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Abstract. We present a unique implementation of Python coding in an asynchronous object-
oriented programming (OOP) framework to fully automate the process of collecting data with
the GeorgeMason University (GMU) Observatory’s 0.8-meter telescope. The goal of this project
is to perform automated follow-up observations for the Transiting Exoplanet Survey Satellite
(TESS) mission, while still allowing for human control, monitoring, and adjustments. Prior to
our implementation, the facility was computer-controlled by a human observer through a com-
bination of webcams, TheSkyX, Astronomy Common Object Model Dome, MaxIm DL, and
a weather station. We automate slews and dome movements, charge-coupled device exposures,
saving flexible image transfer system images and metadata, initial focusing, guiding on the tar-
get, using the ambient temperature to adjust the focus as the telescope cools through the night,
taking calibration images (darks and flats), and monitoring local weather data. The automated
weather monitor periodically checks various weather data from multiple sources to automate the
decision to close the observatory during adverse conditions. We organize the OOP code structure
so that each hardware device or important higher-level process is categorized as its own object
class or “module” with associated attributes and methods, with inherited common methods
across modules for code reusability. To allow actions to be performed simultaneously across
different modules, we implement a multithreaded approach in which each module is given its
own CPU thread on which to operate concurrently with all other threads. After the initial few
modules (camera, telescope, dome, and data I/O) were developed, further development of the
code was carried out in tandem with testing on sky on clear nights. We achieve our goal of a fully
automated nightly observation process. The code, in its current state, was tested and used for
observations on 171 nights, with more planned usage and feature additions in the future. © The
Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution
or reproduction of this work in whole or in part requires full attribution of the original publication, includ-
ing its DOI. [DOI: 10.1117/1.JATIS.8.2.027002]
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1 Introduction

The transit method became the most dominant method for discovering new exoplanets with the
launch of Kepler in 20091 and, more recently, the Transiting Exoplanet Survey Satellite (TESS)
mission in 2018.2 By observing the dips in star brightness as an exoplanet passes, or “transits,” in
front of its host star, we can acquire knowledge about exoplanet properties such as the radius,
period, orbital eccentricity, and atmospheric transmission properties, as well as in some cases
additional planets in the same system.3 Although TESS has found over 4000 exoplanet candi-
dates during its first 2 years of scientific operation, monitoring ∼500;000 relatively nearby and
bright stars, follow-up observations remain a key priority for validation or rejection of these
candidates. These observations have been able to identify everything from hot Saturns4 to warm
Jupiters,5 other Jovians,6 and even Earth-like planets in the habitable zone,7 and they may be
coordinated using frameworks such as NASA’s Exoplanet Archive.8

Follow-up observations of transiting exoplanet candidates adhere to a regimented set of pro-
cedures. This structure has arisen to efficiently maximize the scientific return from observatory
resources, particularly the limited time on larger 3 to 10-meter class telescopes, to obtain precise
radial velocities and exoplanet mass measurements with high-resolution spectrographs. We
screen candidate exoplanets with photometric imaging on smaller meter-class telescopes to con-
firm that transits occur when they are expected, with a duration and change in brightness (transit
depth) consistent with the TESS observations, and that these transits are associated with the
expected star. This allows us to identify false positives, which can be caused by dips in stellar
brightness from a variety of eclipsing binary scenarios that are not transiting exoplanets, includ-
ing blended eclipsing binaries, nearby eclipsing binaries, grazing eclipsing binaries, and other
systematics (e.g., the kilodegree extremely little telescope follow-up network (KELT-FUN)9 and
analysis of false positive probabilities in Kepler10). In particular for the NASATESS mission, the
pixel scale on the sky of the on-board cameras is 22 arcseconds per pixel, with light from each
star spread over several pixels (defining the point spread function or PSF).2 This was an inten-
tional design choice to maximize the total sky coverage of the mission’s four science cameras
(each with over 6 times the areal sky coverage of Kepler), but this also meant that many can-
didate host stars were observed in groups of pixels that contained many relatively fainter back-
ground stars in addition to the relatively brighter target stars, resulting in a fraction of TESS
candidates that are false positives.11,12 Only follow-up observations with finer angular resolu-
tions (pixel scales on the order of 1 arcsecond per pixel or less) could discern whether the dips in
brightness observed by TESS are associated with the individual targeted stars, with the expected
chromaticity and ephemerides, or nearby fainter false-positive stars that fell within the same
TESS pixels.

The need for photometric follow-up monitoring of TESS mission candidates drives a need for
automation, given the volume of data collection required. Many software tools already exist for
the automation of telescope and observatory control, both for ground-based follow-up observa-
tions and for the exoplanet searches themselves, including wide-field transit survey searches and
targeted spectroscopic follow-up monitoring. A noncomprehensive list of past ground-based
observatory automation efforts is listed in Table 1, which includes examples of wide-field photo-
metric exoplanet transit searches on submeter class telescopes, follow-up observational facilities
with moderately sized telescopes comparable to the GMU telescope, and fully automated large-
scale (>1 m) or multitelescope array facilities performing both photometric and spectroscopic
follow-up observations.

Drawing upon this prior automation work for inspiration, and in particular the MINERVA-
North Python-based framework (https://github.com/MinervaCollaboration), we pursued full
automation of exoplanet follow-up photometric observations with the 0.8-m Ritchey–Chrétien
telescope at George Mason University (GMU). Apart from the scientific goals, our motivations
for undertaking this project are primarily grounded in improving the observational efficiency
and data quality from the GMU telescope. With the variability of weather conditions in
Fairfax, Virginia, United States, it can be challenging for human observers to make optimal
use of a meter-class telescope, particularly on nights that are intermittently clear. Additionally,
meter-class telescopes are not as well staffed or resourced as larger telescope facilities.
The GMU observatory in particular is located and operated by an educational institution,
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where observations are primarily carried out by undergraduate and graduate students, and tele-
scope time must be allocated for classes and tours, which take precedence over research observ-
ing. However, observing during late nights, weekends, holidays, and/or academic breaks may
not be in the best interests of the students. By implementing an automated observing routine,
we not only minimize these challenges but also create a uniform organizational system for
data folder hierarchies and naming conventions and increase the volume of data available for
students to reduce and gain experience in analyzing.

We present herein an asynchronous object-oriented approach to achieve the goals outlined
above in Python, extending the work of past automated observatories, without compromising the
educational usage of the telescope. We develop our own custom Python software optimized for
both our particular Observatory hardware setup and science observation goals, which primarily
consist of repeated, staring photometric observations for most of a night. We opt for an
asynchronous approach to further increase the operational efficiency by enabling actions to
be performed in parallel when appropriate. For example, this maximizes the safety of automated
observations by allowing weather conditions to be constantly monitored in the background and
to close up the observatory during inclement weather, even if this occurs during a long exposure
sequence. Python was chosen due to its existing libraries and ease of use. The slower run times
associated with interpreted languages do not significantly increase overhead during our obser-
vations because our main computational bottleneck is often hardware response times, and we
utilize the compiled numpy24 and numba25 packages for more computationally intensive tasks.

In Sec. 2, we briefly overview the hardware setup and specifications of the GMU
Observatory and how the facility has previously been manually controlled. In Sec. 3, we present
a description of each module of the software and its development and testing process, starting
with a general overview of the code structure, then explaining each module in more detail, and
ending with a description of our testing process. In Sec. 4, we present an analysis of the per-
formance of our base and higher-level automated systems, notably the automated focusing and
guiding routines, and show examples of reduced data gathered using the software. In Sec. 5, we
present a brief discussion and our conclusions, including planned future work on the project.

2 Hardware

GMU’s Ritchey–Chrétien telescope (RC32-1900F; Fig. 1) is mounted on an OGS-1900 equa-
torial fork created by Optical Guidance Systems and located on the roof of GMU’s Research
Hall, at an elevation of ∼154 m and within a 25-foot diameter Ash Dome. The mount has
Renishaw hour angle and declination motor encoders and astronomy common object model

Table 1 A comparison of past automated observatories that have been semiautomated or fully
automated. The scientific goals of the observatory are enumerated in the second column, and the
number and size of telescopes at each facility is in the third column. References to each project are
included in the first column.

Telescope/facility Type Number × size

MEarth13 Transit survey –

KELT14 Transit survey 1 < 0.5 m

HATNet15 Transit survey 6 × 0.18 m

TrES16 Transit survey 3 < 0.5 m

WASP17 Transit survey 1 < 0.5 m

DEMONEX18 Follow-up transits and TTVs 1 × 0.5 m

Robo-AO19,20 Follow-up AO 1 × 2.2 m

OWL@OUKA21 Follow-up transits 1 × 0.6 m

MINERVA-North22 Follow-up transits and spectroscopy 4 × 0.7 m

MINERVA-Australis23 Follow-up transits and spectroscopy 4 × 0.7 m
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(ASCOM)-compliant drivers, with a Software Bisque controller operated through TheSkyX.
Due to an unknown cause, the telescope occasionally (about once per night) experiences
“jumps” in RA of a few arcminutes, which our RA absolute motor encoder then corrects with
a small time-lag on the order of one minute. We also occasionally experience oscillations in
the declination axis, which we believe is exacerbated by an imbalance of the telescope and
potentially building vibrations.

