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Abstract. A typical inflatable reflector for space application consists of two thin membranes
with a parabolic shape. It is critical to understand the interaction of the inflatable and the micro-
meteoroid environment to which it is exposed. This interaction leads to a series of penetrations
of the inflatable membrane on the entrance and exit of the impacting particle, creating a pathway
for gas to escape. To increase the fidelity of the of the estimated damage that will be incurred, we
examine the literature for descriptions of micrometeoroid fragmentation and present a theoretical
formulation for the damage caused by an impacting particle to the entrance and exit membranes.
This theory is compared with an initial set of hyper-velocity tests for micrometeoroid-sized par-
ticles on thin film membranes. We use the results of these tests to produce a predictive model.
This model is applied to estimate the damage rate near the 1 AU location and output predictions
for the effectiveness of a micrometeoroid shield to reduce the damage on the lenticular and
effectively optimize its lifetime. Finally, we apply the kinetic theory of gasses to develop expres-
sions for the expenditure of gas over a specified mission lifetime due to penetrations. Although
we examine the specific case of an inflated lenticular protected by extra membrane layers, our
predictive model can be applied to any gossamer structure composed of polyimide membranes.
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1 Introduction

This work was inspired by our work on an observatory concept based on inflatable optics.1

In an earlier era, this class of systems was described by the adjective gossamer. We employ
this term to make this work easier to relate to the substantial body of literature that can be found
under that key word.

An inflatable reflector is typically composed of two thin sheets (such as Kapton) in a balloon-
like structure with a parabolic shape. One side of the structure is aluminized to function as the
primary reflector, and the other side is transparent to allow the incoming light to pass. The struc-
ture is supported by an inflatant that enables the sheets to take on the proper shape. In 1996, the
inflatable antenna experiment was carried out, proving that such a design can be successfully
deployed.2

Inflatable reflectors offer a direct path to unlock large (>10-m diameter) aperture space
telescopes that could not be implementable with a rigid mirror design. These large apertures
can significantly advance the current understanding of astrophysics and planetary systems by
increasing the signal to noise ratio and the number of targets that can be observed in a given time
frame.3 Hence, maximizing the lifetime of these systems is highly desired.

Inflatable systems have one main vulnerability that limit their lifetimes: micrometeoroid
impacts from the space environment create holes in the structure that allow the inflatant to
escape. This requires replenishment of the gas to keep the lenticular properly inflated, the mass
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requirement for which sharply rises with lifetime (see Sec. 5). Therefore, it is crucial to properly
account for how quickly the space environment will create perforations in the inflatable
structure.

A previous set of experiments were performed to analyze shape changes in response to
pressure change, a thermal gradient, and a controlled puncture for a 1-m inflatable optic.4

The controlled puncture experiment used a needle with a diameter of 600 μm to simulate a micro-
meteoroid impact on one side of the reflector. No evidence of tear propagation was observed.
The reflector exhibited fluctuations in its surface shape for tens of minutes before re-stabilizing.
It is worth noting that the size of the needle diameter corresponded to a fairly large-sized micro-
meteoroid (see Sec. 4); therefore, the response represents a near worst-case scenario.

The purpose of this paper is to create a predictive model for the damage incurred on an
inflatable optic over time due to its local micrometeoroid environment. In Sec. 2, we review
the theory for grain fragmentation and present a formulation for how to calculate the total
damage from an impacting micrometeoroid. Section 3 covers results from new hypervelocity
tests conducted at the White Sands Test Facility (WSTF) to mimic such events. These results
are modeled using the formulation from Sec. 2 to determine the empirical values for the relevant
parameters and construct a predictive model. This model is then applied to estimate the require-
ments to compose a structure capable of sufficiently breaking down incoming micrometeoroids
so that little to no fragments impact the lenticular. Finally, we identify the gas flow regime for
escape through impact holes and derive an expression for the total gas required to replenish the
lenticular over a specified mission lifetime.

2 Theoretical Formulation for Micrometeoroid Punctures
and Fragmentation

In this section, we review the fundamental physics involved in micrometeoroid impacts.

2.1 Micrometeoroid Puncture Size on Entrance and Amplification of Damage

A single micrometeoroid will cause damage to both sides of the inflatable structure as it enters
and exits. These damage areas will not be equal; the micrometeoroid will shatter after encoun-
tering the first surface, creating many fragments that will subsequently cause many punctures on
the exit surface (see Fig. 1). This section focuses on calculating the damage upon the initial

Fig. 1 Schematic of the stages of a micrometeoroid impact. (a) Incoming micrometeoroid impacts
the first membrane, creating a single hole. (b) Micrometeoroid shatters after impact, creating
a distribution of fragments that impact the second membrane. (c) Resulting damage allows
a mechanism for gas escape.

Villarreal, Arenberg, and Harris: Predictive model for micrometeoroid damage to gossamer structures

J. Astron. Telesc. Instrum. Syst. 044006-2 Oct–Dec 2022 • Vol. 8(4)



surface. To accomplish this, we first review past literature that established the relationship
between impactors and punctures. We then leverage this knowledge to create an expression
to estimate the damage for a single impact.

To begin, we first want to understand how the hole size varies with the size of the impactor.
We begin our analysis with Gardner et al.,5 who used hypervelocity tests on thin films to deter-
mine an equation that describes how to retrieve an impactor’s diameter using the puncture size
that it left behind. This was chosen as our starting point because of the similarity with our
intended analysis, namely an estimated population of hole sizes on gossamer films. Gardner
et al.5 showed that an impactor’s diameter can be inferred from the observed hole diameter with
the expression

EQ-TARGET;temp:intralink-;e001;116;616d 0
p ¼ η

�
10

9þ expðD 0
h∕βÞ

�
þD 0

hð1 − expðD 0
h∕βÞÞ; (1)

where d 0
p ¼ dp∕f is the ratio of the projectile diameter dp to the thickness of the film f,

D 0
h ¼ Dh∕f is the ratio of the hole diameter Dh to the thickness of the film, and η and β are

coefficients. The coefficient η is calculated as

EQ-TARGET;temp:intralink-;e002;116;533η ¼ 6.97

�
Vρpffiffiffiffiffiffiffiffi
σtρt

p
�

−0.723
�
σt
σAl

�
−0.217

f−0.053; (2)

where V represents the impactor’s velocity, ρp is the density of the projectile, ρt is the density of
the target, σt is the yield stress of the target, σAl is the yield stress of aluminum, 6.90 × 107 Pa,
and f is the thickness of the film in μm. This equation can be applied using any set of internally
consistent units (this is partially accomplished by the presence of σAl in Eq. 2), with the excep-
tion that f and dp must be in units of μm. It is worth noting that the η coefficient brings in the
implicit dependencies of the hole size on the projectiles’ properties, such as density and velocity,
and on the properties of the membrane, such as its density, thickness, and strength.

The coefficient β is dependent on the impactor’s velocity and behaves such that

EQ-TARGET;temp:intralink-;e003;116;389β ¼ β1 þ β2V; (3)

where β1 and β2 are determined empirically for a specific target composition using hypervelocity
data with V in units of km/s.

Figure 2 shows the relationship between the projectile diameter dp and the hole diameter
observed Dh for an impacting velocity of 7 km∕s and for input values representative of a ruby
particle impacting a 0.5 mil Kapton film (this will be the setup for our experiments in Sec. 3).
The corresponding inputs are then f ¼ 12.7 μm, σt ¼ 8.79 × 107 Pa, ρt ¼ 1380 kg∕m3, and
ρp ¼ 3950 kg∕m3. The parameter β is defined as β ¼ 13.3þ 0.55 V (see Sec. 3.3 for more

Fig. 2 Equation (1) is plotted for an impacting ruby with a velocity of 7 km/s on 0.5 mil Kapton film.
This function is used in Sec. 3.4 to infer the diameters of the fragments, df from observed holes.
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details). In Sec. 3.4, we apply this function to infer the diameters of impacting fragments that
are not known.

Gardner et al.5 derived Eq. (1) specifically for metallic surfaces. Throughout this paper,
we apply this equation for the case of a Kapton (polyimide) membrane. Previous hypervelocity
tests on Kapton have shown that it follows a similar overall trend to that derived by Gardner
et al.5 but deviates in shape somewhat in the region between Dh∕f ∼ 0.5 to 4.6 The purpose of
future hypervelocity tests is to obtain enough data to derive a similar function specifically for
polyimide films.

