results from the low-resolution Lyot stop fillet radius of curvature survey. For the radius of
curvature survey, Lyot stops with inner diameters of 39%D to 43%D, outer diameters of 87%D to
92%D, and radii of curvature of 0.1%D to 5%D were considered. The opening angle was restricted
to 88 deg due to time constraints and the minimal impact of varying the angle near the maximum-
throughput point of the parameter space. A Lyot stop with an inner diameter of 41%D, an outer
diameter of 89%D, and a fillet radius of 2%D led to the highest throughput (4.501%), but increasing
the fillet radius to 3%D negligibly affected the throughput, lowering it slightly to 4.499%. The larger
radius of curvature was therefore selected due to concerns about launch stresses, and it was used
for both the baseline and rotated mask configurations.
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Fig. 15 Results of the final, full-resolution design survey for the baseline mask configuration. For a
fixed opening angle of 88 deg and a fillet radius of 3%D, the highest-throughput design used a Lyot
stop with an inner diameter of 41%D and an outer diameter of 89%D. This design was therefore
selected for the baseline mask configuration.

3.2 Design Surveys for the Rotated Mask Configuration

The design surveys for the rotated mask configuration were performed concurrently with the
design surveys for the baseline mask configuration and followed a similar process, incorporating
information from the baseline design survey results as needed. For example, once the final value
for the radius of curvature for the Lyot stop fillets, dr, was determined from the results of a
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design survey for the baseline mask configuration (Fig. 14), the value of dr used for the rotated
mask configuration was updated to match. All of the design surveys for the rotated mask con-
figuration generated full-resolution shaped pupil masks, and the differences from one survey to
the next consisted of updates to the telescope pupil, tolerances, and other design parameters. Due
to time constraints, the parameter space (consisting of possible values for the inner and outer
diameters of the Lyot stop and the opening angle) was explored iteratively with successively
targeted mini surveys until the maximum-throughput point could be identified, and the final
design survey was initially centered on the maximum-throughput point of the penultimate survey
(Figs. 16 and 17), which differed only by using a slightly more conservative translation toler-
ance. The final survey produced two designs with equivalent throughputs (Figs. 18 and 19), but
the degeneracy was broken once dr was updated to its final value. Time constraints prohibited
running a separate design survey to incorporate this last update, so the shaped pupil masks for the
two highest-throughput point designs were reoptimized with updated Lyot stops; the resulting
design with the higher throughput was selected for the rotated mask configuration.

3.3 Final Designs for the Baseline and Rotated Mask Configurations

The flight designs for the baseline and rotated mask configurations are very similar because the
orientation of the dark hole relative to the struts is nearly equivalent for the two cases. The shaped
pupil masks look almost like rotated versions of each other (Fig. 20), and the Lyot stops for the
two mask configurations use very similar parameters: an inner diameter, outer diameter, and
opening angle of 41%D, 89%D, and 88 deg, respectively, for the baseline mask configuration
and 41%D, 87%D, and 89 deg, respectively, for the rotated mask configuration. However, while
the two designs are very similar, they have different throughputs; the baseline mask configu-
ration has a core throughput of 4.50% at 4 %, whereas the rotated mask configuration has a
core throughput of 3.89% at 4 %. [For reference, the throughput for the CGI input pupil alone
is 34.4% when calculated using Eq. (1); note that this definition neglects all reflectivities and
transmittivities and accounts only for the diffraction of the pupil features.] The difference in
throughput is due to differences in the amount of pupil padding: the starting point for the shaped
pupil optimization for the rotated mask configuration required more symmetry padding
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Fig. 16 Results of the penultimate design survey for the rotated mask configuration. Due to time
constraints, the parameter space was explored iteratively with successively targeted mini surveys;
the regions shown in black were not evaluated. The survey concluded when the maximum-
throughput point could be identified in the center of a parameter space cube with a resolution
of 1%D in the inner and outer diameters and 1 deg in the opening angle. This point corresponded
to a Lyot stop with an inner diameter of 40%D, an outer diameter of 87%D, and an opening angle
of 87 deg. However, the throughput was only negligibly smaller for a Lyot stop with an inner diam-
eter of 41%D, an outer diameter of 87%D, and an opening angle of 86 deg. This survey used a
more conservative translation tolerance than the final survey, and the fillet radius was updated
after both surveys concluded.
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Fig. 17 Identification of the maximum-throughput design point for the penultimate design survey
for the rotated mask configuration. Although a Lyot stop with an inner diameter of 40%D, an outer
diameter of 87%D, and an opening angle of 87 deg led to the highest throughput, the maximum
throughput changes very slowly for small variations in these three parameters. The changes are
particularly slow for variations in the opening angle.
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Fig. 18 Results of the final design survey for the rotated mask configuration. Due to time con-
straints, the final design survey was initially centered around the highest-throughput point of the
penultimate design survey, which differed only by using a more conservative translation tolerance.
The surveyed portion of the parameter space was then modified with successively targeted mini
surveys; the regions shown in black were not evaluated. Two Lyot stops differing only in the open-
ing angle produced the maximum throughput. However, this degeneracy broke in favor of the
larger opening angle once the fillet radius was updated to its final value for the two point designs.
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Fig. 19 Identification of the maximum-throughput design point for the final design survey for the
rotated mask configuration. Although it is clear which inner diameter and outer diameter lead to
the highest-throughput design, there are two equivalent choices for the opening angle. Updating
the fillet radius to its final value breaks the degeneracy in favor of the larger opening angle,
although the difference is very slight (0.03 percentage points of throughput).