The telescope’s primary mirror is 32" in diameter, with a focal ratio of f∕7.2 and a focal
length of 5760 mm, and its secondary mirror is 12" in diameter. Installed on the secondary mirror
is an optical guidance system robotic focuser that allows its distance from the primary mirror to
be finely tuned and adjusted to micrometer-level precision. The relative stepper motor has no
physical “home” position, so we must be careful to avoid hitting the mechanism’s hardware limit
switches at either end, which requires a physical hardware reset using a banana connector. These
limit switches were put in place in 2018 to prevent the secondary mirror from running off the end
of its range, which it previously ran the risk of doing, requiring significant manual repair. In the
past, students avoided manually focusing the telescope for fear of moving it too far—a problem
that was eliminated by adding the limit switches. The focuser can be controlled manually
through the RoboFocus software interface by Technical Innovations or through MaxIm DL.
The 45 deg Perseus tertiary mirror, just under the primary, can be rotated to redirect the telescope
light to any one of four instrument ports, including an eyepiece and CCD camera. The location of
the mirror can be toggled via the Perseus control software.

Our CCD camera is a high-quantum efficiency (60%) Santa Barbara Instrument Group
(SBIG) STX-16803 with dimensions of 4096 × 4096 16-bit pixels and a plate scale of
0.34”/pixel, leading to an FOV of 23.2 0 × 23.2 0. It has a nominal read noise of 9e− and dark
signal of 3e− px−1 s−1 when cooled. It saturates at ≳40;000 counts. The CCD cooler is a two-
stage thermoelectric system, with a variable fan, that can reach temperature deltas of up to 50°C.
The camera is mounted on the telescope so that the image x∕y axes are approximately aligned
with the negative RA and Dec axes along the sky, respectively, to within a couple of degrees
rotation. A filter wheel is also installed on the CCD camera; this allows us to use a set of
Johnson-Cousins filters: clear, U, B, V, R, I, and Hα. The camera and filter wheel are both
manually controlled via MaxIm DL. Within the dome is an incandescent light bulb, used as
a flat lamp for taking dome flats, with power connected to an Arduino control switch accessible
by the observatory control computer. There is also a dehumidifier that is used to keep the inside
of the dome dry. Outside the dome is an all-sky camera used for remotely determining weather
conditions and cloud coverage, and on the roof of Research Hall, there is also a local weather
station that collects data on precipitation, wind, humidity, pressure, etc. and updates a public
server hosted in the observatory control room. A collection of webcams is also installed to

Fig. 1 The GMU Ritchey–Chrétien telescope pointing on a target through the dome shutter, near
twilight. This equatorially mounted telescope has a charge-coupled device (CCD) camera and
eyepiece connected at the base right below the 0.8-m primary mirror. The tertiary mirror has a
maximum of four positions that it can rotate through to attach different devices to the telescope.
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provide live feeds of inside and outside the dome, as well as inside the control room. We
particularly note that we do not currently have a second CCD camera, which would be useful
for parallel guiding and/or focusing operations. As such, all focusing and guiding operations
performed by the code must utilize data from our SBIG STX-16,803 only.

3 Development and Testing

3.1 Code Structure and Threading Overview

We structured the automation software for our campus telescope on the principles of modular
object-oriented programming and multithreading, to run in Python version 3.8 on a Windows 10
operating system. Windows 10 was chosen primarily for its legacy support, to avoid the future
obsolescence of the operating system, and for its compatibility with common commercial tele-
scope hardware drivers and software programs. This has also facilitated more accessibility and
ease of use for students, who may be unfamiliar with a Unix-based system. We avoid challenges
with Windows’ automatic updates interrupting observing and software functionality by disabling
them. For long-term memory and swap space management, we created a scheduled task to reboot
the computer every Sunday morning. We also have the control system mirrored on an indepen-
dent computer, which, prior to the pandemic, we used to apply and test operating system updates
before installing them on the main system. We also have another scheduled task to backup and
sync all observatory data daily to a remote computing cluster through ssh (via Git for Windows26

and MinGW), to prevent data loss from OS or hard drive failures.
A flowchart of the modular organization and sequencing of the project is depicted in Fig. 2.

The structure of the project can be organized into five broad categories. The first is the modules
that are assigned independent threads that asynchronously control individual “base” hardware
components or higher-level processes that rely on multiple hardware components. The second is
the core system that processes input from the command line and configuration parameters and
executes observing sequences that we refer to as “observation tickets.” The third is the inputs and
configuration parameters themselves, which we standardize on json formatted input files; the
inputs include specific information required for the code to perform an observation on a specific
target and the command line interface (CLI) input parameters. The fourth category is controls for

Fig. 2 A flowchart of the automation software depicting the flow of data and structure of the code.
Dashed arrows indicate data flow through file and software object reading; solid arrows indicate
the structure of operational inputs and dependencies. The heartbeat monitor depends on all other
threads to run. Block colors indicate different categories of objects: purple objects are direct hard-
ware control interfaces and threads, orange objects are higher-level processing threads that rely
on multiple hardware components, light green objects are inputs, blue objects are file readers and
data parsers, and caramel-colored objects are core system processes.
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parsing and processing the configurations and inputs into software objects. Finally, the fifth (not
depicted in Fig. 2) is the general utilities used throughout the project such as astronomy-specific
tools for time, coordinate conversion, and image handling. In Table 2, we present an overview of
all 12 threads that run simultaneously during nominal operations for an observing sequence.
Apart from the main thread, there are five threads dedicated specifically to hardware control,
three for higher-level processing routines, two monitors, and one graphic user interface (GUI).

The core structure of our asynchronous design utilizes Python’s built-in threading module.
Each of the threads listed in Table 2 (except the main thread) is composed of a software object
subclassed from the Thread class and dispatched via the main thread. We override the __init__
and run methods to fit each particular thread. For the hardware control, focusing, guiding, and
calibration threads, we construct the run method (which starts the thread as a separate instance
from the main thread) to be a queue system that is continuously waiting for commands to be
requested, checking once per second. Other threads can then place commands on that thread’s
queue with a separate onThread method, which allows actions to be requested in parallel. In the
unique cases of the weather and heartbeat monitors, we instead construct the run methods to be
constantly monitoring for the appropriate conditions, without a queue system. The focus GUI
also does not have a queue system.

We handle cross-thread communication primarily with Event objects, which can be set or
cleared and which other threads can check directly or wait until the event is set with the wait
method (which is used mainly to wait for hardware responses, i.e., slewing the telescope). Lock
objects are also sometimes used to prevent multiple threads from accessing the same resources
at once. The main usage of locks is in relation to plotting with matplotlib because its backend
does not support multithreaded plotting. For actual computations (i.e., for the FWHM while
focusing, displacement of stars for guiding, converting coordinates to Alt/Az), we avoid running
the computations themselves on more than one thread to not encounter race conditions.

3.2 Initiation

A typical observation sequence for a TESS follow-up candidate (target of interest or TOI) will
last for an entire night (from sunset to sunrise), even if the transit is only for a short portion of that
time, to collect as many pre- and post-transit baseline measurements as possible. Exposures are
typically done in the R or V filters because they are the most efficient in our typical observing

Table 2 A list of all 12 threads that are initiated to run simultaneously during an observing
sequence and the purpose of each thread. For hardware objects, the type of connection interface
is notated in parenthesis. The “type” column shows the type of structure that the thread’s run
method follows – a queue system, constant monitoring, or GUI.

Thread name Purpose Type

Main Main observing sequence and thread dispatcher Main

Camera CCD camera hardware control (MaxIm DL API) Queue

Telescope Telescope mount hardware control (ASCOM API) Queue

Dome Dome hardware control (ASCOM API) Queue

Flat lamp Flat lamp power control (serial) Queue

Focus control Focuser hardware control (serial) Queue

Focus procedures Focus routines and intelligence Queue

Focus GUI GUI for manual focus override GUI

Guider Active guiding routines Queue

Calibration imager Calibration imaging routines Queue

Weather monitor Continuous background weather checks Monitor

Heartbeat monitor Continuous background operation checks Monitor
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conditions, and exposure times range from 10 to 120 s depending on the magnitude of the target.
The exposure times are determined to maximize the signal-to-noise ratio (SNR) of the target
without going over our CCD’s saturation or linearity limits. We require a target SNR > 100

because the transit of a Jovian-sized planet orbiting a Sun-like star produces a brightness change
of ∼1%, and our typical photometric precision systematic noise floor is ∼0.1%; anything less
than an SNR of 100 will not have sufficient photometric precision to recover the detection of the
TOI. Transits also require a reasonable cadence between images to properly resolve a transit in
the time domain, so we typically do not go over 120 s even if this is not enough to reach an SNR
of >100 because we can make use of temporal binning if the transit duration is sufficiently long
to achieve the required sensitivity. Next, if a TESS TOI observation sequence requires the use of
multiple filters to check for chromaticity in the observed transit depth, we can utilize one of our
other U, B, or I filters. CCD readout times are ∼5 s. Additionally, there are typically ∼5 min of
overhead at the beginning/end of observing (or during temporary shutdowns due to weather) to
slew the telescope/dome, open the shutter, and wait for the CCD cooler to settle to −30°C—all
actions that occur simultaneously on separate threads.