Equation (1) is useful for backing out the particle diameter for an observed puncture.
However, in this paper, we are interested in the reverse problem: given a particle diameter, what
is the corresponding hole diameter? We introduce an amplification factor, κ, that describes the
relationship between the particle diameter and the hole size that it creates [for prescribed inter-
action conditions as defined in Eq. (1)] as

EQ-TARGET;temp:intralink-;e004;116;580κ ¼ Dh

dp
: (4)

Equation (1) can therefore be used to determine a κ value for a corresponding incoming
particle size dp given a set of input conditions. This involves first mapping dp to Dh with
Eq. (1) and then plugging in these respective values into Eq. (4). Equation (1) reveals that the
amplification factor κ at a specific dp is not constant, but it varies with the properties of the
impactor and the film, as well as the relative velocity between the two.

Approximating the micrometeoroid as a spherical grain, the damage area caused to the first
membrane (which we refer to as the entrance membrane), Aent, is written as

EQ-TARGET;temp:intralink-;e005;116;448Aent ¼
π

cos θ

�
Dh

2

�
2

; (5)

EQ-TARGET;temp:intralink-;e006;116;391Aent ¼
π

cos θ

�
κdp
2

�
2

; (6)

EQ-TARGET;temp:intralink-;e007;116;356Aent ¼
πκ2

4 cos θ
d2p; (7)

where θ is the angle of incidence. Therefore, the resulting hole is an ellipse that depends on the
angle of incidence.

Gardner et al. 5 also showed that the minimum particle size required to be above the ballistic
limit for a given velocity V is found as

EQ-TARGET;temp:intralink-;e008;116;286dp;bal ¼
0
@ f

0.129
�

Vρpffiffiffiffiffiffi
σtρt

p
�
0.763

�
σt
σAl

�
0.229

1
A1∕1.056

; (8)

where all terms maintain the same definitions as before. Similar to Eq. (2), this equation is valid
as long as all variables are in a consistent set of units, with the exception that f and dp;bal must be
given in μm. We utilize this equation later to determine which micrometeoroids are capable of
penetrating the membrane.

2.2 Micrometeoroid Fragmentation and Puncture Size on Exit

Micrometeoroids near 1 AU generally impact with velocities of 35 km∕s or less.7 At these
impact speeds, the micrometeoroid incident on the entrance membrane will shatter (spalls) into
a number of smaller fragments. This collection of fragments will then produce many holes on the
exit surface. In this section, we devise an expression for the particle distribution as a result of this
fragmentation. We then determine the total damage on the exit membrane due to secondary
impacts from these fragments.
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We follow the literature for the shattering of interstellar dust grains,8,9,10 to describe the
fragment distribution after the micrometeoroid experiences catastrophic destruction from
encountering the first surface. It has been shown that a dust grain that undergoes catastrophic
destruction shatters into smaller pieces with a number distribution that is described by a power
law,8,9

EQ-TARGET;temp:intralink-;e009;116;675nfðmfÞdmf ¼ cf

�
3mf

4πρ

�
−
αf
3

dmf; (9)

where the number distribution of the fragments is denoted by nf over an interval
ðmf;mf þ dmfÞ with mf being the mass of the fragment, cf is a scaling coefficient, ρ is the
mass density, and αf is the scaling exponent. We assume that the impactor has a uniform density,
so the fragments maintain the same density as the original projectile. The literature suggests
that αf is in the range from 3 to 3.5.8,9,10

The number distribution is bounded by a minimum and maximum fragment size. The maxi-
mum fragment size is believed to be proportional to the projectile radius, ap, such that9

EQ-TARGET;temp:intralink-;e010;116;540af;max ¼ cmaxap; (10)

where af;max is the radius of the largest fragment and cmax is the scaling coefficient. For the case
of catastrophic destruction of the impactor, Jones et al.9 adopted a value of cmax ¼ 0.22, whereas
Hirashita and Kobayashi10 used a value of cmax ¼ 0.27. Both applications assume a minimum
fragment size af;min ∼ 5 × 10−10 m as the shattering limit.

We determine cf by invoking the conservation of mass. The total mass of all fragments must
equal the mass of the original particle mp, and thus

EQ-TARGET;temp:intralink-;e011;116;432mp ¼
Z

mf;max

mf;min

nfmfdmf: (11)

Substituting Eq. (9) into Eq. (11) gives

EQ-TARGET;temp:intralink-;e012;116;374mp ¼
Z

mf;max

mf;min

cf

�
3mf

4πρ

�
−
αf
3

mfdmf: (12)

This simplifies to

EQ-TARGET;temp:intralink-;e013;116;314mp ¼ cf

�
4πρ

3

�αf
3

Z
mf;max

mf;min

m
1−

αf
3

f dmf: (13)

This integrates to

EQ-TARGET;temp:intralink-;e014;116;253mp ¼
�
4πρ

3

�αf
3 cf
2 − αf

3

�
m

2−
αf
3

f;max −m
2−

αf
3

f;min

�
: (14)

We rewrite the above equation in terms of the original impactor radius, ap, and the minimum and
maximum fragment radii using m ¼ 4π

3
ρa3, which results in

EQ-TARGET;temp:intralink-;e015;116;178

4π

3
ρa3p ¼

�
4πρ

3

�
2 cf
2 − αf

3

ða6−αff;max − a
6−αf
f;minÞ: (15)

This simplifies to

EQ-TARGET;temp:intralink-;e016;116;134a3p ¼ 4πρcf
6 − αf

ða6−αff;max − a
6−αf
f;minÞ: (16)

This is rearranged to solve for cf as
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EQ-TARGET;temp:intralink-;e017;116;735cf ¼
6 − αf
4πρ

a3p

a
6−αf
f;max − a

6−αf
f;min

: (17)

From Eq. (17), we can see that the cf coefficient will depend on the impacting particle’s radius
ap, particle’s density ρ, proportionality constant cmax (through the dependence on af;max),
minimum fragment size af;min, and scaling exponent αf.

The total damage area incurred by the distribution of fragments is estimated by characterizing
each individual puncture according to Eq. (7). The total area of all holes upon the exit surface is
then expressed as

EQ-TARGET;temp:intralink-;e018;116;620Aexit ¼
π

cos θ

Z
mf;max

mf;min

nfκ2a2fdmf: (18)

For simplicity, we assume that all fragments retain the same angle of incidence θ as the original
impactor, and thus the cosine term is treated as constant in this analysis. Since the κ term is
ultimately dependent on af, and therefore mf, it is kept in the integral and will vary with
fragment size according to the implicit dependencies within Eq. (1). Equation (18) is simple
to compute numerically.

We embarked on this formulation to ultimately determine the total damage that a single
micrometeoroid will cause to both sides of the lenticular, which we call Aimpact. To estimate
the total damage area in the absence of a micrometeoroid shield, we define Aimpact as

EQ-TARGET;temp:intralink-;e019;116;475Aimpact ¼ Aent þ Aexit; (19)

where Aent and Aexit are defined by Eqs. (7) and (18). It should be noted that our model assumes
that the membrane material is vaporized on impact and that penetrations made on later layers are
the result of the repeated fragmentation of the original impactor. This assumption is made as it is
a simplification and a conservative assumption in determining the total damaged area. This
assumption can be relaxed after a future test campaign with a sufficient number of shots to
produce a satisfactory empirical estimate of the vaporized mass.

In Sec. 5, we will determine the gas lost through these punctures over time. The cumulative
hole area, AH, in the primary reflector is estimated as

EQ-TARGET;temp:intralink-;e020;116;347AHðtÞ ¼ Aseams þ ARt
Z

mp;max

mp;min

ΦðmpÞAimpactdmp; (20)

where Aseams is the initial hole area due to construction of the seams, AR is the surface area of the
primary reflector, t is time, ΦðmpÞ represents the micrometeoroid flux as a function of projectile
mass mp, and Aimpact describes the hole area caused under impact conditions for the microme-
teoroid’s radius ap [see Eqs. (1) and (19) for all inherent dependencies]. The ΦðmpÞ term is
a property of the local space environment, where the bounds mp;min and mp;max represent the
minimum and maximum incoming micrometeoroid sizes, respectively.

