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Abstract. We describe a wide-field optical tomography technique, which allows the measurement-guided opti-
mization of illumination patterns for enhanced reconstruction performances. The iterative optimization of the exci-
tation pattern aims at reducing the dynamic range in photons transmitted through biological tissue. It increases the
number of measurements collected with high photon counts resulting in a dataset with improved tomographic
information. Herein, this imaging technique is applied to time-resolved fluorescence molecular tomography for
preclinical studies. First, the merit of this approach is tested by in silico studies in a synthetic small animal
model for typical illumination patterns. Second, the applicability of this approach in tomographic imaging is vali-
dated in vitro using a small animal phantom with two fluorescent capillaries occluded by a highly absorbing inclu-
sion. The simulation study demonstrates an improvement of signal transmitted (∼2 orders of magnitude) through the
central portion of the small animal model for all patterns considered. A corresponding improvement in the signal at
the emission wavelength by 1.6 orders of magnitude demonstrates the applicability of this technique for fluores-
cence molecular tomography. The successful discrimination and localization (∼1 mm error) of the two objects with
higher resolution using the optimized patterns compared with nonoptimized illumination establishes the improve-
ment in reconstruction performance when using this technique. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)

[DOI: 10.1117/1.JBO.18.3.036006]

Keywords: fluorescence tomography; animal models and imaging; image acquisition; time-resolved imaging; wide-field optical
tomography.

Paper 12743R received Nov. 17, 2012; revised manuscript received Feb. 2, 2013; accepted for publication Feb. 5, 2013; published
online Mar. 8, 2013.

1 Introduction
Fluorescence molecular tomography (FMT) is a rapidly growing
imaging modality that allows the noninvasive assessment of the
molecular state of biological tissue in vivo.1 The advances in
transgenic animal models2 and functionalized fluorescence
molecular markers3 have established fluorescence imaging as
a pivotal modality in current preclinical biomedical research.
A recent development in FMT techniques has been the advent
of wide-field excitation schemes where point-sources of light
are replaced by spatially extended sources.4–6 Such tomographic
approaches are herein referred to as wide-field optical tomogra-
phy. Compared with point-source excitation schemes, they
allow the collection of dense spatial tomographic information
over large surfaces at fast acquisition speed.7 Moreover,
wide-field illumination patterns can be scaled to image a
large volume without additional acquisition time. This makes
wide-field molecular tomography a particularly attractive tech-
nique for fast whole-body small animal imaging.

The application of wide-field excitation schemes to small
animal whole-body FMT was first demonstrated using broad
bar-shaped patterns in transmittance mode.6 The use of bar pat-
terns (each illuminating half of the imaging volume) had two-
fold advantages. First, it provided a high signal in the recorded
measurements due to the injection of a large number of photons
into the medium. Second, the low spatial frequency content in
such patterns ensured maximal transmission of spatial infor-
mation through biological tissue.8 Concurrently, a wide-field
patterned excitation scheme for fluorescence imaging of thick

tissue using spatially sinusoidal patterns (similar to illumination
patterns used in structured illumination microscopy) was exper-
imentally demonstrated for optical sectioning studies of shallow
tissues in reflectance mode.9 The application of similar illumi-
nation patterns in a tomographic inverse problem has also been
demonstrated in phantoms for the reconstruction of absorptive
heterogeneities in thin slab geometry.10 Likewise, wavelet-based
illumination patterns have been used in FMT of phantoms with
faster reconstruction performance.4

Despite developments in wide-field patterned excitation
schemes, the highly scattering interaction of photons in the near-
infrared spectral range coupled with the reduction in sensitivity
due to wide-field illumination presents a highly ill-posed inverse
problem in FMT.7 An approach towards reducing the ill-
posedness in the inverse problem is to maximize the information
content in the recorded measurements. As in the case of classical
optical tomography techniques, this can be achieved by using
advanced measurement data types in the frequency-domain
(FD) or time-domain (TD). Alternatively, wide-field FMT pro-
vides an approach wherein the recorded tomographic informa-
tion can be maximized by optimizing the excitation pattern
employed. In this regard, a recently developed model-based
method employs a computational optimization procedure incor-
porating the a priori knowledge of animal geometry and distri-
bution of optical properties in vivo.11 However the intraspecies
variability of these parameters necessitates a subject-specific
optimization protocol limiting its application in experimental
settings due to the extreme computational burden.12 Moreover,
the model-based optimization of patterns does not ensure the
quality of measurements obtained in experimental settings

Address all correspondence to: Xavier Intes, Rensselaer Polytechnic Institute,
Department of Biomedical Engineering, 110 8th Street, Troy, New York
12180. Tel: (518) 276-6964; E-mail: intesx@rpi.edu 0091-3286/2013/$25.00 © 2013 SPIE

Journal of Biomedical Optics 036006-1 March 2013 • Vol. 18(3)

Journal of Biomedical Optics 18(3), 036006 (March 2013)

http://dx.doi.org/10.1117/1.JBO.18.3.036006
http://dx.doi.org/10.1117/1.JBO.18.3.036006
http://dx.doi.org/10.1117/1.JBO.18.3.036006
http://dx.doi.org/10.1117/1.JBO.18.3.036006
http://dx.doi.org/10.1117/1.JBO.18.3.036006
http://dx.doi.org/10.1117/1.JBO.18.3.036006


rendering such an approach impractical for experimental
implementation.