We create observation tickets with a Python GUI (which runs separately from the main
observing software) that generates json files for a target on a given night. These files can be
created manually, but the GUI streamlines the process for those who are not familiar with json
file formatting. The input specifications that are required for the code to run are the target name
(for image saving and FITS header purposes), RA and Dec (J2000), observation start and end
times, filter(s), exposure time(s), and number of exposures. The number of exposures is usually
specified as an arbitrarily large number to allow observations to simply continue until the end
time has passed. We effectively set aside blocks of time for each target to be observed on a given
night; however, the option is still present to take a specific number of exposures if this is nec-
essary. There are also options to enable or disable guiding or cycling through filters with each
image. Using the urllib python library, information for target scheduling with content is retrieved
from a Google sheet maintained by humans (name, filter, exposure time, start time, and end
time); the GUI automatically fetches the necessary target information for the night and automati-
cally gathers RA and Dec from the ExoFOP database.27 There are basic checks in place to ensure
that the input quantities make sense (i.e., exposure time >0 s, start time < end time, number of
images >0), but a user may accidentally input the wrong observing time or coordinates although
they are still valid. In such a case, there are additional checks in place to make sure the RA/Dec
are within physical slew limits (above 15-deg altitude and within �8.5 h HA), and observations
will not begin during the day when the sun is up. The HA slew limit was implemented because
our RA motor encoder tape has a limited length, and slewing further than�8.5 h carries a risk of
it running out and delaminating the edges. If two targets have overlapping observation times, the
onewith the earlier start time always takes precedence, and the other objects are not be considered
until the end time of the first one passes. We also currently do not check for idle time during a
night, so users must be careful that observation time slots fill up the entire night when creating
tickets—the observing queue is rigidly set once the program has been started.

The role of a human observer in this process is to create an observation ticket (or set of
tickets) using the GUI and subsequently initiate the code, with the ticket(s)’ file paths as argu-
ments, using the CLI created with the argparse Python module. This is most often done through
the Git for Windows bash terminal due to its emulation of familiar bash commands from Unix-
based systems. The main package is installable using pip in the main code directory, and after
installation, the CLI can be run from any directory. All of the dependencies are listed in the
requirements.txt file and are installed automatically with pip. The CLI has additional options
that may be passed in while starting the code. Among these are options to disable the automated
focusing, disable automation calibration imaging, or disable the automated shutdown sequence
at the end of observing. One may also pass in custom filepaths for configuration files rather than
using the default paths.

The CLI arguments are parsed by the argument parser, which then passes the observation
instructions to the main driver. The main driver then reads the observation ticket json file(s) and
the configuration json files for general configurations, the filter wheel, and the logging module.
These configurations are then converted to software objects by the file readers and deserializers.
The main driver then instantiates the observation run module to begin the observation routine and

Reefe et al.: Asynchronous object-oriented approach to the automation. . .

J. Astron. Telesc. Instrum. Syst. 027002-7 Apr–Jun 2022 • Vol. 8(2)



the logging module for status messages and debugging. The observation run module itself
instantiates all of the base and higher-level hardware objects and starts their respective threads.
Most higher-level hardware structures require at least one of these objects as input to function.
For example, the guider module requires the CCD camera to read and wait for images and the
telescope module to send pulse guide commands. An arbitrary number of observation tickets
may be passed into the code simultaneously, either by passing in each file path separately
or by providing a path to a parent folder that houses all of the requested observation tickets.
This potentially allows for the queueing of weeks or months of observations in advance,
although this would require the scheduling of these observations to be performed in advance
as well. From here, the observation routine begins. In Fig. 3, we present a flowchart detailing

Fig. 3 A flowchart of the main observing sequence performed by the code. Decisions are marked
in dark red, and actions are marked in blue. All actions listed within the same bubble are performed
in parallel. Green signifies the periodic weather and heartbeat checks that occur constantly in the
background. Once the weather checks are initiated at the start of the night, the sequence may, at
any point, jump into the box labeled “inclement weather” if conditions deteriorate. If conditions
subsequently improve, then the sequence may leave the box and resume its previous operations,
continuing to observe the target within the current designated ticket or moving on to the next target
if the time window has passed while in the “inclement weather” box. Otherwise, if conditions
remain poor for the remainder of the allocated time for all targets, the sequence will jump to
the end, disabling the cooler, disconnecting from all hardware, and terminating. Note that we
consider sunrise to be “inclement weather,” so an observing sequence that has an end time too
late (or a start time too early) may jump to the “inclement weather” box during the daytime.

Reefe et al.: Asynchronous object-oriented approach to the automation. . .

J. Astron. Telesc. Instrum. Syst. 027002-8 Apr–Jun 2022 • Vol. 8(2)



the main observing loop, highlighting important actions and decision points. If possible, the
human observer stays until the initial focusing routine finishes (see Sec. 3.5), so they can man-
ually adjust the focus if it fails using the GUI, but this is often not necessary.

Importantly, the main thread also gathers FITS header information for the CCD exposures as
each exposure completes. The MaxIm DL dispatch object itself automatically handles basic
header information that is directly related to the image and CCD, such as exposure time, filter,
binning, frame type, image pixel dimensions, CCD temperature, etc. The additional information
that we acquire for each image includes the observation site latitude, longitude, and altitude; the
Julian date (JD) at the start of observations; the JD and Barycentric dynamical time (BJDTDB) at
the exposure midpoint; the RA and Dec of the target object both in J2000 and apparent equinox
coordinates; and the altitude, azimuth, zenith distance, hour angle, and airmass of the target
object, also at the exposure midpoint. These quantities are all gathered through our global utility
function modules, which perform the coordinate and time conversions in real time. The BJDTDB

calculation relies on an astroquery request to the SIMBAD database for information on the
target’s proper motion, parallax, and radial velocity. The software first attempts a simple search
with the target name; however, this often fails, as many TESS TOIs are not registered as aliases in
SIMBAD. Thus, if this initial search fails, we use the RA and Dec coordinates to probe a radius
of 5′ around the target coordinates and choose the closest object found. If for any reason the
necessary quantities still cannot be recovered, the BJDTDB calculation simply returns a null value
and must be computed later in data reduction.

At this point, the code continues running until all observation tickets are completed, even if
this takes multiple days, as the code closes up and waits during the daytime. After the final
observation ticket is completed, the final shutdown sequence initiates, and all threads, hardware,
and software connections are terminated. In the next subsections, we go over each module of
the project in more detail.

3.3 Base Hardware Control Modules

The base hardware of our automation structure, upon which higher-level structures such as
focusing and guiding are built, includes the CCD camera, telescope, dome, focuser, and flat-
field lamp. Each hardware device is mirrored in the project with its own Python class. Each
hardware device class has its own attributes and methods, as well as its own CPU thread to
allow for actions to be performed concurrently and asynchronously across hardware devices.
We chose to have all of our hardware devices inherit from a generic base Hardware class that
implements the basic structure of our design, to reduce repetition within the code, and to make it
less cumbersome to add additional hardware control modules in the future. This means that
actions common to all hardware devices, such as handling asynchronous multithreading and
communication between classes as described in Sec. 3.1, are a part of the base Hardware class
(which itself is a child of thread). On the other hand, actions for specific hardware are left to the
children Camera, Telescope, Dome, Focuser, and FlatLamp classes to implement. As an example
of a hardware-specific method, our camera class has the expose method that takes a camera
exposure with the specifications that are given for the method, in this case the exposure time,
filter, save path, and frame type for the shutter state (light for open shutter or dark for closed
shutter). Hardware communication is handled in a device-dependent manner. The telescope and
dome are controlled via client-side COM port dispatches to their ASCOM device application
programming interfaces (APIs). Our CCD camera is dispatched via the MaxIm DL API.
This was done because our camera model, the SBIG STX-16803, does not directly support
an ASCOM device API, and we adopted the similar approach taken in early versions of the
MINERVA-North camera control,22 which has since transitioned to implementing its own
ASCOM-compliant server for its cameras. The cooler and filter wheel are also controlled
through the MaxIm DL camera API. At the start of observations, the code nominally attempts
to reach a cooler set-point of −30°C, but with our air cooling system, this may not always be
possible, especially on hot summer nights. After the cooling rate of the detector slows down to
<3°C∕min without reaching the nominal set-point of −30°C, the software begins iteratively
adjusting the temperature set-point every minute. The amount that the set-point is adjusted
is based on the difference between the set-point and the actual temperature of the detector,
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with the adjustments being ∼half the difference. This is repeated until the set-point and actual
temperature match within 0.2 deg. This routine is performed once at the beginning of the night
and may be repeated if the software runs for multiple days. During the day when the Sun is up or
when the software terminates, the cooler set-point is returned to an idle value of þ5°C to min-
imize strain on the system.

The automated dark and flat-field images necessitated a method for remotely switching the
flat lamp on and off, so we created a flat lamp module using a direct COM port serial connection
to our Arduino device with the PySerial library; the hardware itself is controlled via an Arduino
that controls a power supply switch to the lamp. We then implemented a similar serial structure
for the focuser control module, which controls the z-axis position of the telescope’s secondary
mirror, to avoid using the native but unstable RoboFocus28 API, which we found would fre-
quently crash unexpectedly on Windows 10.