2.3 Micrometeoroid Punctures after N Shattering Events

In Sec. 4, we discuss the possible mitigation of micrometeoroid holes through the use of a micro-
meteoroid shield, which consists of multiple layers of Kapton that act as a bumper for the len-
ticular. The total fragment mass on each consecutive interface should decrease for two reasons:
vaporization and the inability of the smallest fragments to reach the ballistic limit. The goal is to
fragment the micrometeoroid sufficiently so that only a few fragments remain above the ballistic
limit when they arrive at the lenticular structure at the center. This will decrease the hole area
with time [AHðtÞ in Eq. (20)] and allow the inflatant to be conserved. Because the fraction of
mass that vaporizes is difficult to quantify with experiments, this paper will focus on the mass
loss due to the ballistic limit.
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We set up the formulation needed to propagate the fragmentation for consecutive membrane
layers to determine the damage incurred on each interface. We can think of repeated fragmen-
tation as a fractal process—each fragment can be thought of as the original impactor described in
Sec. 2.2, and Eqs. (9), (10), and (17) can be evaluated in the same manner as in Sec. 2.2 to
determine the secondary fragmentation of each incoming fragment.

We assume that the fragments, similar to the original projectile, further fragment according to
the power law distribution in Eq. (9), with each fragment having a maximum secondary fragment
size of

EQ-TARGET;temp:intralink-;e021;116;640af;max;s ¼ cmaxaf; (21)

where the s subscript represents a secondary fragment. This means that the largest fragment out
of all secondary fragments after the N’th shatter is calculated as

EQ-TARGET;temp:intralink-;e022;116;584af;max;N ¼ cNmaxap: (22)

We again assume the fragments shatter as spheres, allowing us to define the maximum frag-
ment mass as mf;max;N ¼ 4π

3
ρa3f;max;N . For simplicity, we assume that all subsequent fragmen-

tations maintain the same af;min as the original impactor. We also assume that fragments will not
fragment further once they reach a size of af;min. The number distribution of fragments at sizemf

after the N’th shattering event, nf;N , is then calculated as

EQ-TARGET;temp:intralink-;e023;116;485nf;NðmfÞdmf ¼
Xmf;max;N−1

i¼mf;min

qini;s; (23)

where q is the number of incoming fragments at size i from the previous shattering, expressed as

EQ-TARGET;temp:intralink-;e024;116;421qi ¼ nf;N−1ðiÞdmf; (24)

and ni;s represents the number of secondary fragments of size mf produced by the shattering of
the impacting fragment of size i, which is written as

EQ-TARGET;temp:intralink-;e025;116;364ni;sðmfÞdmf ¼ ci;s

�
3mf

4πρ

�
−
αf
3

dmf: (25)

The scaling term ci;s needs to be re-calculated for each incoming fragment size i being
evaluated as discussed in Sec. 2.2 (here, each impacting fragment mi is now treated as mp).
The number distribution for nf;N is bounded from mf;min to mf;max;N , as defined earlier. This
fragmentation process repeats until all fragments reach a size of af;min and the particles cannot
shatter any further. Although Eq. (23) appears cumbersome, it is relatively easy to implement
numerically.

The total damage area incurred on the membrane after the N’th shatter is thus

EQ-TARGET;temp:intralink-;e026;116;230AN ¼ π

cos θ

Z
mf;max;N

mf;min

nf;Nκ2a2fdmf: (26)

We again remind the reader that κ is not a constant but varies as a function of the micrometeoroid
properties, film properties, and impacting velocities.

3 Laboratory Analysis of High Velocity Impacts on Membranes

In this section, we use hypervelocity impact tests on Kapton membranes to empirically define
the parameter values for the micrometeoroid fragmentation from Sec. 2.
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3.1 Experimental Design and Damage Area Observed

The purpose of these experiments is to aid us in the characterization of hole area damage for the
micrometeroid environment of concern, as well as to provide data to support and validate our
theoretical model, in particular, for the characterization of the impact of a micrometeoroid
through an initial wall, the subsequent break-up and debris cloud, and finally the break-up and
cloud’s impact upon the second wall.

All testing was performed at NASAWSTF. A shot matrix was developed with the purpose of
characterizing the hole area as a function of the projectile’s velocity, the two target surface’s
stand-off distance, and the impact angle. The test shot matrix is given in Table 1. Due to testing
restraints, we were not able to test a sampling of projectile diameters or masses.

To accurately model the micrometeoroid environment, a 200-μm diameter aluminum oxide
(Al2O3, ruby, density 3.95 g∕cm3) projectile, decided upon by a conference of subject matter
experts at WSTF, is used. Prior to each test, the projectile mass was measured using a Mettler
Toledo XP56 Delta Range balance (�0.001 mg), and the projectile diameter was measured
using a Geller microanalytical laboratory micro-ruler (�0.01 mm).

The tests use kapton samples manufactured at Northrop Grumman Space Park. This is rep-
resentative of the current choice of the membrane for the OASIS mission concept with a design
that is based on an inflatable lenticular. The target samples are kapton sheets of 0.5 mil (12.7 μm)
thickness, cut to ∼12 in. square. The film samples are secured in frames as pictured in Fig. 3,
setting them to the appropriate incline angle and stand-off distance for a specified test shot

Table 1 Experimental design for each shot performed.

Test #
Projectile
material

Projectile
diameter
(μm)

Calculated
projectile
mass (g)

Impact
angle
(deg)

Velocity
(km/s)

Stand-off
distance

(m)

1 Ruby 200 1.65 × 10−5 0 7.09 0.33

2 Ruby 200 1.65 × 10−5 0 7.05 0.66

3 Ruby 200 1.65 × 10−5 0 7.18 1.00

4 Ruby 200 1.65 × 10−5 50 7.18 0.33

5 Ruby 200 1.65 × 10−5 50 6.9 1.00

6 Ruby 200 1.65 × 10−5 0 4.93 0.33

7 Ruby 200 1.65 × 10−5 0 4.17 0.33

Fig. 3 Test article setup. The first (right) membrane is set to the specified impact angle, and the
second (left) membrane surface is always set to a zero incidence angle. The stand-off distance
between the membranes is varied for each test shot.
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(see Table 1). The samples were secured in a manner such that they each experienced a tensile
load of 1000 pounds per square inch (ksi, a unit of stress). This load is reflective of the pressure
that would be experienced by the membrane when fully inflated. The ∼1 ksi stress level was
achieved by attaching a small weight to the bottom part of the target membrane. The first mem-
brane is set to a specified incidence angle given in Table 1, and the second membrane remained at
an incidence angle of zero for all test shots (see Fig. 3).

Seven impact tests were performed for a 200-μm diameter ruby projectile upon the two
consecutively placed 0.5 mil (12.7 μm) thick Kapton membranes. Images of the membranes
were used to determine the damage area on each surface. Impact holes were identified by eye,
and the perimeters of the holes were defined. The damage area in pixels2 was calculated and
subsequently converted to mm2 using a scale bar on the image. Due to the large number of holes
on each second membrane after fragmentation, a high density and low density damage region is
defined. These regions are then divided into quadrants. A quadrant is selected to manually iden-
tify all impact holes, and the cumulative area is multiplied by four to calculate the total damage in
that region. Table 2 gives the total damage area observed on each membrane.

To further illuminate the image analysis method described above, let us look at the case of the
sixth shot (Table 1). Figure 4 shows the damage to the entrance membrane. The particle creates a
well-defined, circular hole that can be directly used to determine the κ value for the particle’s size
and velocity (see Sec. 3.3). The other test shots also displayed circular impacts on the first mem-
brane, with the exception of shots 4 and 5, which impacted at an incidence angle of 50 deg.
The wounds from these impacts were elliptical in shape, consistent with Eq. (7). The total dam-
age area to the entrance membrane, Aent;obs, observed on each test shot is given in Table 2.

Figure 5 shows the damage incurred on the exit membrane on shot 6. It is clear that the
test particle has completely disrupted into many fragments, creating holes of various sizes.

Table 2 Total damage observed on each membrane.

Test #
Total damage to first
membrane (μm2)

Total damage to second
membrane (μm2)

1 5.88 × 104 2.53 × 106

2 5.89 × 104 2.44 × 106

3 6.29 × 104 1.80 × 106

4 9.83 × 104 3.93 × 106

5 8.88 × 104 1.47 × 106

6 6.05 × 104 1.28 × 106

7 5.06 × 104 1.07 × 106

Fig. 4 Damage to the first membrane of shot 6. A single, circular hole is observed.
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These fragments create a high density region of damage in the center, with more diffuse damage
occurring further on the outer edges.