In this work, we present a new wide-field optical tomography
technique, referred to as adaptive wide-field tomography
(AWFT), wherein the excitation patterns are iteratively updated
during acquisition to maximize the information content in the
recorded measurements. Specifically, this approach aims at
increasing the number of tomographic projections acquired
with high signal by reducing the large dynamic range in photons
transmitted through the small animal body. This is achieved by
locally controlling the amount of light injected on the illumina-
tion surface of the sample. In whole-body small animal imaging,
the dynamic range of transmitted photons can be attributed to
two factors; namely, the animal specific geometry exhibiting
variations in thickness across the imaged volume (e.g., neck
to tail) and the wide range of optical properties of small animal
organs.12 The combined effects of these two factors result in sig-
nificant variations in signal attenuation across the small animal
body. The effects of these factors become even more critical for
free-space imaging applications in the absence of matching
liquid chambers.

The effects of the large dynamic range are particularly critical
in time-resolved imaging for two reasons. First, the saturation of
the detectors typically used for time-resolved imaging result in
nonlinearities in the measured signal, thus limiting the maxi-
mum number of photons which can be recorded. A similar limi-
tation on the maximum number of photons detected can also be
observed in CW-imaging strategies employing low-cost cameras
with smaller bit-depths. Second, the measurements acquired in
time-resolved imaging using photon-counting techniques are
susceptible to additive noise having a Poisson distribution
wherein the noise is dependent upon the photon counts.13 In
other words, measurements with high photon counts have a
higher signal-to-noise ratio (SNR), which drops significantly
with decreasing photon counts. As a result, measurements with
lower photon counts are typically not used during reconstruction
to avoid artifacts arising due to uncertainty in photon counts.
The combined effect of these two characteristics of time-
resolved techniques, when imaging subjects exhibiting large
dynamic range, is the reduced number of measurements with suf-
ficiently high photon counts for model based studies.13,14 The
optimization of transmitted signal therefore becomes critical in
time-resolved optical tomography to ensure the availability of
detector readings with sufficiently high SNR.

For instance, detectors positioned in the central part of the
animal or positioned below highly attenuating organs acquire
weak signals highly affected by noise,14 which can lead to
poorer reconstruction performances. Figure 1(b) shows an
example of the dynamic range observed in an animal model
upon illumination by a uniform pattern shown in Fig. 1(a).
Here the limited transmission of photons through the thoracic
cavity due to highly absorbing organs (e.g., heart and lungs)
combined with the high signal transmitted through the edge of
the model (due to reduced thickness) results in a high dynamic
range leading to a limited number of detectors around the edge
of the model with sufficient signal levels. In such scenarios,
AWFT iteratively adapts the spatial intensity distribution across
the excitation pattern, allowing one to locally increase the laser
power, thus increasing the number of detectors acquired with
high signal for each individual pattern across the animal body.
The iterative correction of the excitation pattern in AWFT
is implemented by a measurement-driven pattern optimization

scheme, which does not require a priori knowledge of model
geometry and optical properties. Therefore AWFT provides an
experimentally efficient in situ pattern optimization scheme in
wide-field optical tomography. It is also worth noting that the
optimization of the excitation pattern in AWFT based upon the
transmitted signal at the excitation wavelength produces a
corresponding improvement in the fluorescence signal mea-
surements (using identical patterns), which improves the
performance of wide-field FMT.

Herein, AWFT is applied to time-resolved FMT. The
improvement in the robustness of excitation and fluorescence
measurements in transmittance across the animal body when
using the time-gate datatypes is first demonstrated in silico using
an anatomically accurate synthetic mouse model. Subsequently,
the optimization procedure is validated in vitro in a solid phan-
tom mimicking a small animal model. The improvement in
tomographic information content upon optimization is quanti-
fied, and the resulting improvements in the reconstruction
performances are demonstrated.