(Sec. 2.3.2), and the aperture loss due to the additional symmetry padding was not fully offset by
using a slightly less conservative translation tolerance. A full-plane optimization that did not
require symmetry likely would have produced baseline and rotated designs with more compa-
rable throughputs because there would have been no need for the symmetry padding, but this
type of optimization was not tractable due to the large design space.

To briefly comment on the integration time required for SNR ~ 5 spectroscopy with the base-
line mask configuration, we first note that specific integration time estimates depend strongly on
how conservatively the CGI performance is modeled. The most favorable reflected light planets
observable by the CGI are very challenging targets; they have separations near the inner working
angle and flux ratios of a few 10~ at best, and they are near the performance limit of the CGI,
where contributions from random noise and speckle noise are both significant. There may be
very few reflected light planets (such as HD 219134 h and 47 Uma c) for which SNR ~ 5 spec-
troscopy is possible, with integration time estimates ranging from about one day to several
weeks. For the interested reader, the Roman Coronagraph Exposure Time Calculator® is a
publicly available tool for estimating the integration times for different planetary system
configurations.

4 Compensating for Excessive Errors

The flight designs for the baseline and rotated mask configurations are designed to mask the
telescope pupil even with errors up to the amounts specified by the tolerances. However, these
tolerances are three-sigma tolerances instead of not-to-exceed values, and it is possible (though
not expected) for the pupil errors to be large enough that the telescope pupil is partially visible
behind the shaped pupil mask, leading to a degradation in the contrast. Although using more
pupil padding could have increased the robustness to pupil errors, it is preferable to compensate
for any excessive errors by using the DMs that are part of the wavefront sensing and control
system for the CGL
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Fig. 20 Final shaped pupil masks for the baseline and rotated mask configurations, shown without
the relative rotation. The two shaped pupil masks (a and b) are very similar, producing comparable
dark holes (c and d) and contrasts (e and f). We would expect the designs to be identical for a
perfectly rotationally symmetric telescope pupil; due to asymmetries in the true pupil, the rotated
mask configuration requires more symmetry padding, leading to a lower throughput.

4.1 Costs of Additional Pupil Padding

Because the pupil padding is a permanent feature of the shaped pupil mask, the throughput losses
due to the padding are present even if the pupil errors never approach the tolerance values. These
losses can be significant, but they are not evenly distributed among the various types of pupil
padding. To illustrate the general trends that describe how the different types of padding con-
tribute to the total throughput loss, we generate two sets of telescope pupils for the rotated mask
configuration with varying types and amounts of padding and calculate the amount of clear
aperture for each pupil relative to that of the unpadded pupil (a quickly calculated proxy for
the throughput loss). First, using the tolerance values, we pad for only one error type at a time
to determine which types of padding most significantly affect the amount of clear aperture for the
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rotated mask configuration’s flight design. Then, we start with the fully padded telescope pupil
that we used to optimize the flight design and increase one type of padding beyond its tolerance
value to illustrate the cost associated with the additional padding.