The impact hole identification and measurements were performed manually by the authors as
resources to automatically and accurately identify impacts were unavailable. The manual method of
dividing the image into non-adjacent regions and then scaling the count to estimate the total number
of holes was inspired by author Arenberg’s experience using a hemocytometer to count bacteria in a
high school biology class. The distributions of the holes in both the high- and low-density regions are
observed to be fairly uniform and align with physical and statistical intuition. Due to these obser-
vations and time limitations, a single quadrant, rather than thewhole four quadrants of these low- and
high-density regions, was measured. Later it was confirmed that statistics of the counts also align
with these observations. This is elaborated on in Sec. 3.2. Based on the fragment sizes inferred, the
authors do not believe a large error was introduced using the quadrant method.

The high density region of damage is identified in Fig. 6. The lower right quadrant is selected,
and every hole identified in that quadrant is measured, with measurements represented in the

Fig. 5 Damage to the second layer of shot 6. The impactor completely disrupts after impact with
the first layer, resulting in fragments that create many holes on the second membrane. A high
density damage region is observed in the center, surrounded by a diffuse region of damage.

Fig. 6 High density region on the second membrane of shot 6. (a) The high density region is
defined and split into quadrants. A quadrant is selected (lower right) to manually measure each
hole. (b) Close up of quadrant measurement.
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ImageJ software by a yellow circle. All measurements were exported to an excel document
and then summed to get the full damage area of the quadrant. The quadrant area is multiplied
by four to achieve the high density region’s total damage area, AHigh. The distribution of holes
in this region is seen to follow a power law distribution as expected (Fig. 7).

The low density region of damage is identified in Fig. 8. The upper right quadrant is selected,
and every hole identified in that quadrant is measured, with measurements represented in the
ImageJ software by a yellow circle. The distribution of holes in this region is seen to follow a
power law distribution as well (Fig. 9). Compared with the high density region, which contains
a higher percentage of larger-sized holes, the low density region has a higher percentage of
smaller-sized holes.

Because the high density region is contained within the low density region, we have to sub-
tract the contribution of the high density region from the low density quadrant counts to avoid
double counting. The total areal damage in the low density region, ALow, is then calculated as

EQ-TARGET;temp:intralink-;e027;116;336ALow ¼ 4ðAq;Low − γAq;HighÞ; (27)

Fig. 7 Depiction of the size distribution of damage holes upon the back layer of shot 6 for the
high density region, with square root of count error bars. As can be seen, the damage area follows
a power law distribution.

Fig. 8 Low density region on the second membrane of shot 6. (a) The low density region is defined
and split into quadrants. A quadrant is selected (upper right) to manually measure each hole.
(b) Close up of quadrant measurement.
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where Aq;Low and Aq;High are the total damage measured in the quadrants of the low density and
high density regions, respectively, and γ represents the fractional area of the low density region
occupied by the high density region. This quantity is multiplied by four to get the total damage
over all four low density quadrants. The total damage to the exit membrane is then calculated by
Aexit;obs ¼ AHigh þ ALow, given in Table 2.

All seven shots exhibit a similar behavior for fragmentation and follow a power law distri-
bution for hole sizes. Table 2 gives the total damage area observed on each membrane. Some
variation in the damage distribution was observed with stand-off distance (i.e., high density and
low density regions are less well defined for greater distances). However, it was difficult to deter-
mine the role of the stand-off distance in the total damage incurred because the velocity on each
shot also changed. More data is needed to properly characterize this effect.

3.2 Error Analysis on Counting

This section focuses on the error analysis of the damaged area from the hypervelocity test series
that were recently carried out.

3.2.1 Entrance surface wound

The experimentally derived value of κ is the ratio of the diameter of the hole in the entrance
membrane, Dh, to the diameter of the penetrator, dp.

The variance in κ is found by applying the law of error propagation to Eq. (4), which is
written as

EQ-TARGET;temp:intralink-;e028;116;217σ2κ ¼
�

∂κ
∂Dh

�
2

σ2Dh
þ
�

∂κ
∂dp

�
2

σ2dp : (28)

Substitution of the partial derivatives in Eq. (28) gives

EQ-TARGET;temp:intralink-;e029;116;160σ2κ ¼
�

1

d2p

�
σ2Dh

þ
�
D2

h

d4p

�
σ2dp : (29)

Because the variances of Dh and dp can be expressed as a fraction of their values by the ratios
g and h, respectively, we write

Fig. 9 The figure above depicts the size distribution of damage holes upon the back layer of shot 6
for the low density region. As can be seen, the damage area follows a power law distribution.
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EQ-TARGET;temp:intralink-;e030;116;735σ2κ ¼
�

1

d2p

�
ðD2

hg
2Þ þ

�
D2

h

d4p

�
ðd2ph2Þ: (30)

The value of g is derived from the measurements of the diameter of the entrance wound. On the
basis of repeated measurements of the entrance wounds on many different diameters, we esti-
mate that the precision on the measurement ofDh is on the order of 0.03Dh or 3%. The value of h
is a fractional error in dp and is the root-sum-square of the effects of non-sphericity of 0.32% and
average diameter error of 0.64%. These values combined give h as 0.71%. So the estimated
fractional error in κ is ∼3.1%

3.2.2 Exit surface wound

In this section, we discuss our estimation of the uncertainty in determining the penetration area of
the exit surface. This area is made up of many small holes counted and sorted into size bins as
shown in Fig. 7 and referenced to the high or low density region. We write the total area of
penetration of the membranes, Aexit;obs as

EQ-TARGET;temp:intralink-;e031;116;540Aexit;obs ¼ 4

��Xw
i¼1

Liπr2i

�
þ ð1 − γÞ

�Xw
i¼1

Hiπr2i

��
; (31)

where the area of penetration in each quadrant is replaced by summations over a fixed number of
bins and the correction term γ to avoid double counting. To formulate the variance in Aexit;obs,
the law of error propagation is applied to Eq. (31), giving

EQ-TARGET;temp:intralink-;e032;116;455σ2Aexit;obs
¼

Xw
i¼1

�
∂Aexit;obs

∂Li

�
2

σ2Li
þ
Xw
i¼1

�
∂Aexit;obs

∂Hi

�
2

σ2Hi
þ
�
∂Aexit;obs

∂γ

�
2

σ2γ : (32)

Evaluation of the partial derivatives in Eq. (32) gives

EQ-TARGET;temp:intralink-;e033;116;394σ2Aexit;obs
¼

Xw
i¼1

ð4πriÞ2σ2Li
þ
Xw
i¼1

ðð1 − γÞ4πriÞ2σ2Hi
þ ð4Aq;HÞ2σ2γ : (33)

Reorganization of Eq. (33) gives

EQ-TARGET;temp:intralink-;e034;116;334σ2Aexit;obs
¼ ð4Aq;HÞ2σ2γ þ 4π

Xw
i¼1

r2i ðσ2Li
þ ð1 − γÞσ2Hi

Þ: (34)

The leftmost term in Eq. (34), is due to variance in γ and the terms under the summation signs
are the expected variances in the counts of the various bins in the high and low regions.
An experiment was performed to determine the variance in γ. The analyst divided up the area
from a pristine image and then measured the γ for each trial. The standard deviation in γ was
∼0.1γ and substituted into Eq. (34). The variances in the counts in the bins Li and Hi are
determined by Poisson statistics, and the variance is replaced by the mean and shown in
Eq. (35)

EQ-TARGET;temp:intralink-;e035;116;202σ2Aent;obs
¼ 0.01ð4Aq;HÞ2 þ 4π

Xw
i¼1

r2i ðLi þ ð1 − γÞHiÞ: (35)

Because most of the area of the exit wound is found in bins with a large number of counts, the
fractional variance is significantly <0.01, so the first term is dominant, and the standard uncer-
tainty in the exit area is ∼10%.
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3.3 Observed Impacts on the First Membrane and Determination
of Parameter Beta

In Sec. 2.1, we reviewed the theoretical formulation for the hole diameter size as a function of
the projectile properties, film properties, and impacting velocity [Eq. (1)]. For this formula to be
useful for extrapolating κ to higher velocities, we need to determine the values for β1 and β2 in
Eq. (3) for Kapton. In our experiments, all variables in Eq. (1) are held constant except for
the velocity, allowing us to determine the velocity dependence of β.