3.4 Data I/O and Logging

In addition to the base hardware control modules, the essential modules of the code include data
input/output (I/O), logging, and utilities. The inputs are handled in terms of configuration files in
the json format, command-line arguments, and observation “tickets” (also jsons) with instruc-
tions for observing a specific target. The I/O module handles reading the observation ticket and
configuration specifications from json files and converting them into python objects. The log-
ging module keeps track of status messages and displays them on the command-line while also
saving them to a log file. We implement a rotating file handler system for the log files, in which
the log files have a maximum size of 10 MB before a new one is created. Recent log files are kept
saved but are deleted once they become older than the previous 10. Log files typically build up at
a rate of 4 to 5 MB per night of observing, meaning we typically keep data from the past ∼20 to
25 nights. Because we are currently active in responding to software bugs, we find that this
provides a good balance between hard drive space concerns and debugging. However, we may
find in the future that we wish to preserve log data for longer periods. In this case, all data storage
and formatting options for the logging files are stored in the logging configuration json file and
may be readily adjusted. Because the logging output typically depends on a slower cadence
while waiting for hardware responses (i.e., long CCD exposures, weather updates), the concern
of infinitely recursive errors building up rapidly and filling up all of the logging space is mini-
mized. The higher-level structures of the code, which we discuss next, rely on the interplay of
the base hardware components, core system functions, and modules.

3.5 Focusing

The goal of our focusing module is to achieve and maintain an optimal focus relatively quickly,
and we take a two-fold approach to focusing the telescope. Inherently variable atmospheric con-
ditions sometimes rapidly affect focus quality, and our software and hardware impose additional
constraints on our measurements. Additionally, we must be cautious to not allow the stepper
motor to hit the physical limit switches at either end of its range, requiring a manual reset,
as discussed in Sec. 2.

Consequently, to achieve a practical and mostly reliable automation of the telescope focus,
we first codify the assumption that the secondary mirror position is close to the optimal focus
position when the software is started at the beginning of an observing sequence; if the focus is
significantly in error, and stars cannot be detected in the image, then a manual focus is required.
Many autofocusing routines have been developed for the purposes of automated observations,
including binary and fibonacci searches.29 However, many of these routines attempt to optimize
searching a wide range of possible focus positions, and thus they take many images to find a best
fit focus. We instead choose a simple grid search technique in combination with a parabolic fit,
which limits the number of test exposures that are required in exchange for a smaller search area.
We choose to focus on the science target’s field of view to eliminate telescope flexure differences
that could otherwise introduce an offset. This also eliminates additional slew times and the need
to readjust pointing between targets and focus stars, as differences in detector pixel sensitivities
can introduce light curve systematics. During the initial telescope focus at the beginning of
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an observing sequence, a single exposure is taken at the current focus position. The locations and
relative brightnesses of stars in the initial image are identified with the find_peaks function in
the photutils Python package with a center-of-mass centroiding algorithm. For each star that is
found, we calculate an SNR

EQ-TARGET;temp:intralink-;e001;116;687SNR ≈
N − Sffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ S

p ; (1)

whereN is the target counts and S is the sky background counts. This ignores readout and instru-
mental noise from the CCD, but for our purposes, it is a good enough approximation. We then
calculate the full-width at half-maximum (FWHM) of each star’s Gaussian PSF for the image
and combine them using a weighted average of each star’s FWHM value, with the SNRs used as
weights.

We then take a series of additional images at positions from −50 toþ50 steps from the initial
position, in increments of 10 steps. Focus image exposure times are set to one-third the duration
of the science exposures, which we find still typically have high enough SNRs to perform
adequate focus calculations, but this is an adjustable parameter. We do not correct these images
for noise, as typically the appropriate dark and flat images are not collected until the end of an
observation, and the improvement in focus from these corrections would be marginal. During
this focusing procedure, the code automatically saves diagnostic plots of the focus apertures used
on each image, and the radial profiles of the four highest SNR-stars in each image. An example
of each of these plots from the night of July 7, 2021 UT is shown in Figs. 4 and 5. The stars in this
image show FWHMs of ∼15 pixels, or 5.1”, which is to be expected—during the focusing
sequence, testing out-of-focus positions can produce FWHMs upwards of 20 pixels. After the
focus procedure is complete, we can get as low as ≲10 pixels or 3.4”. The background level of
~1500 counts is also typical, due to a combination of our CCD’s bias voltage (corresponding to
∼1100 to 1200 counts) and light pollution in Fairfax. If no stars can be located in an image, the
software attempts to retake the image. If stars cannot be located in three consecutive images,
the focusing routine is terminated.

We expect from diffraction-limited optics that the FWHM of images should increase linearly
in both directions (creating a “V” shape) from the optimum focus (minimum FHWM). However,
for telescopes > 0.2 m, atmospheric turbulence, blurring, and optical imperfections cause the

Fig. 4 A plot of the focus apertures in blue used by the code superimposed over the CCD image
on which they are being used. The x and y pixel numbers are displayed in the axes, and a color bar
shows the grayscale intensity stretch of the counts from the CCD image. Stars near the edges of
the image, as well as any stars that are not bright enough compared with the background, are
ignored as focus star candidates. Some stars that are visible were not chosen by the find_peaks
algorithm because their peaks were too dim compared with the sky background or too spread out.

Reefe et al.: Asynchronous object-oriented approach to the automation. . .

J. Astron. Telesc. Instrum. Syst. 027002-11 Apr–Jun 2022 • Vol. 8(2)



minimum FWHM to be larger than the diffraction limit and flatten out the characteristic “V”
shape into an approximately parabolic shape (at least for small displacements from the mini-
mum). For this reason, we choose to fit measurements of FWHM as a function of focus position
to a parabola using a scipy.optimize nonlinear least-squares curve fitting technique (curve_fit).
Once an acceptable fit is found, the focuser moves to the fit local minimum. We reject any para-
bolic fits with a negative quadratic term to not unintentionally drive the focus mechanism out of
range. Otherwise, if the parabolic fits predict a minimum beyond the range of the focus positions
explored, the focus position is returned to the original position before any temperature-based
adjustments are made by the software, and this result is logged for future human intervention
on a subsequent night to return the focus position to an optimal position. We choose this
approach, rather than setting the focus to the edge of the focus range explored and rather than
broadening the focus range search, to prevent a hardware limit switch from being triggered.
The optimal focus position does not change drastically from night to night, so by resetting
to the previous night’s optimal position, we typically achieve at least passable focus. For the
analysis of light curves and exoplanet transits, in particular, an optimal focus is not necessary
to obtain usable data, and in fact, defocusing may be advantageous for preventing a target
from saturating.30–32 This entire procedure takes from 5 to 15 min depending on the set exposure
time of the observation, with ∼5 s of overhead between each image, but because we only have
a single camera, this entire duration is used up on focusing and not collecting science data.

Second, after the initial focus at the start of an observing sequence, we wish to maintain that
focus as long as possible, without interrupting science data collection. Our science case, con-
sisting of long-duration uninterrupted light curves to detect transiting planets, requires collecting
continuous data. However, our coarse focus procedure models the FWHM as a function of step-
per motor position and would require moving the focuser to test positions that will be signifi-
cantly out of focus. Running this procedure again during science observations would introduce
large light curve systematics resulting from a changing FWHM. Alternatively, pausing science
observations to rerun this procedure, if illtimed, could potentially miss key times such as the
exoplanet’s ingress or egress. Consequently, the focus is later adjusted over the course of the
night based on a deterministic linear temperature-dependence model that we obtained experi-
mentally from ongoing observations: as the telescope cools and the primary mirror shrinks,

Fig. 5 Radial profiles of the four highest SNR stars from the image and apertures in Fig. 4. The
x -axes are radial distance away from the center-of-mass of the star, in pixels, and the y -axes are the
number of counts of these pixels (blue dots). The blue points are the values of each pixel around
the center-of-mass of the star, and the red curves are the azimuthally averaged profiles of these
pixel values, which we use to calculate the FWHM. The SNRs and FWHM in pixels are indicated.
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we move the focus inward. The current linear model is expressed as dðTÞ ¼ di þ ξðT − TiÞ ,
where di is the initial best-fit focus position at some initial temperature Ti, T is the current
atmospheric temperature, ξ is the thermal focal drift that we obtain experimentally, and d is the
current focus position. The current model assumes a thermal focal drift of ξ ¼ 2 steps∕°F,
which appears to qualitatively hold the FWHM steady over the course of an entire night. We defer
quantifying our long-term focus performance to future work. We also do not apply any corrections
for changes in the gravity vector as the telescope altitude changes. Finally, we also developed a
custom GUI to allow for manual adjustments to the focus position in the case that the automation
code fails. This was required because the serial COM port does not allow for multiple simultaneous
connections from both our automation software and RoboFocus, and we chose not to implement
a pass-through COM port to relay serial communications to and from RoboFocus.

3.6 Calibration Imaging

The calibration module takes the desired flat-field and dark images either before observing starts
or after it finishes, depending on the configuration settings (set in the general configuration json
file). The code is designed to take a set of flat-field images for each filter in which science
observations are being collected and a set of dark images to match each exposure time of the
science images and flat-field images. Flats are taken first by pointing at the closed dome with the
flat-field lamp turned on. First, a test exposure is taken with an exposure time of a few seconds,
with the exposure time being set to an initial guess on a per-filter basis and based upon typical
flat-field exposure times. Then, the median counts are measured in the initial test image for a
given filter. If the initial test image has saturated median image counts, then the exposure time is
halved, and the test exposure is repeated until the minimum exposure time is reached. If the flat-
field image is still saturated in the minimum exposure time, the flat-field exposure time is left at
the minimum exposure time; we assume that this scenario is never encountered in practice
because it would be impractical to obtain any flat-field exposures. Once nonsaturated median
image counts are obtained in the test exposure for a given filter, the flat-field exposure time is
scaled to obtain 15,000 median counts in each flat-field image; these exposure times are stored in
a variable for later use with the dark images. The number of flat-field images collected per set per
filter is also a configuration parameter that may be adjusted. Under nominal operations, the flat-
field exposure times for each filter do not change on a nightly basis, varying by 1 to 2 s for a 15-s
exposure. By recalculating it each night, however, we prevent the need for making adjustments in
the future due to luminance drift over longer periods of time from various effects—dust accu-
mulating on the primary mirror, replacing the flat lamp bulb, drift in the telescope and dome park
positions, etc. The detector temperature may also introduce smaller variations from night to night.