As shown in Table 2, the rolloff padding is by far the dominant contributor to the aperture
loss, followed by the padding for clocking, the struts, magnification, and translation. The pad-
ding for the secondary and the tabs, by comparison, minimally affects the aperture. If we increase
the padding for any error beyond its tolerance, the amount of clear aperture decreases. The loss is
minimal if we increase the padding for the tabs or the secondary, but it is noticeable for the other
cases (Fig. 21). The loss is particularly dramatic if we increase the padding for magnification,
and this is due to the corresponding change in the rolloff padding. [To prevent the unusable
portion of the primary from coming into view, the rolloff padding is increased based on the
padding for magnification, translation, and clocking. The clocking tolerance affects the rolloff
padding because the modeled pupil is elliptical instead of circular, as explained in Egs. (6)—(8)

Table 2 Impact of pupil padding on the clear aperture.

% clear aperture

Padding type (relative to the original telescope pupil)
Rolloff 94.6
Clocking 98.3
Struts 98.7
Magnification 98.9
Translation 98.9
Central obscuration 99.5
Tabs 99.6
Symmetry 99.6
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. A Excessive clocking with original rolloff padding
2 91y —3- Excessive magnification
5 e = Excessive magnification with original rolloff padding
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Fig. 21 Aperture costs of additional error padding. Although additional padding can improve the
robustness to pupil errors, it costs some of the clear aperture. To investigate the costs associated
with padding each type of error beyond its tolerance value, we start with a telescope pupil that has
been padded for all errors at their tolerance levels and then continue to pad for increasing amounts
of a given error. The most dramatic aperture loss occurs when padding is added for magnification
errors that exceed the tolerance, but this is due to the corresponding increase in the rolloff padding,
which depends on the limits used to pad for clocking, translation, and magnification errors. When
the rolloff padding is held constant, clocking is the most costly error to pad beyond its tolerance.
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and Fig. 7(a)]. With the rolloff padding held constant, additional padding for clocking errors
becomes the most costly.

4.2 Using the DMs to Compensate for Excessive Errors

In addition to being potentially costly, padding beyond the three-sigma tolerances is unnecessary.
To demonstrate this point, we evaluate how excessive errors affect the initial contrast (the con-
trast calculated without the DMs present and with no wavefront errors) and examine how well
the DMs are able to compensate for the excessive error in some of the worst cases. For these tests,
we start with a worst-case representation of the telescope pupil that has every error present at
its tolerance value. In the case of magnification, which has an asymmetric tolerance, we choose
the positive value, and it is also worth noting that we treat magnification as a resizing of the
binary telescope pupil; we do not incorporate any edge blurring. Although this representation of
the telescope pupil is still completely covered by the shaped pupil mask, the simultaneous pres-
ence of all error types at the levels used for padding reduces the extent to which the padding for
one type of error can mask a different error. From this starting point, we increase a single error
beyond its tolerance and calculate the initial contrast for the rotated mask configuration. Finally,
we identify the worst of these error cases and evaluate how well the DMs are able to achieve
a target contrast of 3.00 x 10~ across a 15% band using an electric field conjugation (EFC)
algorithm.*' This performance goal is related to the CGI requirements, and EFC is the baseline
wavefront sensing and control algorithm for the CGIL

The most dramatic degradation in the initial contrast occurs as the clocking is increased
beyond its tolerance. As the clocking increases 3 mrad past its tolerance (to 150% of its tolerance
value), the initial contrast degrades by an order of magnitude (Fig. 22). Achieving the same
amount of degradation for any of the other error cases that we consider, by comparison, requires

10_6 T T T T T T
- - - - Errors within tolerances
—e— Excessive clocking
- Excessive magnification
-—-Excessive translation
——Oversized struts
Oversized secondary
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Fig. 22 Initial contrast degradation due to errors exceeding their tolerances. As an error exceeds
the limits used for padding, the initial contrast degrades. The most rapid degradation is caused by
excessive clocking errors, which are also among the costliest to pad. However, it is important to
note that these results do not consider the extent to which the DMs can recover the contrast; they
show the degradation in the starting point before any control is applied.
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increasing the error to >200% of its tolerance. However, this contrast degradation can be miti-
gated at least partially by the DMs. In our example, even as much as 5 mrad of excessive clock-
ing can be corrected fully by the DMs (Table 4 and Fig. 23), which is fortuitous because clocking
is one of the costliest errors to pad.