The hole diameter sizes measured on the entrance membranes give a corresponding ratio of
Dh∕f ≈ 20. In this regime, Eq. (1) is approximated as

EQ-TARGET;temp:intralink-;e036;116;620d 0
p ≈D 0

hð1 − expð−D 0
h∕βÞÞ: (36)

This is written in terms of κ as

EQ-TARGET;temp:intralink-;e037;116;576

1

κ
¼ 1 − expð−D 0

h∕βÞ: (37)

Solving for parameter β then gives

EQ-TARGET;temp:intralink-;e038;116;524β ¼ −D 0
h

ln
�
1 − 1

κ

� : (38)

Because the first membrane displays damage from when the projectile was still intact,
calculating κ for each shot is straightforward using Eq. (4). The shots display a modest change
in κ, ranging from 1.27 to 1.42 over this small velocity range, with an average value of κ ¼ 1.37.
The calculated κ and the observed hole size Dh are plugged into Eq. (38) to determine the
corresponding β parameter for each shot. Figure 10 shows the variation in β with velocity.
The magenta dashed line in Fig. 10 is the line of best fit for the data points. We use this best
fit line to describe how β varies with velocity and find β1 ¼ 13.3 and β2 ¼ 0.55 in Eq. (3). Thus,
we define β for Kapton as β ¼ 13.3þ 0.55 V, where the velocity is in units of km/s. We note
here that this is a small sample size and more hypervelocity tests are needed to accurately
determine β1 and β2.

Using the above definition for β, we produce κ curves for the experiment at different
velocities using Eqs. (1) and (4), as shown in Fig. 11. We use values representative of
Kapton and ruby, with inputs set to f ¼ 12.7 μm, σt ¼ 8.79 × 107 Pa, ρt ¼ 1380 kg∕m3, and
ρp ¼ 3950 kg∕m3. These curves clearly demonstrate that impactors that are large relative to
the membrane thickness exhibit minimal increases in κ with an increase in velocity. The figure

Fig. 10 Variation in β parameter with velocity. The dashed line is the line of best fit and is used
to calculate the values for β1 and β2.
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also illustrates how κ rapidly increases as the projectile size becomes small relative to the mem-
brane thickness, until it reaches the ballistic limit (κ ¼ 0). Our experimental setup corresponds to
an initial ratio of dp∕f ¼ 15.75 and range in velocity from 4 to 7 km/s. However, after the micro-
meteoroid shatters, we expect its fragment distribution to span the full range of ratios less than
this value, which correspond to maximum κ values of 3.5 to 4.5 over this velocity range. If future
tests are performed at speeds more representative of micrometeoroids (∼35 km∕s, Thorpe
et al.,7), we expect the maximum κ values for those experiments to be closer to 10, as indicated
by the blue line in Fig. 11.

3.4 Observed Impacts on the Second Membrane and Implications
for Fragmentation

One of the goals of this paper is to empirically determine what the parameter values should be
for micrometeoroid fragmentation. This requires examining the fragment distribution from our
experiments to extract αf and cmax (which then determines af;max), which dictate this distribu-
tion. Although af;min also influences the overall distribution, it does not affect the distribution
as much as the other two parameters because that limit controls a small fraction of the total
mass. Values acquired for αf and cmax can then be used to feed into a predictive model for the
fragmentation.

The experiments performed directly measure the damage area caused by impacting frag-
ments, not the fragment sizes themselves. Therefore, the number distribution of the fragments
must be inferred. We utilize Eq. (1) to estimate the impacting fragment sizes that produced the
observed holes on the second membranes. Because we do not know the individual velocities of
each fragment, we make the simplifying assumption that all fragments will have impacting
speeds equal to that of the original impactor. The dp∕f curves (similar to Fig. 2) are produced
for each shot’s corresponding impact velocity to allow us to map the observed hole diameter Dh

to a corresponding fragment diameter df. It is worth noting that, as we learned from Fig. 11,
lower impact velocities will shift the kappa curve downward; therefore, if the fragment velocities
are actually less than the original impactor velocity that we used to map the fragment sizes,
we would expect the largest errors in our inferred fragment sizes for the smallest fragment bins
observed where the curves deviate the most (left side of the curve in Fig. 11).

A fragment array is created to bin fragment diameters ranging from 2 μm (just below the
ballistic limit for Kapton at these speeds) to 200 μm (the original particle diameter) with a bin
spacing of 4 μm. To arrive at an inferred number distribution, we calculate the Dh∕f ratio for
each hole observed to determine the corresponding fragment diameter df and add a number
count to the bin encompassing the matched fragment size. A check is performed to ensure that

Fig. 11 Variation of κ for a ruby impactor on a 0.5 mil Kapton film. κ varies with both the ratio of
the projectile diameter (dp) to the film thickness (f ) and the velocity of the impactor.
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all observed holes are assigned to a bin. Because the hole measurements are counted for a single
quadrant, the number counts are multiplied by four to estimate the total number of fragments
penetrating the membrane. We use a correction similar to Eq. (27) to subtract the high density
region contribution to the low density counts to avoid double counting holes.

Figure 12 shows the resulting number distributions from each impact test as a function of
fragment radius. All shots exhibit similar behavior for the fragmentation and follow a power
law distribution as expected. The dashed line in Fig. 12 is the ballistic limit calculated using
Eq. (8) for a reference velocity of 7 km∕s. It is worth noting that there is a sharp drop-off
in counts for the smallest fragment bins. This could be due to the fragments having a lower
impact velocity than the original impactor (and thus dp;bal would be larger), particles not pen-
etrating the membrane efficiently, difficulty observing the smallest holes, or all of the above.

As a sanity check to make sure that our results make physical sense, we sum over all fragment
masses for each inferred number distribution and compare this value with the original impactor
mass. This sum should always be less than or equal to the original impactor mass. We approxi-
mate the fragments as spheres and use the relation m ¼ 4π

3
ρa3f to calculate the mass of each

fragment. Figure 13 shows this sanity check for each test shot. Almost all shots are consistent
with the conservation of mass and have similar values for ðPmfÞ∕Mp with a median value of
∼0.8. Shots 4 and 5 appear to be anomalies, with mass fractions of about 1.6 and 0.31,

Fig. 12 Fragment size is inferred from each damage hole observed. The fragments are then
binned and counted. The dashed line indicates the ballistic limit for an impacting velocity of
7 km∕s. Midpoints of the bins are used to plot the data.

Fig. 13 All inferred fragment masses from Fig. 12 are summed to determine the total fragment
mass. The ratio of the total fragment mass to the original projectile mass (Mp) is shown. These
values should always be less than or equal to the projectile mass.
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respectively. It is worth noting that these are the two experiments in which an incidence angle on
the first membrane was imposed, which may affect the inferred fragment size. There are also
other possible explanations for this error. The first is that we approximate all projectile fragments
as spheres. The shapes of the shards after every test completion were not examined, so it is hard
to say how much the fragments deviate from a spherical shape. Future tests would be needed to
determine their elongation. Other error contributions could be due to the assumptions in κ and
the count extrapolation from the quadrant method. Assuming shots 1, 2, 3, 6, and 7 are good
representations of the true fragment mass, Fig. 13 suggests that about 17% of the mass is lost
after the first membrane due to the inability of the smallest fragments to penetrate the second
membrane at these speeds.

In addition to the number distribution, we also want to determine the bounding limits of the
fragmentation. The smallest and largest holes observed for each shot are identified, and a cor-
responding fragment size is calculated. Figure 14(a) shows that the smallest holes observed cor-
respond to fragment sizes that are at or just above the ballistic limit (dashed line). This implies
that the true value for af;min of the fragment distribution is likely smaller than this, but it cannot
be observed because these fragments are not able to penetrate the membrane. Figure 14(b) shows
that the test shots exhibit similar sizes for their observed af;max. Because the particle size is
held constant throughout our experiments, this also gives rise to consistency in the calculated
cmax value. We find an average value of cmax ¼ 0.32, with the overall range encompassing the
cmax ¼ 0.22 (Jones et al.,9) and cmax ¼ 0.27 (Hirashita and Kobayashi,10) values assumed in
the literature.