For dark images, we choose to collect a set of darks for each flat-field and science image
exposure time. We choose to collect images in this way, as opposed to using bias images and
exposure time scaling of the counts in dark images with a fixed exposure time. The difference in
collection times between these two methods is minimal, and this method is more convenient for
our data reduction pipeline. We do not have to separate bias counts from dark current and are not
reliant on dark exposure time scaling, which may be inaccurate if there are nonlinear effects
present in the dark current due to nonideal detectors. Small variations in the dark current due
to differences in the detector temperature, as discussed, may also lead to small inaccuracies if
new images are not collected nightly. This collection method is not novel or unique and has been
used, for example, in IRTF’s iSHELL spectrometer.33 To maximize potential observing time, we
do not attempt to take calibrations for each target separately, but we take calibration images for an
entire night of observing at once. We typically do not enable calibration imaging before observing
because the GMU telescope is often used manually for astronomy classes and other observations
prior to research observing, and thus calibration images are usually obtained at the end of the night.

During nights in which the weather is inclement, either temporarily or for the remainder of
the night, and if the calibration observations are set to be taken at the end of the night, our
software takes advantage of the downtime and collects the necessary calibration images for
the current target and any previously completed targets before attempting a possible reopen.
The software does not collect calibration images for future targets that have not begun obser-
vations yet. The weather module has a minimum 30-min timer before reopening after a weather
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shutdown (see Sec. 3.8), so this is an ideal time to collect such calibration images as the upper
limit on the clock time to collect calibration images for a single target is about 30 min (assuming
120-s science exposures). However, this does mean that, when our Observatory closes due to
weather, it will remain closed for either a minimum of 30 min or the duration of the calibration
image collection, which can exceed 30 min on rare occasions when more than one target needs
calibration images, before it checks the weather again and determines whether or not the dome
can reopen.

3.7 Guiding

The guiding module tracks the movement of stars between images and adjusts the telescope’s
position to keep their alignment relatively stable. Because we only have a single detector, guid-
ing procedures must utilize the science observations themselves. As mentioned in Sec. 2, our
CCD camera is currently mounted such that the image x- and y-axes align with the negative right
ascension (RA; α) and declination (Dec; δ) axes, with a 180-deg field rotation. This is shown in
Fig. 6 using AstroImageJ (AIJ)34 for an arbitrary field of view. So, our automated software
assumes that this angular offset between the sky and our CCD axes is a constant, and we give
it a configuration parameter, currently set at 180 deg, in which counterclockwise angles are
positive in the reference frame where RA increases to the left and Dec increases upwards.
For axis orientations that are mirrored (i.e., for no field rotation, both positive image axes would
align with the positive celestial axis, whereas the other positive image axis would align with the
negative corresponding celestial axis), we have another configuration parameter as a simple
Boolean to flip the y-axis orientation.

Stars are first located in the image with the find_peaks function as in Sec. 3.5, and an optimal
guiding star is chosen from these peaks by finding the brightest star that (1) is not saturated; (2) is
not within 500 pixels of the image borders, to prevent the possibility of it drifting out of the
frame; and (3) is not within 100 pixels of any other detected stars, to prevent detecting nearby
companions instead of the guide star and inferring movements when there are none. If no stars
are found in the image that fit these criteria, the guiding procedure is unable to get a stable
measurement of position in the image, so it waits for the next image to try again. This may
happen due to low sky transparency or a sparse field of view, but we find that typically conditions
are good enough to find at least a few. However, if multiple are found, we only choose the

Fig. 6 A raw field image from our telescope showing the relative orientations of the image x and y
axes with the North (+Dec) and East (+RA) axes along the sky in the blue square. Angular scales
are shown as red bars. The image is scaled to gray-scale to maximize contrast, so all stars show
as white circles in the image; sky emission has some curvature due to some vignetting from
our tertiary mirror, resulting in lower transmission and sky counts toward the right of the image.
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brightest one. After locating a guiding star from the first science image, we do not reapply the
find_peaks algorithm to the entire field of view for every image thereafter. Instead, to save
computation time and allow for more responsive guiding, we extract a subframe around the
guide star and only utilize image data from this subframe. Choosing only a single star simplifies
and further reduces the computation time required in this process without sacrificing much
accuracy. This allows us to execute guiding moves ≲1 s after each image is saved. Because
these moves are small, we begin the subsequent exposure simultaneously to reduce overhead,
which does not have a noticeable effect on the resultant image. After choosing a guide star, the
offset between this star’s current position and the desired position (set by the first observation)
is calculated, which is then transformed into the telescope move necessary to return the star to
its original position. The telescope move distances and directions in each axis are calculated
using the standard counterclockwise rotation matrix with the field rotation angle γ

EQ-TARGET;temp:intralink-;e002;116;592r 0 ¼
�
cos γ − sin γ
sin γ cos γ

��
x − x0
y − y0

�
¼

�
Δx cos γ − Δy sin γ
Δx sin γ þ Δy cos γ

�
; (2)

EQ-TARGET;temp:intralink-;e003;116;558j ¼ p

�
ηαðΔx cos γ − Δy sin γÞ
ηδðΔx sin γ þ Δy cos γÞ

�
; (3)

where x and y are the object positions in the newest frame (in pixels) and x0 and y0 are the
original positions (also in pixels) from the first frame, so the differences are Δx and Δy. Our
image plate scale is p, ηα and ηδ are dampening coefficients, and r 0 is the undampened position
vector in RA/Dec coordinates, in units of pixels. To get j, the final telescope jog distances in
the right ascension and declination axes (in arcseconds), we multiply r 0 by the plate scale and
the damping coefficients. Because our current guider field rotation is γ ¼ 180 deg to within
∼1 deg, the sin γ factors are 0, and we are left with simply coefficients of −1 from the cos γ
factors. This way, a positive j component corresponds to a positive displacement in RA/Dec,
which we can correct for with a telescope move in the same direction. If the “flip y” Boolean
configuration parameter is true, Δy is simply negated.

The dampening coefficients ηα and ηδ, independent for the RA and Dec motors, are applied to
the telescope move amplitudes to avoid over-correcting the telescope position, caused by the
variability inherent in the atmospheric distortions to the PSF and centroid location from obser-
vation to observation. By testing a series of images with both coefficients set to 1, we observed
how far and in which directions the targets tended to drift over time, and we found that the
guiding was under-correcting in right ascension and over-correcting in declination. We then
adjusted the coefficients and repeated this process until we landed on results that produced stable
guiding over the course of an entire night of observing. We found that we achieve optimal guid-
ing performance with ηδ ¼ 0.75 and ηα ¼ 1.25. If the software determines that a total offset of
jjj ≥ 15 0 0 is necessary, it skips the telescope move and resets the position on which it is guiding.
This is necessary with our telescope to avoid overcorrecting during its RA jumps (Sec. 2). The
jump ruins the current science exposure but is usually resolved by the time the next exposure starts.

Atmospheric conditions and the aforementioned RA jumps may cause the guide star to exit
its subframe, in which case the guiding routine will fail to find an appropriate guiding star.
If it cannot find a star for three consecutive images, we remove the subframe and analyze the
entire image again to find a new guiding star.

3.8 Weather Monitoring

Perhaps the most important task to be automated with telescope observing is a real-time assess-
ment of weather conditions and whether or not the weather permits the collection of on-sky data.
Factors such as high humidity (≥ 85%), high winds (gusts ≥ 25 mph), clouds (cloud coverage
≥ 75%), rain (any precipitation within ∼20 miles), fog, snow, daylight, and even ash and large
smoke particles from fires both nearby and distant (such as the recent 2021 Canadian fires in
British Columbia) can shut down an observatory. We have implemented multiple checks for
weather, including data on humidity, precipitation, and wind speed from our local Davis weather
station35 shown in Fig. 7, but also precipitation, clouds, humidity, and weather radar from
web-based weather websites, namely Refs. 36 and 37.
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The weather module checks current conditions every 6 min asynchronously to ensure that it is
still safe to have the telescope open. This 6-min cadence is an adjustable configuration parameter
and was chosen to not alias with the weather station update frequency, which updates every
5 min (thus, any update time shorter than 5 min would result in wasted/repeated computations).
The code considers a failure to connect to the Internet as a reason to close; in this case, it is
impossible to determine the current weather conditions. If conditions are such that the dome
should be closed, the camera exposures are halted, the dome closes, the telescope parks, and
then the software waits 30 min before checking the weather conditions again to see if conditions
permit reopening; the 30 min period is another adjustable parameter. This built-in delay prevents
the software from repeatedly opening and closing the domewhen weather conditions are marginal,
given the natural time-scale of local weather variability and the time it takes for the dome to open
and the telescope to begin re-observing. In the time that the observatory is shut down due to
weather, the software may begin taking calibration images as mentioned in Sec. 3.6. If the current
ticket’s observation end time passes while shut down due to weather, the software moves on to the
next target or terminates if that was the final target in the observing queue, as explained in Fig. 3.