To simulate the DM corrections, we used a suite of modular optical propagation and corona-
graph modeling algorithms developed at Princeton. These algorithms implement Fresnel and
Fraunhofer propagation using a matrix Fourier transform approach based on that of Soummer
et al.,*> and the DM surfaces are modeled by superposing influence functions, which describe
how a single actuator affects the DM surface when pistoned. For each actuator, we scale the
influence function provided with PROPER* by the product of the gain (which we assume
is 1 nm/V for all actuators) and the commanded voltage, and then we sum all of the individual
influence functions (each centered over their respective actuators) to produce the modeled sur-
face. To match the DMs used in the CGI, we represent the two DMs as 48 X 48 actuator arrays
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0.925 4

= —6
0.950 1
-7
09751
2
‘@
C
]
IS
) E
©
£
S
Z
1.025 4 -9
1.050 A
-10

1.0751

-1

Fig. 23 Normalized intensity in the image plane before and after correction for 11 mrad of total
clocking, shown for both two- and one-sided dark holes (outlined) at each of the seven controlled
wavelengths. The DMs are able to completely correct the clocking error across the 15% band for
either type of dark hole.
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Table 3 Selected technical details for the DMs. This information (and
more) can be found in a paper by Poberezhskiy et al.2°

Actuator array dimensions 48 x 48

Technology Lead-magnesium-niobate (PMN)
electrostrictive

Manufacturer AOA Xinetics
Actuator spacing ~1 mm
Actuator stroke limit ~500 nm
Voltage range 0to 100 V
Electronics resolution 16-bit

separated by 1 m;*° selected technical information about the CGI DM is provided for reference
in Table 3.

The extent to which excessive errors can be corrected depends in part on the magnitude of the
error and the choice of the dark hole. It is also worth noting that the ability to compensate for
pupil errors is also dependent on the ratio of the square of the DM width to the DM separation,
with smaller ratios preferred, but this ratio is fixed for the Roman Space Telescope. To illustrate
the general patterns that describe how well the errors can be corrected, we consider two of our
worst excessive error cases (11 and 14 mrad of total clocking) and use an EFC algorithm to
improve the contrast over either a two-sided dark hole or a single-sided dark hole (Tables 4
and 5 and Figs. 23 and 24). Because the specific number of iterations required depends upon
the size of the dark hole and the magnitude of the pupil error, the algorithm is set to run for 30
iterations, the maximum number of allowed wavefront sensing and control iterations planned for
digging the initial dark holes on orbit for the baseline configurations of the hybrid Lyot corona-
graph (HLC), the bowtie shaped pupil coronagraph, and the wide-field-of-view shaped pupil
coronagraph. The postcorrection values shown in Tables 4 and 5 correspond to either the first
iteration for which the contrast is beneath the target across the entire band or to the iteration for
which the contrast has converged as close to the target as possible.

As we would expect, smaller errors require fewer control iterations and are more likely to be
successfully corrected over the full bandwidth for a two-sided dark hole (Table 4 and Fig. 23). As
the magnitude of the error increases, there is eventually a point at which there is simply too much
error for the DMs to correct completely across the full band for a two-sided dark hole. At this
point, the edges of the band fail to reach the target contrast. As the error continues to increase,
the contrast at the outer edges of the band continues to deteriorate, and the fully corrected portion

Table 4 Control results for 11 mrad of total clocking (5 mrad beyond the tolerance).

Contrast achieved at selected wavelengths over 15% band

Dark hole
type lterations 0.9254 0.9504 0.9754 2 1.0251 1.0501 1.0751
Two-sided 0 6.15 6.77 7.18 7.44 7.57 7.98 8.74
x10-8 x10-8 x10-8 x10-8 x10-8 x10-8 x10-8
2 2.12 1.75 1.42 1.37 1.53 1.67 2.65
x107° %1079 %1079 x107° x1079 x107° x107°
One-sided 0 6.11 6.69 7.09 7.31 7.39 7.78 8.53

x1078 x1078 x1078 x1078 x1078 x1078 x108

1 1.00 8.63 6.45 6.91 7.9 7.89 1.40
x107° x10-10 x10-10 x10-10 %1010 %1010 x107°
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Table 5 Control results for 14 mrad of total clocking (8 mrad beyond the tolerance).