To establish a model that is representative of particle fragmentation incident on a polyimide
film, we need to determine which combination of αf and cmax best replicates the observed frag-
mentation. The fragmentation is modeled using Eqs. (9), (10), and (17) to ensure conservation of
mass. We use as inputs the original impactor mass, radius, and ρ as defined by the experimental
setup (see Table 1). We set af;min ¼ 1 μm, just below the ballistic limit, because the true value
could not be determined. The αf and cmax parameters are varied to determine which combination
produces the minimum residuals. The αf parameter is varied from 3 to 5.5 with 0.1 increments,
and cmax is varied from 0.20 to 0.40 with 0.01 increments. Because the smallest and largest
fragment bins have issues with their counting statistics, we limit the fit to fragments with radii
between 3 and 18 μm. We find that the data is best fit by a fragmentation model with parameters
αf ¼ 4, cmax ¼ 0.24, and amin ¼ 1 μm. Figure 15 shows how the number distribution estimated
from this model compares with the number distributions inferred from the observed impacts.

Fig. 14 (a) The minimum fragment size observed on each shot is near the ballistic limit (dashed
line). (b) Maximum fragment size observed on each shot (lefthand y-axis) and the scaling factor
derived based on the maximum fragment size (righthand y-axis).
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Our estimate for αf is slightly larger than the values used for interstellar grain fragmentation,
which typically assumes an αf between 3.3 and 3.5.8,9,10 The cmax retrieved is intermediate
between the literature values of 0.22 (assumed by Jones et al.,9) and 0.27 (assumed by
Hirashita and Kobayashi,10).

As a sanity check, we use our empirical model to predict impact holes on the second mem-
brane and compare with our observed results. We set αf ¼ 4, cmax ¼ 0.24, and af;min ¼ 1 μm to
recreate a number distribution for the shattering fragments impacting the second membrane. We
use the velocities given in Table 1 to determine the appropriate κ for each fragment (we assume
that the fragments have the same speed as the original impactor) and use Eq. (18) to predict what
the corresponding total damage to the second membrane should be. Figure 16 shows how well
our model replicates the observed values from our experiments. For the most part, our model
replicates the observed damage fairly well. The outlier data point near (0.017, 0.039) is shot four,
which we acknowledged earlier as an an anomalous data point, perhaps due to the effects of the
inclined first membrane that are not captured by our model.

3.5 Predictions for Future Tests with Multiple Membranes

One option to conserve the inflatant and extend the mission lifetime is to construct a robust
design. A natural reaction would be to consider thicker membranes. This is likely not the

Fig. 15 Observed number distributions from the hypervelocity impact tests are best described
by a fragmentation model with αf ¼ 4 and cmax ¼ 0.24.

Fig. 16 Comparisons of the total damage to the second membrane predicted by our empirical
model and that observed in our experiments. The dashed line represents the y ¼ x line.
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solution: to achieve the relevant stress in the film needed to make a good reflector, the pressure
would need to be increased for a thicker membrane. In Sec. 5, we show that the gas loss through
holes [Eq. (44)] is proportional to the product of the hole area and the pressure. Thus, the cumu-
lative hole area would have to fall off faster than linearly to extend the lifetime. Figure 11 dis-
plays that the film thickness would have to be significantly increased for the κ (which controls
the overall damage) to be significantly reduced for the smallest impacting particles, which enact
the most damage relative to their size. This will become clearer in Sec. 4, where we consider
different membrane thicknesses.

An alternative to thicker membranes is the option of additional membrane layers to shield
the central structure. These layers are added to cause successive fragmentation and reduce pen-
etration of the lenticular. The effectiveness of such a shield will need to be validated with addi-
tional hypervelocity tests. In anticipation of such tests, we use the empirical model from the
previous section to predict the damage that the fragments will cause on each subsequent layer.
This will allow us to test our fragmentation model in future laboratory experiments. We keep the
velocity constant to show the effects of increasing the particle size for clarity, and the inputs into
the predictive model can be adjusted to forecast the damage for any experimental design.

To estimate the damage of a ruby projectile on N number of layers, we apply our model
using αf ¼ 4, cmax ¼ 0.24, af;min ¼ 1 μm, impacting velocity V ¼ 7 km∕s, impacting angle
θ ¼ 0 deg, and a variable κ that is dependent on the projectile diameter to the film thickness
(this is the red curve of κ for V ¼ 7 km∕s shown in Fig. 11). We set each layer to the same
thickness of 0.5 mil (12.7 μm) and use values representative of Kapton for their composition.
In this analysis, we consider a setup of four consecutive layers.

We estimate the damage for four initial projectile diameter sizes: 100 μm (2.07 × 10−6 g),
200 μm (1.65 × 10−5 g), 1000 μm (2.07 × 10−3 g), and 2000 μm (1.65 × 10−2 g); these sizes
are reflective of the largest sizes of the micrometeoroid population that could penetrate the most
layers [see Eq. (4) and (19)]. We utilize Eqs. (23) and (26) to calculate the expected fragmen-
tation and corresponding damage area upon each membrane. Figure 17 shows an example for a

Fig. 17 Predictions for a 200-μm diameter ruby impacting four layers of 0.5 mil Kapton at 7 km∕s.
(a) Number distributions for fragments capable of penetrating the membrane after each sub-
sequent shatter. The dashed line indicates the ballistic limit for the membrane. (b) Total damage
predicted on each subsequent membrane layer.
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200-μm incoming particle, the same as that used in our laboratory tests from Sec. 3. Figure 17(a)
shows the remaining distribution of the fragments after each layer impact. The number of frag-
ments sharply increases as the micrometeoroid is pulverized into smaller grains. However, as
these fragments become smaller and smaller, they do not possess enough momentum to exceed
the threshold set by the ballistic limit (dashed line in Fig. 17), resulting in mass loss after each
interface. The Fig. 17(b) shows the total damage incurred by each layer. As the fragments
become more numerous and smaller (larger κ), there are more punctures on each consecutive
membrane, corresponding to an increase in damage that is incurred. However, there is a turning
point at which enough mass is lost that the damage begins to decrease. For this example, the third
layer is the most perforated, and the particles thereafter are too small to penetrate the fourth layer.

Figure 18 shows the results for damage caused by a ruby projectile with a diameter of 100,
200, 1000, or 2000 μm. The model predicts that there will be no fragments capable of penetrating
the fourth membrane for initial projectile sizes of 100 and 200 μm. However, the larger particles
at 1000- and 2000-μm penetrate all four layers.

It is worth noting that, in this analysis, we assume that the fragments maintain the 7 km∕s
speed after each interface to determine the ballistic limit and corresponding κ. Because the frag-
ments lose energy upon each impact, the predicted damage areas are a bounding worst case
scenario. In addition, we set the minimum fragment radius to be 1 μm. The actual minimum
fragment radius may be smaller than this, and therefore mass could be lost at each interface
more quickly than that predicted here. More experiments are needed to establish how efficiently
micrometeoroid grains are removed after each obstruction.

4 Micrometeoroid Mitigation

In Sec. 5, we find that the total gas mass required to accommodate the inflated lenticular is
proportional to the mission lifetime squared. This requirement is heavily dependent on the
rate at which the lenticular accumulates holes in its surface due to micrometeoroid impacts.
Therefore, if we can reduce the hole accumulation rate, we can extend the lifetime of the inflatant
substantially. In this section, we investigate how many layers would be required to create a
micrometeoroid shield capable of mitigating incoming micrometeoroids at a location near 1 AU.
In addition, the same dynamics will occur for structures with multiple membranes, such as
sunshields, allowing the analysis to serve multiple functions.