3.9 Thread Monitoring and Error Handling

Due to the multithreaded structure of our design, a “heartbeat”monitor to keep track of the status
of each thread becomes crucial for maintaining stability in edge cases that may cause crashes in
one or more threads. We currently have 12 threads running simultaneously during an observation
(see Table 2): the heartbeat monitor periodically checks each of these threads with the exception
of itself and the main thread, to ensure that none have crashed. If the heartbeat monitor detects a
crash event, it will record the event in the logs and attempt to restart the thread. This is our main

Fig. 7 An example of of our local Davis weather station web page. The wireless and solar-
powered weather station is located atop the control room rooftop structure and thus provides con-
ditions in the immediate vicinity of the observatory. The data are currently collected by a computer
running Windows 95 and uploaded via FTP to the weather station web page, which is updated
once every 10 min. Shown on the left are various measurements as indicated, and shown are the
right are some of the same measurements shown graphically as single-bar histograms, with highs
and lows from the past 24-h indicated as horizontal lines. Wind speed and wind direction are
shown as an odometer-like display at the bottom.
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and only method for handling errors in unexpected cases. If the heartbeat monitor itself crashes,
we currently have no safeguard to reinitialize it, but the code can technically continue to operate
without it (at least until another thread crashes). We also have no software-based safeguards if the
main thread crashes. Our Ash dome does have a built-in safety feature that causes it to close if it
does not receive a heartbeat signal from the ASCOM dome controller for 5 min, but our telescope
does not have a similar feature and may be left continuously tracking. This is a current weakness
and a necessary area of development for the code to be improved in the future. However, because
the main thread acts primarily as a skeleton for the observing sequence, and delegates a vast
majority of important operations to separate threads, the main thread itself is at a lower risk of
crashing compared with the others.

In the cases of foreseeable errors, we avoid most crashes on hardware threads through the use
of try/catch blocks. The main thread can then check if a hardware operation is completed suc-
cessfully, and if not, can attempt it again or give up. This approach is taken for telescope and
dome slewing/parking. However, a failure in the observing sequence may not always present
itself as an error. For example, if the telescope begins to slew outside of physical limits. We
already check coordinates before executing a telescope move, but sometimes (if the telescope
was not properly parked or became twisted from a previous manual observation) the slew path
might attempt to take the telescope into the ground on its way to the destination. We handle this
by asynchronously checking the telescope’s coordinates 10 times/s while slewing and aborting
immediately if they leave the physical limits. If this happens, we first try parking and re-slewing,
but if it occurs twice in a row, we give up on observations for the night, as the problem must be
diagnosed by a human. We implement a similar procedure if the telescope leaves physical limits
while passively tracking. On rare occasions, we have also encountered crashes with MaxIm DL,
closing our camera connection, so we have implemented a check that restarts the software and
reinitializes a camera connection before resuming exposures. We do not track the failure rate of
the code rigorously, but over the past year, we estimate that failures to collect useful data (for any
reason) occur on ≲5% of nights.

3.10 Testing

Once enough of the base hardware and core structure of the code was in place to allow for end-to-
end test runs, such as the weather, telescope, dome and camera modules, and core systems, all
code development was thereafter conducted in tandem with testing on every clear night avail-
able. This allowed for both refinement of the core structure and the accelerated implementation
of the new focusing, guiding, and calibration features simultaneously. For testing nights, we
would typically create an observation ticket for a low-priority TESS target to minimize the
potential loss of data in the case of failures due to the software. The software would then
be initialized as detailed in Sec. 3.2, and the observers would stay to monitor for errors and
unexpected behaviors. If an error was encountered, it would be handled according to its severity.
For inconsequential errors that would not severely affect data quality, the behavior was simply
noted and a fix would be implemented on a subsequent day. For more severe errors, same-night
fixes and restarts would be attempted whenever possible; this testing approach in particular
accelerated the development and testing cycles of the software. Eventually, the higher-level
observing controls such as guiding and focusing were implemented sequentially as modules,
once they had each been approved for testing on sky after code reviews. The first two of these
modules were guiding and calibration imaging, both of which required iterations of bug fixes
after the initial on-sky tests. We initially had the guider angle γ set to 0 deg instead of 180 deg,
which caused guiding corrections to be in the opposite direction and increased the RMS position
of the stars rather than stabilizing them. Additionally, if the telescope pointing model is off and
the science target star is not in the field of view to begin with, the guider will not be aware and
will begin guiding on the wrong star field for the entire observation, which has occurred. In this
case, a manual fix of the telescope pointing model is required. CCD images would also overwrite
old ones if the code was restarted on the same night. This was fixed by adding a check for current
images in the directory and incrementing the image number by the largest existing number plus 1.

This was followed by focusing, which has gone through more substantial changes within its
core structure and design in addition to the bug-fixing. We initially attempted a more human-like
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focus routine that would decide which direction to move the focuser after each image until it
reached a point at which both directions led to a worse focus. We found in practice that the grid
search technique was better because it is guaranteed to converge or terminate after a fixed amount
of time. Our initial FWHM calculations were also inaccurate for severely defocused donut or
torus-shaped PSFs because we performed an azimuthal average around the geometric center.
After switching to a center-of-mass, this problem was eliminated. The most recent new addition
was the heartbeat monitor, which again required bug fixes after on-sky testing. An ongoing
problem for the heartbeat monitor is that it is not always successful in recovering from the unex-
pected failure or termination of an individual module thread because just restarting the thread
may not address the underlying issue of why the thread crashed.

A large problem that we have faced in all modules of the code throughout its development is
threads that get stuck waiting for an event trigger that never happens, due to an oversight in the
portion of the code that is supposed to set the trigger. This is a problem unique to multithreaded
systems, and it can cause unexpected behaviors that are difficult to track down to a root cause.
It is possible to place maximum wait times with the wait method, but this may cause more severe
problems if things across threads are executed before they should be. As an example—we ini-
tially forgot to place an event trigger after the continuous temperature-based focusing for a target
finishes (when the target’s observation time has ended). This caused the program to become
stuck at the beginning of the next target’s observations, as it began waiting for this event to
be triggered before beginning the initial coarse focus routine, causing the entire observing
sequence to stall for the night.

4 Results

We have observed TESS candidate exoplanets with our automated control software for 171 par-
tially or fully clear nights and counting, not including testing nights.

4.1 WASP-93b

WASP-93 b is a near Jovian-mass (Mp ¼ 1.47� 0.29MJ) and Jovian-sized (Rp ¼ 1.597�
0.077RJ) planet orbiting an F4 star.38 Its large size in comparison with its stellar host,
ðRp∕R�Þ2 ¼ 0.01097� 0.00013, signifies a large transit depth that makes it an ideal candidate
for assessing the upper limit of quality of our automated results. The GMU telescope observed a
WASP-93 b transit event on UT November 10, 2020. Observations were performed in the R band
(λ0 ¼ 6940 Å and Δλ ¼ 2070 Å). Observations began about 90 min prior to the transit to
achieve a sufficient out-of-transit relative flux baseline. Exposure times were 120 s. The auto-
mated focusing was able to achieve 3.4� 0.2 0 0 FWHM seeing over the course of the entire night,
which is representative of good seeing conditions in Fairfax, Virginia, United States. A total of
153 exposures were taken, with the active guiding keeping the target star relatively stable within
a few pixels of its original position. An ingress and partial egress was recovered, but cloudy
conditions forced a pause in observations during the latter portion of egress. Dark and flat-field
images were then automatically collected to be used for data reduction during the cloudy con-
ditions at the conclusion of the on-sky observations.

The data were reduced using an AIJ34 pipeline in which flat-field images in the R filter are
dark subtracted with a median-combined dark frame image of the same exposure time and then
median combined and normalized into a master flat. Then the science images are dark subtracted
with a separate median-combined dark image matching their exposure time, and the master flat is
divided out. The images are then plate-solved using the Astrometry.net plate-solving server, and
we perform aperture photometry with a radius of 4.42 0 0, inner sky annulus 7.82 0 0, and outer
sky annulus 11.90 0 0, for the target star and ∼10 comparison stars in addition to all stars within
2.5′ catalogued by Gaia.39 The final light curve, along with a model fit and residuals, is shown in
Fig. 8. The depth, period, inclination, and ðRp∕R�Þ2 found by the best fit model are all consistent
with the information found by Ref. 32, with the exception of the transit duration; our best fit
ða∕R�Þ ¼ 7.5 disagrees with their Markov–Chain Monte Carlo (MCMC) results, which put it
closer to 5.9, likely due to our incomplete egress.
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4.2 TIC 321669174.01, aka TOI 2081.01

TESS input catalog (TIC) 321669174.01 or TESS Object of Interest (TOI) 2081.01 is a planetary
candidate (PC) around an M-dwarf star with a Teff ¼ 3742� 157 K, R� ¼ 0.52� 0.02 R⊙, and
M� ¼ 0.51� 0.02 M⊙.