Contrast achieved at selected wavelengths over 15% band

Dark hole
type Iterations 0.9254 0.9504 0.9754 yl 1.0251 1.0501 1.0751
Two-sided 0 3.18 3.39 3.54 3.61 3.62 3.68 3.77
x10~7 x10~7 x10~7 x10~7 x10~7 x10~7 x10~7
4 8.25 5.95 4.39 3.50 3.26 3.54 5.23
x1079 %1079 %1079 %1079 x1079 %1079 x1079
One-sided 0 3.17 3.37 3.52 3.58 3.59 3.64 3.74

x10~7 x10~7 x10~7 x10~7 x10~7 x10~7 x10~7

1 2.59 1.82 1.832 1.22 1.36 1.48 2.20
x1079 x107° x107° x107° x10~° x107° x107°9

of the band shrinks in toward the central wavelength. However, reducing the size of the dark hole
by switching to a single-sided dark hole can enable the DMs to fully correct the error across the
band once again (Table 5 and Fig. 24), and there are contributed field stops included in the CGI
that allow for single-sided bowtie dark holes if that becomes necessary.

It is also worth noting that, for each of the example cases, the actuator heights and com-
manded voltages (shown in Table 6) are well within their limits (Table 3). For the cases in which
the DMs successfully corrected the error, the largest absolute change in actuator height was
9.4 nm, which is about 2% of the stroke limit. For the example in which the DMs were unable
to completely correct the error, the largest absolute change in actuator height was 22.4 nm. The
root-mean-square (RMS) stroke for the nominal HLC design is about 30 nm RMS before
accounting for any optical aberrations, whereas for the shaped pupil coronagraphs it is nominally
zero because the apodizer does most of the contrast generation. Therefore, a +22.4 nm change in
actuator height for the bowtie shaped pupil coronagraph in these cases with misalignments is
well within the DM actuation capabilities. Overall, there is a range of excessive errors that can be
completely corrected by the DMs across the full band, and beyond this range, the contrast
degrades gracefully.

5 Summary

Currently, a space-based direct imaging mission offers one of the best paths to searching for life
on an Earth-like exoplanet, and the level of interest in such a mission is underscored by the most
recent decadal survey’s recommendation of a 6-m class infrared/optical/ultraviolet telescope for
high-contrast imaging and spectroscopy as the highest priority for space frontier missions. To
help close some of the numerous technical gaps that need to be addressed, the CGI on the Nancy
Grace Roman Space Telescope will serve as a demonstrator for high-contrast imaging technol-
ogies including DMs to correct high-order wavefront errors and precision-fabricated masks spe-
cifically designed to attenuate the relative intensity of the star off-axis while maximizing the core
throughput. The CGI has three interchangeable observing configurations, one of which is a bow-
tie shaped pupil coronagraph for high-contrast spectroscopy.

The bowtie shaped pupil coronagraph has a baseline 0-deg mask configuration for the
technology demonstration and a 60-deg mask configuration contributed by EXEP. Each mask
configuration consists of a shaped pupil mask, a bowtie-shaped focal plane mask, and a bowtie-
shaped Lyot stop. The designs of the shaped pupil mask and the Lyot stop are determined
through an iterative process: a linear program optimizes the shaped pupil mask for a given Lyot
stop, and the optimization is repeated for a range of potential Lyot stops until the highest-
throughput combination is identifiable in a parameter space cube of resolution 1%D in the inner
and outer diameters of the Lyot stop and 1 deg in the opening angle. The resulting flight designs
for the baseline and rotated mask configurations have core throughputs of 4.50% and 3.89%,
respectively.
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Fig. 24 Normalized intensity in the image plane before and after correction for 14 mrad of total
clocking. Although the DMs cannot completely correct this much clocking error across the full 15%
band for a two-sided dark hole, they can for a one-sided dark hole. Another alternative would be to
reduce the controlled bandwidth because the contrast degrades at the edges of the band first.

Table 6 Maximum and minimum voltage commands and actuator
heights for the clocking error cases.