To assess which micrometeoroids will be the most problematic, we employ the sky-averaged
micrometeoroid flux model by Grün et al.11 to describe the micrometeoroid environment at
1 AU. This model is valid for micrometeoroid masses 10−18 < mp < 1 g and characterizes the
integral micrometeoroid flux as a function of minimum threshold mass mp as

Fig. 18 Total damage area on each membrane layer (0.5 mil Kapton) is predicted for four ruby
particle sizes.
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EQ-TARGET;temp:intralink-;e039;116;735ΦðmpÞ ¼ 3.15576x107ðF1ðmpÞ þ F2ðmpÞ þ F3ðmpÞÞ; (39)

where

EQ-TARGET;temp:intralink-;e040;116;700F1ðmpÞ ¼ ð2.2x103m0.306
p þ 15Þ−4.38; (40)

EQ-TARGET;temp:intralink-;e041;116;655F2ðmpÞ ¼ 1.3x10−9ðmp þ 1011m2
p þ 1027m4

pÞ−0.36; (41)

EQ-TARGET;temp:intralink-;e042;116;632F3ðmpÞ ¼ 1.3x10−16ðmp þ 106m2
pÞ−0.85: (42)

Figure 19 shows the micrometeoroid flux near 1 AU. About 90% of micrometeoroids near
1 AU will impact with speeds of 35 km∕s or less.7 At a speed of 35 km∕s, a large portion of the
micrometeoroid flux (mp < 10−12, red region in Fig. 19) will not have enough momentum to
penetrate a 0.5 mil Kapton membrane. Hence, a significant portion of the micrometeoroid
population is mitigated due to their relative speeds alone. The remaining population presents
a hazard to the inflatable lenticular. There is ∼10 orders of magnitude difference in flux between
particles at the ballistic limit and the maximum 1 g size considered, with a rapid drop in flux for
micrometeoroids larger than 10−8 g.

Although in Sec. 3.5 we found that the total damage area on each successive membrane
quickly scales with the original mass of the incoming micrometeoroid (Fig. 18), impacts due
to large-sized micrometeoroids occur much less frequently. For example, Fig. 19 indicates that
micrometeoroids greater than 10−5 g occur at a rate of <1 per year perm2. Hence, there is a trade-
off between size and frequency that must be considered to determine how quickly a microme-
teoroid shield will incur damage.

We utilize the information gathered from our laboratory tests and apply it to the real-world
space environment. The interaction is modeled for the case of micrometeoroids impacting a
lenticular membrane protected by sacrificial shield layers that are all composed of Kapton sheets,
each with the same thickness. The parameter values for the fragmentation obtained in Sec. 3.4
are used to extrapolate results for velocities reflective of micrometeoroids. We assume that a
silicate micrometeoroid (ρ ¼ 2.5 g∕cm311) fragments in the same manner as that observed for
the ruby test particles, with αf ¼ 4, cmax ¼ 0.24, and af;min ¼ 1 μm. We implement the β param-
eter observed for Kapton in Sec. 3.3 and set β1 ¼ 13.3 and β2 ¼ 0.55.

The total damage is estimated for three cases of membrane thickness: 0.5 mil (12.7 μm),
1 mil (25.4 μm), and 2 mil (50.8 μm). Analysis is performed for an incidence angle of
θ ¼ 0, a velocity reflective of micrometeoroids near 1 AU of V ¼ 35 km∕s,7 and particle masses
of 10−12 to 1 g. The lower bound of this mass limit corresponds to the ballistic limit for the

Fig. 19 Grün et al.11 model for the micrometeoroid flux near 1 AU. Micrometeoroids less than
10−12 g (shaded gray region) with impact speeds of ≤35 km∕s will not penetrate a 0.5 mil
(or thicker) Kapton film.
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0.5 mil thickness case (the other cases require a minimum mass larger than this to penetrate). We
use Eqs. (1) and (4) to determine the κ values for all dp∕f ratios, as shown in Fig. 20. Fragments
are assumed to maintain the same speed as the original impactor. Equation (26) is then used to
determine the resulting damage on each wall. Figure 21 shows the damage area caused on suc-
cessive 0.5 mil layers for an incoming micrometeoroid of mass mp. The increasing drop-off in
the damage distribution depicts the survivability of the fragments and demonstrates the minimum
micrometeoroid mass needed to reach a layer N. For example, micrometeoroids <10−8 g are
successfully eliminated after the second layer. The figure also shows the substantial damage
that the fragments from a very large (∼1 g) micrometeoroid can cause to each layer.

To determine the damage rate per year for a given mass, we use Eq. (39) to calculate the
differential fluxes for each mass and multiply this by the damage per particle. Figure 22 shows
the damage that would be caused per year for a micrometeoroid at a given mass for the 0.5 mil
case. The plot indicates that micrometeoroids between the range of 10−8 to 10−4 g will be the
most problematic because they have a balance between occurrence and damage caused.

The damage rates per particle size shown in Fig. 22 are integrated over to determine the total
damage rate per year that would be experienced by each membrane. This corresponds to the
integral term in Eq. (20). Figure 23 shows the results for film thicknesses of 0.5, 1, and 2 mil.

Fig. 20 Variation of κ for a silicate micrometeoroid impactor on a 0.5 mil Kapton film. κ varies with
both the ratio of the projectile diameter (dp) to the film thickness (f ) and the velocity of the impactor.

Fig. 21 Total damage due to fragments on each consecutive (0.5 mil) membrane based on the
mass of the original micrometeoroid impactor. Mass is lost after each interface due to the inability
of the smallest fragments to penetrate the membrane.
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The fourth and fifth layers of the micrometeoroid shield sustain the most damage. The micro-
meteoroid fragments are successfully eliminated after the sixth layer for a film thickness of 2 mil
and after the seventh layer for film thicknesses of 0.5 and 1 mil. Therefore, adequately protecting
against micrometeoroids will require several layers of Kapton sheets. However, it is worth noting
that, in this analysis, the authors have assumed that the fragments maintain the impactor’s origi-
nal speed as a worst-case scenario to be conservative for the starting point of an initial shield
design. In practice, a micrometeoroid shield may not require as many layers as that indicated
by Fig. 23, but additional hypervelocity tests impacting multiple Kapton layers will need to be
performed to determine what the appropriate number of layers would need to be to effectively
protect an inflatable reflector.

It is worth noting that Fig. 23 can also be used to determine the damage to an unshielded
lenticular: layers 1 and 2 can be thought of as the entrance and exit membranes, respectively. The
authors would like to highlight the effect of a thicker membrane in the case of an unshielded
lenticular: a thicker membrane has the opposite effect desired and actually increases the total
damage areas Aent and Aexit because κ is amplified at these dp∕f ratios for the incoming micro-
meteoroid distribution. The integral term in Eq. (20) is estimated using values from Fig. 23 for

Fig. 22 Grun flux model at the 1 AU location and the damage per micrometeoroid calculated in
Fig. 21 are used to estimate the damage rate on each 0.5 mil membrane for a given impacting
micrometeoroid size.

Fig. 23 Damage rate per micrometeoroid mass in Fig. 22 is integrated across all micrometeoroid
masses to determine the total damage per year per m2.
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the 0.5 mil case, which results in a rate of 1.3 × 10−6 cm2

m2yr
near the 1 AU location. This rate is then

plugged into Eq. (20) to determine the total hole area with time and subsequently to estimate the
gas required to complete the mission (covered in the next section).

5 Mass Loss from Punctures and Permeation

The efficacy of the inflatable structure to operate as a primary reflector is rooted in the ability
to maintain a static shape through constant pressure. This can be accomplished through a
pressure maintenance system that will apply corrections to account for any changes in the
number of gas molecules or temperature. We expect drops in pressure to occur as the gas
escapes through tiny punctures caused by micrometeoroids, which will require the pressure
maintenance system to replenish the gas. To derive a function to describe the flow rate out
of the lenticular, we need to determine which regime describes the flow. In addition, we also
consider the possibility of gas escaping through permeation. We use these descriptions as our
basis for determining the total gas required to maintain the reflector over the course of the
mission lifetime.

At a typical operating temperature and pressure for an inflatable optic of 300 K and 3.5 Pa,
the mean free path for a gas will be on the order of 4 mm. Using a micrometeoroid speed
of 35 km∕s and computing the corresponding κ for an impact on 0.5 mil Kapton (Fig. 20),
we find that the mean free path is considerably larger than the hole diameters caused by micro-
meteoroids for particle masses ≤10−4 g. Micrometeoroids greater than this mass have a low
occurrence rate; therefore, the gas flow caused by the majority of punctures can be described
by effusion.

The effusion regime describes the flow rate Qeff out of a small hole area AH [defined in
Eq. (20)] as12

EQ-TARGET;temp:intralink-;e043;116;423Qeff ¼ PAH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2πmmoleckBT

s
; (43)

where P is the gas pressure, mmolec is the mass per molecule, kB is the Boltzmann constant,
and T is the temperature of the gas. To get the rate of mass lost, _m ¼ dm

dt
, Qeff is multiplied

by the mass per molecule, mmolec

EQ-TARGET;temp:intralink-;e044;116;334 _m ¼ Qeffmmolec ¼ −PAH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

2πNAkBT

s
; (44)

whereM is the molar mass, NA is Avogadro’s number, andmmolec ¼ M
NA
. Note the dependence of

Eq. (44) on temperature: in the format in which we wrote the equation, the mass loss rate is
inversely proportional to the temperature. This means that gas escapes more slowly for hotter
systems, and faster for colder systems, which initially seems counterintuitive. However, if the
system maintains a constant pressure and volume, which will be imposed for an inflatable sys-
tem, then the temperature increases are accompanied by a decrease in the number of molecules in
the balloon, which leads to less collisions, and vice versa.