8 The transit has an expected depth of 1.2� 0.1 ppt and a period P ¼
10.5050� 0.0002 days, so in addition to assessing the quality of data achieved with a midtransit
shutdown, this analysis demonstrates the sensitivity of our ground-based observations and analy-
sis due to the relatively shallow transit depth. The GMU telescope observed the transit of
TOI 2081.01 on UT May 13, 2021. Observations were again done in the R filter, and baseline
observations began about 2 h before the predicted transit ingress to achieve the maximum

Fig. 8 An example automated observation light curve of WASP-93b, produced with AIJ.34

Note that the vertical axis is normalized to unity, and then an arbitrary shift is applied for each
flux time-series (e.g., a shift of −0.035 is applied for the airmass-, PSF width-, and annular sky/px
sky brightness-detrended light curve (red dots). The blue dots are a light curve that is detrended
with airmass only. The red light curve is detrended with a joint fit to a transit model (red line)
with a reduced ~χ2 ¼ 1.74. “T1” refers to the primary target, WASP-93b. The magenta data are
the residuals of the transit model. Both the blue and red dots are corrected using a collection
of comparison stars, whereas the green and brown dots show the raw, undetrended (but
still normalized) flux of WASP-93b and a companion star. These raw light curves are also
scaled arbitrarily by a factor of 0.33 to increase the visibility of the plot, but they show how
the airmass, FWHM, and sky transparency affected the raw flux of the target over the course
of the observation.
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possible out-of-transit baseline. Exposure times were 80 s, with the automated focusing achiev-
ing a focus FWHM of 3.86 0 0 at the beginning of the night. At the time of these observations, our
telescope’s right-ascension motor encoder tape for absolute positioning had de-laminated, so our
telescope’s relative pointing accuracy was initially in error by ∼10 0, within our CCD field of
view. We sent a manual jog command to center the target within the frame after the first obser-
vation. The guiding module performed well and kept the star stable throughout the night.
However, due to a midobservation pause during the night due to weather and having to reslew
the telescope, the position of the target changed, and we did not manually correct the error in
the telescope pointing. Exposures continued hours after the transit until sunrise to achieve a
symmetric baseline, allowing us to collect a total of 250 images. Darks and flat-field frames
were collected during the temporary midobservation shutdown.

Fig. 9 An example automated observation of TOI 2081.01. As shown in Fig. 8, the figure is gen-
erated with AIJ, with light curves normalized and arbitrary shifts applied. The raw absolute pho-
tometry light curve prior to companion star correction and detrending is plotted as green and brown
dots; blue data is detrended with airmass; and red data is detrended with width, sky per pixel, total
counts, and x and y positions in the image. The red line is the best-fit transit model with a reduced
χ̃2 ¼ 1.13, and pink data are the residuals.
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The data for this target was reduced and the light curve was extracted using the same pipeline
as previously detailed for WASP-93 b, using AIJ and Astronomy.net. This time, an aperture size
of 6.46 0 0 was used with an 11.56 0 0 inner sky annulus and 17.34 0 0 outer sky annulus. The light
curve, model fit, and residuals are depicted in Fig. 9. As shown, we find an ðRp∕R�Þ2 ¼ 0.0025,
ða∕R�Þ ¼ 34.5, inclination i ¼ 89.6 deg, and time of conjunction Tc ¼ 2459347.710329. The
depth of 2.4 ppt is twice as deep as the expected 1.2 ppt, indicating a possible false positive,
but AIJ does not estimate model parameter uncertainties/posteriors. A nearby eclipsing binary
(NEB) check was performed on all nearby Gaia stars using AIJ, but none were found to be
obvious candidates for a false-positive signal.

To evaluate the statistical significance of our results, we ran an MCMC simulation modeling
our ground-based light curve, with the EXOFASTv240,41 software. We impose priors on log M�,
R�, Teff , log g, distance, TC, log P, Rp∕R�, cos i, and limb-darkening coefficients up to quad-
ratic order as inferred from the TESS light curve and the stellar host characterization in the TIC,42

with one exception: we adopt a loose prior on Rp∕R� to assess whether or not our data provides a
tighter posterior distribution indicating that the data constrains the transit depth and thus is
indicative of a statistically significant detection. These priors are summed in Table 3. The transit
fit produced by the simulation is shown in Fig. 10, and the cornerplot is in Fig. 11. We see a result
that agrees well with our initial fitting done in AIJ, and we observe well-behaved and nicely
converged posterior distributions that signify our solution is unique and stable in the model
parameter space. We even find that the median transit depth is deeper than the best fit depth
from AIJ, as our depth posterior is 3.3þ1.3

−1.1 ppt. This is a statistically significant detection of
the transit depth of 3σ and is consistent to within 2σ of the expected transit depth from
TESS. In comparison with our prior on Rp∕R�, which corresponds to a prior on depth of
2.5� 4.3 ppt, this is a substantial improvement in statistical significance. We also derive a con-
sistent transit duration of 2.55þ0.13

−0.38 h, and this is a clear indication that our observations represent
a robust detection of the candidate transiting exoplanet. Thus, we conclude that our telescope
automation program was able to recover a transit on the order of a few parts-per-thousand even
while closing up due to a weather event in the middle of the transit observation.

Table 3 The prior probability distributions used to generate the MCMC from EXOFASTv2. u1 and
u2 correspond to the linear and quadratic limb-darkening coefficients, respectively. The first two
columns after the label represent the mean and standard deviation of a Gaussian distribution cen-
tered at the prior belief, and the final two columns represent hard limiting boundaries on the value
of the posterior. A “−” signifies that no lower/upper bound was specified, so it can be formally
thought of as �∞.

Prior Mean value Standard deviation Lower bound Upper bound

log M� −0.290 0.017 −1 0

R� (R⊙) 0.516 0.015 0.1 1

T eff (K) 3742 157 3000 4500

log g 4.7238 0.0086 — —

TC (days) 2459347.710 0.017 2459347 2459348

log P 1.0213961 8.1 × 10−6 — —

Distance (pc) 62.345 0.083 — —

Rp∕R� 0.050 0.043 0 1

cos i 0.007 0.017 0 1

u1 0.3 0.1 — —

u2 0.3 0.1 — —
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Fig. 10 The median MCMC transit model of TOI 2081 from the posterior distributions. For the
upper graph, the vertical axis is the flux of the target star, which has been normalized so that
the baseline out-of-transit value is unity. The horizontal axis is time, in hours, since the time of
conjunction (TC ), or midpoint time, of the transit. The lower graph shows the residuals (observed–
calculated) of our transit model shown in red.
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Fig. 11 The cornerplot showing the model parameter space explored by walkers during the
MCMC simulation. The rightmost plots on each row along the diagonal show the one-dimensional
posterior distributions of the model parameters labeled on the bottom axis, which are mostly
Gaussian. All other plots show two-dimensional (2D) covariance plots between each pair of model
parameters, such that uncorrelated parameters exhibit circular covariance contours (e.g., for
a 2D Gaussian), whereas highly correlated parameters deviate from a 2D Gaussian, such as the
highly-correlated metallicity and stellar effective temperature pairs of model parameters.
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4.3 Focusing

As seen in Fig. 12(a), on a clear night with relatively stable weather conditions, the code is able to
step through 11 unique focus positions, fit a positive-concavity parabola, and move to a mini-
mum focus, which on this night was ∼5 0 0. The central data point in the figure represents the
initial focus position that the mirror was at before the software started, and the minimum of the
parabola shows where it moves after the automated focusing procedure has completed. In this
case, the minimum was relatively close to the initial position, which contributed to the success of
the parabolic fit. During nights with less ideal and more variable seeing conditions or nights for
which the initial focus position from the previous observing session is a large distance (in steps)
away from the current optimal focus position or has been manually moved, our focus algorithm
can yield inconsistent focus position minima. An example of this is shown in Fig. 12(b), where
the initial focus point is a bit too far away from the optimal position, and the code is unable to
obtain a full characterization of the parabolic shape of the FWHM as a function of focus stepper
motor position. In these cases, when possible, a human observer uses the focus control GUI to
correct the focus manually.

4.4 Guiding

Figure 13 shows a comparison between a night when the automated guider was utilized against a
night when observations were performed manually and no guiding procedure was in place. The
telescope drift in Fig. 13(b) from an inadequate telescope pointing model is readily apparent, and
the large jump in the x- and y-positions is likely due to our telescope’s unexplained “RA jumps”
and Dec oscillations (Sec. 2). It is readily apparent from Fig. 13(a) that we are able to keep star
positions steady and actively guide on the science images with an RMS as low as 3.23 pixels, or
1.2 0 0. This is a vast improvement to the nonguiding RMS as high as 64.4 0 0, a reduction of
98.17% in the y pixel direction (declination axis) and 98.02% in the x direction (right ascension
axis). This is also beneficial to our photometric precision, data extraction, and modeling efforts
post-observation, as having a more stable pixel position eliminates noise from differences in
pixel sensitivities, bad pixels, and the gradual motion of the telescope. In general, our guide

Fig. 12 Two plots of the software’s FWHMmeasurements (in arcseconds) are shown in blue, and
the associated parabolic model fits are shown in purple, as a function of the secondary mirror
position (in steps, arbitrary zero point). The RMS of the difference between the data and model
is shown in the legend. The two plots share the same vertical scale. On the left, the data was
gathered on a single night for a single star. This data shows a night when the automation code
performed relatively well and was able to find a minimum focus position that correlated with the
data. On the right, the data was again gathered on a single night for a single star, but not the same
night/star as the data on the left. This data shows a night when the code performed less optimally,
as the ideal focus position was beyond the range of the focus steps explored; in other words, this
particular night violated the assumption built into our code for quick focusing – that we start near
an optimal focus.
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works this well in all but the most cloudy conditions. Because we do not have a second camera to
take short exposures optimized for guiding, we must rely on the cadence of the target’s exposure
times for guiding. This means that fainter science targets will inevitably have a larger RMS
deviation in guiding, as the guiding can only be adjusted as quickly as new science images are
generated; thus we also regularly update our telescope pointing model manually to minimize the
telescope drift during exposures.