Max. Min. Max. Min.
voltage voltage height height
Error case V) v) (nm) (nm)
11 mrad, two-sided 7.9 -10.0 8.3 -9.4
11 mrad, one-sided 1.3 -1.0 1.5 -1.1
14 mrad, two-sided 18.8 -23.9 19.8 -22.4
14 mrad, one-sided 2.6 -1.9 2.8 -2.2
025003-27 Apr—Jun 2022 « Vol. 8(2)
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To provide some robustness to errors, the shaped pupil mask optimization directly incorpo-
rates tip and tilt, and the optimization starting point is padded so that the telescope pupil is fully
masked for conservative estimates of misalignments and manufacturing errors. This padding is
specifically tailored to a list of error tolerances as opposed to being generated by rotating, trans-
lating, and scaling a provided high-resolution pupil array, and this new approach for generating
robust shaped pupil designs is made tractable by a completely parametric model of the telescope
pupil (which we also use to study the costs of adding various types of robustness and the impacts
of pupil errors not masked by the padding). We have developed two versions of this model: one
that generates a pupil by superposing elliptical and rectangular obscurations in PROPER, and
one that consists of a set of algebraic equations that allow the individual edges of the obscura-
tions to be manipulated directly. These equations are written in a way that allows the pupil to
be rotated, facilitating designs for rotated mask configurations. There is also some padding to
enforce y-axis symmetry, which is required to keep the optimization problem tractable, and the
amount of symmetry padding depends on the mask configuration orientation.

However, the pupil padding costs throughput, and the throughput difference between the
baseline and rotated mask configurations is largely due to the higher amount of symmetry pad-
ding required by the rotated mask configuration. The throughput loss due to pupil padding is also
unevenly distributed among the various types of error padding, with the rolloff padding costing
the most throughput and the padding for symmetry, the tabs, and the central obscuration costing
the least.

Because the throughput losses due to pupil padding are fixed, it is important to balance the
need for pupil padding against the throughput cost. The baseline and rotated mask configurations
are padded to conservative three-sigma estimates of various pupil errors, which is expected to
provide sufficient robustness. However, if the pupil errors exceed the estimates, the DMs can be
used to compensate at least partially. In our simulations, excessive clocking errors lead to the
most dramatic contrast degradation by far, but the DMs are able to completely compensate for
the error across a 15% band in even the worst cases (11 mrad and 14 mrad of total clocking, with
padding for only 6 mrad). The one caveat is that a single-sided dark hole is required for the
14 mrad case, while a two-sided dark hole can be used for the 11 mrad case. In general, the
DMs are able to compensate for excessive pupil errors up to a point, after which the contrast
degrades gracefully; the fully corrected portion of the band shrinks inward toward the central
wavelength, and the corrected contrast at the ends of the band degrades as the error increases.

Future missions with obscured apertures may benefit from extending the use of the DMs a
step further: selectively reducing the pupil padding to improve the throughput and relying on the
DMs to compensate for the unpadded error as needed. The successful implementation of this
approach and the extent to which the padding can be reduced depend strongly on the ratio of the
square of the DM width to the DM separation, in addition to depending on details including the
specific telescope pupil obscuration and the magnitudes of the expected errors. The throughput
gains depend on the specific situation as well, but preliminary results suggest the gains can be as
high as a percentage point or two in some cases. Continued investigations of the throughput
gains achievable by reducing the pupil padding and relying on the DMs to compensate for pupil
errors as needed, and the factors that affect the success and usefulness of this approach, are the
subjects of future work.

6 Appendix: Pupil Model Parameters

The parameters for the two telescope pupil models were determined independently through sep-
arate trial-and-error approaches with different goals, and due to tight time constraints, much of
the work was done by hand. For each model, we inferred a set of parameter values that repro-
duced the provided high-resolution array. Then, as a final step, we shifted the coordinates to
center the modeled primary. (The pupil position in the provided array is arbitrary.)

For the PROPER-based model (used to develop the baseline mask configuration), the overall
goal was to find a set of parameters that led to the best fit, which minimized the summed squared
difference between the provided high-resolution pupil array and the PROPER-generated model.
The first step was to determine the approximate lateral position and size (width or radius) of each
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pupil component by eye. Then, this initial pupil model was refined through an iterative grid
search in which one to three parameters were varied at a time for each individual obscuration.

For the algebraic model (used to develop the rotated mask configuration), the overall goal
was to find a conservative set of parameters that led to a pupil with the smallest obscuration that
still completely covered the obscuration in the provided pupil. The first step was to determine a
set of parameters that produced a pupil with an obscuration that covered every pixel of the obscu-
ration in the provided pupil; this was easily checked by subtracting the provided pupil from the
modeled pupil. Then, using a plot of the difference of the modeled and provided pupils as a
guide, the parameters were refined by hand for one pupil component at a time. Changes that
reduced the number of pixels inside the modeled obscuration were kept so long as the provided
obscuration was completely covered, and changes that increased the number of obscured pixels
were discarded. The process ended when any further adjustments either increased the number of
obscured pixels or uncovered any part of the obscuration in the provided pupil.