As part of the mission design, all terms in Eq. (44) remain constant, with the exception of the
hole area and gas temperature. The gas temperature will have a limited range due to the sun
illumination angles allowed by the mission design, and the hole area AH will continually increase
with time. Recall that the micrometeoroid hole accumulation [Eq. (20)] is proportional to the
diameter of the reflector. Consequently, larger diameter designs will have significantly shorter
lifetimes for the same allocated gas budget compared with their smaller diameter counterparts
because they lose gas more efficiently. This results in a trade-off between aperture size and
mission lifetime.

Now that we have defined the function for gas escape and the terms that it contains, we can
quantify the total gas needed over a mission lifetime, Z. Substituting the equation for the hole
accumulation rate AH [Eq. (20), recall that this is described by the initial holes due to the
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construction seams plus additional holes due to micrometeoroid impacts], into Eq. (44) and
substituting in the gas constant, R ¼ NAkB, we rewrite the time rate of mass loss as

EQ-TARGET;temp:intralink-;e045;116;711

dm
dt

¼ −AseamsP

ffiffiffiffiffiffiffiffiffiffiffiffi
M

2πRT

r
− ARP

ffiffiffiffiffiffiffiffiffiffiffiffi
M

2πRT

r
t
Z

mp;max

mp;min

ΦðmpÞAimpactdmp: (45)

As complicated as Eq. (45) looks, it is very simple, namely,

EQ-TARGET;temp:intralink-;e046;116;650

dm
dt

¼ −ðytþ jÞ; (46)

where y is given as

EQ-TARGET;temp:intralink-;e047;116;597y ¼ ARP

ffiffiffiffiffiffiffiffiffiffiffiffi
M

2πRT

r Z
mp;max

mp;min

ΦðmpÞAimpactdmp; (47)

and j is

EQ-TARGET;temp:intralink-;e048;116;536j ¼ AseamsP

ffiffiffiffiffiffiffiffiffiffiffiffi
M

2πRT

r
; (48)

with a bounding lower value used for T. In Eqs. (47) and (48), all of the terms are set by the
mission design and are therefore known, except for the integral term in Eq. (47), which can now
be approximated using our predictive model. The authors would like to highlight the implica-
tions of the dependence of dm∕dt on yt in Eq. (46): because the number of holes increases
linearly with time as the reflector continues to be bombarded by micrometeoroids, the resource
cost to observe a target for a specified integration time becomes more and more expensive in
terms of the inflatant mass as time goes on. Therefore, missions with architectures that include an
intermittent inflation strategy to conserve resources and extend the overall lifetime of the mission
should maximize targets with long integration times early in the mission while the mass required
for replenishment is low.

The total gas mass needed for the mission is the mass needed to replace the total mass lost,
given as

EQ-TARGET;temp:intralink-;e049;116;347mG ¼
Z

Z

0

ðytþ jÞdt; (49)

which trivially integrates to

EQ-TARGET;temp:intralink-;e050;116;291mG ¼ y
2
Z2 þ jZ: (50)

As Eq. (50) clearly shows, the inflatant mass required is proportional to the square of the mission
length, Z2. The expression that we found is valid over long time scales. However, on short time
scales (∼1 h), there will be small deviations in the pressure (but still within the pressure tolerance
of the inflatable) between corrections applied by the pressure correction system. For more infor-
mation on the design of these systems, see Arenberg et al.1.

As an example, let us calculate the gas lost due to the micrometeoroid environment for the
astrophysics mission concept OASIS.3 OASIS is a one-year mission that includes a 14 m diam-
eter inflatable reflector located at the L1 Lagrange point. The lenticular is filled with neon gas
at a pressure of 3.5 Pa, with typical gas temperatures of ∼300 K. In this thought experiment,
we focus on the gas lost solely due to micrometeoroid punctures, so we set j ¼ 0 in Eq. (50).
In Sec. 4, we found that we can expect a total damage rate due to the full spectrum of micro-

meteoroids in this region to be 1.3 × 10−6 cm2

m2 yr
[this is the integral term in Eq. (47)]. Plugging

these values into Eqs. (47) and (50) gives mGð1 yrÞ ¼ 1.5 × 10−3 kg. Note that the actual gas
replenishment may be significantly larger than this once the seams term is included. The authors
would like to remind the readers that this estimate is based on the κ extrapolation using the
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observed β from the experiments; more hypervelocity impact tests are needed to refine the
β parameter.

In addition to leaks caused by micrometeoroid penetrations, permeation of the pressurant
gas through the reflector membrane is a second mechanism for gas loss that must be considered.
The permeability of gasses through polymeric material can vary widely as a function of the
permeant gas species, the membrane material, and the temperature. The permeation rate is given
by Darcy’s Law as

EQ-TARGET;temp:intralink-;e051;116;651Qpermeation ¼ K
AR

f
ΔP; (51)

where Qpermeation is the number flow rate, K is the permeability, AR is the surface area of the
reflector, f is the membrane thickness, and ΔP is the pressure differential of the permeant gas
across the membrane (here simply the gas pressure within the reflector). The temperature
dependence of the permeability is given as

EQ-TARGET;temp:intralink-;e052;116;559K ∝ exp

�
−

EK

kBT

�
; (52)

where EK is the energy of permeation. The mass loss from the gas permeating through the reflec-
tor material over an elapsed time t is then found as

EQ-TARGET;temp:intralink-;e053;116;490mpermeationðtÞ ¼ ρgQt; (53)

where ρg is the mass density of the gas, which is solved using the ideal gas law as

EQ-TARGET;temp:intralink-;e054;116;446ρg ¼
PM
RT

; (54)

with M being the molar mass and R being the gas constant. Substituting this into Eq. (53)
we solve for the total mass lost over the mission lifetime Z as

EQ-TARGET;temp:intralink-;e055;116;380mpermeationðZÞ ¼
PM
RT

QZ: (55)

Comparing Eqs. (50) and (55), we can see that the gas loss due to holes is proportional to
Z2, whereas loss due to permeation is linearly dependent on Z.

To understand which loss mechanism will dominate, let us again examine the case for

OASIS. Schowalter et al.13 found K ¼ 3.1 × 10−11 cm3 at STP mm
storrcm2 for neon. Plugging in the relevant

numbers gives Qpermeation ¼ 2 × 10−10 m3∕s. This results in a mpermeationð1 yrÞ ¼ 2 × 10−7 kg,
four orders of magnitude smaller than the micrometeoroid effect. Therefore, the dominant source
of gas loss will be through punctures and seams.

6 Summary and Future Work

Inflatable reflectors present a unique opportunity to enable large aperture telescopes in space.
However, the lifetime of their functionality will depend on the system’s ability to maintain a
constant shape by maintaining the pressure within the structure. In this paper, we have shown
how gas loss due to micrometeoroid punctures will be the dominant loss mechanism of this
life-limiting resource. We have also presented a theoretical formulation for predicting the hole
damage due to a distribution of impacting fragments to better enable estimations of this gas
loss rate.

Hypervelocity tests using a ruby impactor on kapton sheets indicated that a micrometeoroid
will fragment with an αf ¼ 4 and a cmax ¼ 0.24. We used these empirical values to create a
predictive model for micrometeoroid impacts on a polyimide film. Using this model, we esti-
mated that a micrometeoroid shield consisting of 6-7 layers (depending on the thickness of the
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polyimide sheets) would be needed to properly mitigate the micrometeoroid environment at
the 1 AU location and extend the lifetime of the inflatable optic.

More tests are needed to determine how efficiently the micrometeoroids are eliminated at
each membrane barrier, refine the β parameter variation with velocity, investigate fragment
elongation, and determine the effects of stand-off distance between the membranes. We have
presented a prediction for future tests that incorporate multiple membranes to replicate the
efficacy of a micrometeoroid shield. Comparisons of those tests to predictions can help refine
the current model.
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