5 Discussion and Conclusions

We have efficiently implemented an asynchronous and object-oriented framework for the GMU
Observatory where each piece of hardware and higher-level function is associated with a Python
class. By building upon these base hardware classes and constructing higher-level modules for
important observing tasks, our software is able to monitor weather, acquire targets, focus, guide,
and collect data and calibrations before shutting down, with minimal human intervention or
surveillance required. Concurrent on-sky testing of software in parallel with the software devel-
opment greatly accelerated the development of the automation control. The multithreaded struc-
ture greatly improved the efficiency and safety of our observations—overhead times for setting
up or shutting down the observatory (∼5 min) are at least twice as fast as a single-threaded
system could manage. Typical CCD readout times are ∼5 s and unavoidable for any observing
system, and we have an additional ∼5 s of overhead between focus images, which is on par with
a single-threaded system, but far superior to manual observations, which may require many
seconds between images to determine the proper next focus move. We also eliminated ∼2 to
3 s of overhead between science exposures when guiding movements are being calculated and
executed by starting the next exposure immediately, which is not possible for a single-threaded
system. For a typical night with ∼200 exposures, this adds up to a nonnegligible 6 min of over-
head saved. Checking the weather also cuts into observing time on a single-threaded system.
Our combined collection of local weather station data, plus radar data for precipitation and
cloud coverage, takes ∼2 s, saving ∼1 min per 3 h of observing. Continuous focus adjustments
similarly interrupt observing on a single-threaded system, but in this case, the amount is neg-
ligible, <1 s per adjustment. Combined, on a typical night, we expect to have an extra ∼15 to
20 min of observing time compared with a single-threaded system.

The success of the automated focusing procedure relied on our two simplifying and reason-
able assumptions: (1) we start the night near an optimal focus and (2) the focus position drift
through the remainder of the night is linearly correlated with the ambient dome temperature and

Fig. 13 Two plots of the software’s guide star position data (in pixels) in each image are shown as
a function of time (in Barycentric dynamical time). The x positions are shown in blue, and the y
positions are in red. The standard deviation of the x and y positions is also shown in the legend.
The two plots share the same vertical scale. On the left, the data were gathered on a single night
for a single star. This was a night in which the automation code with guiding was utilized. On the
right, again the data were gathered on a single night for a single star. This was a night in which
the automation code with guiding was not utilized.
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less dependent on other factors such as the gravity vector. Using the science exposures, the
guiding module has consistently stabilized pointing to an RMS ∼1 0 0 in all but the most cloudy
conditions. The human observer creates the observation tickets for each target and initiates the
observation sequence via the command line.

The results fromWASP-93 b have demonstrated the functionality of our automation software
and its ability to collect data with a quality on par with our manual observations. Further, our
active guiding module enables reduced light curve systematics from pixel sensitivity variations
by eliminating passive tracking telescope pointing drift; however, we did not directly quantify
this improvement herein. The analysis of TOI 2081.01 has shown the software’s versatility in
suboptimal variable weather conditions to detect transits on the order of 1 ppt in depth. The
automated focusing works well given the above assumptions, and our temperature-based linear
focus drift model is continually adjusted throughout the night and does not require the inter-
ruption of science observations, avoiding additional gaps in the light curve for additional tele-
scope focusing, either manual or automated. We do not identify any software-driven focus
changes that significantly degrade the seeing FWHM over the course of a night, and in fact,
some software-driven focus changes due to changes in temperature improve the FWHM seeing
as in Fig. 16.

Every night, there are many follow-up targets from TESS and other exoplanet surveys that
are observable by a meter-class telescope in the Northern Hemisphere. Since implementing the
automation software, we have rarely missed an opportunity for observations on nights with clear
or intermittently clear weather, and we are able to observe longer baselines on targets without
pointing restrictions. We are also more easily able to work around telescope time allocated for
classes and tours by requiring minimal manual setup. To date, we have achieved our goal of
a more efficient observatory with over 171 automated observing nights and counting.

5.1 Future Work

We preface this section by emphasizing that this project’s development has been primarily stu-
dent-led, and although the present data quality and operation of the automation software have
reached a reliable level of scientific utility, there are still areas for future improvements that we
have prioritized. First, although we have executed a few multinight observation ticket sequences,
more testing and development are needed. The thread monitor is not always successful in recov-
ering from the unexpected failure or termination of an individual module thread. Log files build
up relatively quickly and could be reduced in size to allow the storage and archiving of logs for
much longer periods of time. Shorter focus exposure time scaling (as low as one-tenth) may also
be explored to increase the efficiency of the initial coarse focus routine. Usage of “test” flat and
dark images from previous nights could also allow us to partially correct for noise in focus
images and achieve marginally improved focus measurements. Additionally, more interthread
communication could allow us to pause calibration images if their collection time surpasses
30 min and the weather has improved (and resume them later), which could marginally increase
on-sky time. Communication times between threads also limit us from getting an accurate
measurement of the RA/Dec rate of change with a fine enough level of temporal precision
to predict when an RA or Dec jump has occurred, but this is something that may be improved
with further refinement, which would allow us to abort an exposure and save time starting the
next one.

Second, the inherently modular design of our automation software allows for the easy
addition of new features as we continue to expand the operations of the automation software.
Currently, there are a few more hardware devices in the GMU Observatory that lack automation
control: the tertiary telescope mirror, the near-infrared camera that was recently installed, and the
dehumidifier located within the dome. Incorporating modules for these devices could allow us to
perform automated observations in the near-infrared as well as all of the optical filters that we
currently utilize or even both simultaneously with the use of the tertiary mirror control.

Third, the addition of a task scheduler module could automatically and intelligently choose
and prioritize the best transit observations on a given night based on the target’s observability
and priority, a task that is currently performed by humans. Next, because the current software is
command-line driven with a Python GUI front end, in the future we could pursue the creation of

Reefe et al.: Asynchronous object-oriented approach to the automation. . .

J. Astron. Telesc. Instrum. Syst. 027002-25 Apr–Jun 2022 • Vol. 8(2)



an online server through a web development framework such as node.js to control the automation
software. Fourth, an automatic compression module to fpack our FITS images43 as they are being
saved, followed by automatic data reduction and plate-solving, would cut down on data transfer
times and storage needs for analysis and archiving. Finally, although there has been work done
on documenting the general features and usage of the code for automated observing, the tech-
nical documentation within the code itself could be improved to allow for more transparency and
collaborative code development.

6 Appendix

Here, we present a collection of three additional and representative light curves of TOIs 1333.01,
1724.01, and 3573.01 that were observed using our automation software (Figs. 14–17).

Fig. 14 This plot is produced with AIJ and follows the same conventions as in Figs. 8 and 9. We
plot the light curve from an automated observation of TOI 1333.01 on UT August 30, 2020. Much of
the data is missing due to very poor weather conditions and atmospheric transparency, as can be
seen in the raw T1 and C5 flux time-series in green and purple, scaled by a factor of 0.01.
However, the automated weather module was able to gather the ingress and some midtransit
data. We find a best-fit ðRp∕R�Þ2 ¼ 0.0046, with a χ2red ¼ 4.82, which compares to the TESS
mission value of 0.0055.
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Fig. 15 This plot is produced with AIJ and is associated with the same dataset as Fig. 14. Here, we
present a time-series of various weather and seeing-related quantities, arbitrarily scaled and
shifted, to see their general shapes and trends. The series includes airmass, sky per pixel, total
counts (summed across all-stars with apertures, which is useful for tracking atmospheric trans-
parency when conditions are not photometric), PSF FWHM width, and X∕Y image position of the
target in pixels. Of particular note, after the initial focus, the telescope focus position is set using
a deterministic linear model based upon the ambient dome temperature as described in Sec. 3.5;
although the FWHM time-series is shifted and scaled, no significant low-temporal frequency
FWHM drift is observed over the course of the night. By contrast, the sky brightness (sky/pixel)
and transparency (tot_C_counts) show significant drift from the start to the end of the night, which
is mirrored in the raw flux trends in Fig. 14.
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Code, Data, and Materials Availability

The OmegaLambda code repository is available on GitHub at https://github.com/Kakon24/
OmegaLambda

Fig. 16 This plot is produced with AIJ and follows the same conventions as in Figs. 8 and 9. We
plot the light curve from an automated observation of TOI 1724.01 on UT on January 9, 2021. The
complete dataset shows no transit signal, and an NEB check confirms a nearby target that pro-
duced the transit-like signal in TESS. This demonstrates the utility of automated observations in
identifying false-positive candidates. We exclude a transit event matching the expected transit
depth of 2.7 ppt from TESS during the predicted ingress and egress times, marked with the red
dashed lines, reflecting the realization that a nearby eclipsing binary star produced the transit-like
signal. A systematic at BJDTBD ∼ 2459224.54 appears to look like a substantially early transit
egress, well outside the predicted time-of-transit uncertainty from TESS, but it is instead from
an abrupt focus change at the start of the night, which could have been due to rapid cooling
of the ambient temperature resulting in an over-correction in our focus model; however, the focus
improved for the remainder of the night.
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