Although the parameters for the two pupil models were inferred through different methods
with different goals, the final numerical values are very similar, as shown in Table 7. The
differences in the angles of the last three struts reflect differences in the angle ranges used
to define the nominal strut orientations. It is also worth noting that while the algebraic model

briefly uses the strut length, the exact value is unimportant as long as it is positive.

Table 7 Pupil model parameters for the baseline and rotated mask configurations.

Model value

PROPER-based

Algebraic model

Pupil model (baseline  (rotated mask
component Parameter name mask config_) Conﬁg_)
Primary Center loc. in x, X, 0 0
(ellipse)
Center loc. in y, y,, 0 0
Semiminor axis length (along x), a, 0.4954 0.4952
Semimajor axis length (along y), b, 0.5000 0.4998
Secondary Center loc. in x, xc_, 0 0
(ellipse)
Center loc. in y, y._. -3.6625x 10~  -3.7249 x 10~*
Semiminor axis length (along x), @sec 0.1502 0.1503
Semimajor axis length (along y), bsec 0.1515 0.1516
Strut 1 Center loc. in x, Xeg, 0.1505 0.1520
(rectangle)
Center loc. in y, 29 0.2742 0.2812
Nominal orientation, O, 77.4858 deg 77.5060 deg
Half width, wp, 0.0160 0.0161
Length, /4 0.55 0.55
(unimportant)
Strut 2 Center loc. in x, Xy, 0.2928 0.2931
(rectangle)
Center loc. in y, Yequ, 0.0043 0.0041
Nominal orientation, Oy, —18.5193 deg —18.5199 deg
Half width, w,, 0.0161 0.0162
Length, /, 0.55 0.55

(unimportant)
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Table 7 (Continued).

Model value

PROPER-based

Algebraic model

Pupil model (baseline (rotated mask
component Parameter name mask config.) config.)
Strut 3 Center loc. in x, Xy, 0.1538 0.1715
(rectangle)
Center loc. in y, Y g, —0.2598 -0.2765
Nominal orientation, g, —43.2889 deg —43.3000 deg
Half width, w,, 0.0160 0.0161
Length, /3 0.55 0.55
(unimportant)
Strut 4 Center loc. in x, X g, —-0.1661 -0.1675
(rectangle)
Center loc. in y, Yoy, -0.2702 -0.2716
Nominal orientation, g, —-136.7115 deg 43.2900 deg
Half width, w, 0.0160 0.0161
Length, /4 0.55 0.55
(unimportant)
Strut 5 Center loc. in x, Xy -0.2895 —0.2931
(rectangle)
Center loc. in y, Y g 0.0063 0.0050
Nominal orientation, g, —-161.4717 deg 18.5190 deg
Half width, w,, 0.0161 0.0162
Length, /5 0.55 0.55
(unimportant)
Strut 6 Center loc. in x, X, —-0.1483 -0.1511
(rectangle)
Center loc. in y, 29 0.2685 0.2812
Nominal orientation, gy, 102.5074 deg —77.5000 deg
Half width, wy, 0.0160 0.0160
Length, /g 0.55 0.55
(unimportant)
Tab 1 Center loc. in x, X o, 0 0
(part of ellipse
between Center loc. in y, Yo, 0.0067 0.0102
struts 1 and 2)
Semiminor or semimajor axis length (along x), ap, 0.1667 0.1660
Semimajor or semiminor axis length (along y), biap, 0.1680 0.1635
Tab 2 Center loc. in x, X s, 0 0
(part of ellipse
between Center loc. in y, Yo, 0.0084 —0.0003
struts 3 and 4)
Semiminor axis length (along X), aap, 0.1693 0.1612
Semimajor axis length (along y), bp, 0.1706 0.1620
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Table 7 (Continued).

Model value

PROPER-based Algebraic model

Pupil model (baseline (rotated mask
component Parameter name mask config.) config.)
Tab 3 Center loc. in x, Xous, 0 0
(part of ellipse
between Center loc. in y, yq,, 0.0067 0.0102
struts 5 and 6)
Semiminor or semimajor axis length (along x), ap, 0.1667 0.1660
Semimajor or semiminor axis length (along y), biap, 0.1680 0.1635
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