2 Materials and Methods

2.1 System Description

Figure 2(a) shows the design of the time-resolved imaging sys-
tem used in this study and is described in detail in Ref. 15.
Briefly, the platform incorporates a tunable Ti-Sapphire laser
(Mai Tai HP, Spectra-Physics, USA) used in conjunction
with a closed-loop power control system (providing up to
1.8 W power at 800 nm). The time-resolved measurements
of the temporal point spread function (TPSF) are made using
a gated intensified charge coupled device (ICCD) camera
(Picostar HR, LaVision GmbH, Germany). The image intensi-
fier is operated at 300 ps gatewidth at a temporal resolution of
40 ps over a 4 ns time window with images recorded using a
12-bit CCD camera. It should be noted that the noise character-
istics of the ICCD are highly dependent on the voltage applied
across the image intensifier.15 In the studies described herein, the
intensifier was operated at 570 V. Thus the gated measurements
having less than 200 counts were excluded from reconstruction
to avoid noise artifacts.16 The fluorescence measurements are
acquired using discrete filter sets (Semrock, USA). A notewor-
thy feature of the system employed in this study is the incorpo-
ration of a Pico projector module (Optoma PK101) as the pattern

Fig. 1 (a) Small animal model imaged in wide-field optical tomography
using full-field pattern marked by the red boundary; (b) dynamic range
of measured photon counts for the pattern shown in (a) at the excitation
wavelength.
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generation mechanism. The in-built light source in the projector
is replaced by the output from the laser. The Pico projector
allows the easy implementation of grayscale patterns (via a
USB connection using PowerPoint presentation software) with
a compact light engine as opposed to the Discovery 1100 kit
implemented in the previous incarnation of the system.

The spatial and temporal characteristics of the system when
using the Pico projector were established using a grayscale
gradient pattern shown in Fig. 2(b). The objective of this inves-
tigation was to determine the range of gray levels that can be
accurately projected and detected by the system. Moreover,
the temporal characteristics of the instrument response function
(IRF) of the system when using the grayscale pattern were
evaluated (as the gray levels are generated on the digital micro-
mirror device using modulation frequencies in the kHz range) in
order to establish the range of gray levels that can be accurately
implemented in the optimization procedure without introducing

temporal errors during time-gated acquisition. The temporal
response of the pattern was therefore acquired for the grayscale
pattern and a uniform full-field pattern using a diffusing white
paper. The maximum intensities recorded for each pixel for the
gradient pattern were normalized by the corresponding intensity
values in the uniform pattern. This was done to mitigate error in
grayscale estimates due to nonuniform intensity distribution in
the projected pattern owing to the projector optics. The normal-
ized grayscale gradient pattern recorded by the camera is shown
in Fig. 2(c), and the profile across the center of the pattern
shown in Fig. 2(d) shows an accurate (<10% error) generation
of grayscale intensities for levels greater than 0.25. Figure 2(e)
to 2(f) compare the photon arrival times (t0) and the IRF width
(at half maximum) across the grayscale pattern and the uniform
pattern. It is worth noting that the generation of gray levels has a
negligible effect on the system IRF. The spatial variation in the
IRF characteristics are, however, nonnegligible for both patterns
and must be accounted for in the forward model while setting up
the inverse problem. Herein, the IRF recorded during pre-
experiment calibration is convolved with the time-resolved for-
ward model to accurately model the light propagation in this
system. Note that even though the Pico projector is a consumer-
grade product with low-quality optics; it allows one to imple-
ment a wide-field optical tomography at very low cost (<$200)
and can replace advantageously galvo-scanning based systems
even in the case of time-resolved studies.

2.2 Reconstruction Scheme

As stated previously, in this study we employ time-gates as the
datatype for reconstruction. Owing to the complex geometry
and wide range of optical properties encountered in small animal
models, we implemented a time-resolved Monte Carlo (MC)
based method to generate an accurate photon propagation for-
ward model. The use of an MC-based method further ensures
the accuracy of the model when using early time-gates as data-
types for solving the inverse problem.17 The MC model used in
this study has been described in detail in Ref. 16 and is dis-
cussed briefly below.

Consider a volume Ω ∈ R3, with photons incident over an
area A ∈ R2, then the time-resolved signal detected at the
point detector at rd is given by Eq. (1).

UFðrs; rd; tÞ ¼
Z

Ω

dr3Jfluoðrs; rd; r; tÞηðrÞ

ηðrÞ ¼ μxafðrÞϕ
μxaðrÞ

: (1)

Here rs is a point in A, ηðrÞ is the effective quantum yield for
a fluorophore with quantum yield (ϕ), Jfluoðrs; rd; r; tÞ is the
spatial and temporal sensitivity function with respect to ηðrÞ
for the time gate t and total absorption coefficient μxa at the exci-
tation wavelength with a contribution μxaf from the fluorophore.
The absorption coefficient of the fluorophore is linearly related
to the fluorophore concentration via the extinction coefficient.
However, the uncertainty in the values of quantum yield and
extinction coefficient of a fluorophore in vivo, which may
change due to variations in the microenvironment biochemical
properties, introduces uncertainties in the reconstruction of
the absolute fluorophore concentration biodistribution. In this
work, we therefore report relative effective quantum yield as
the quantitative reconstructed parameter. For a fluorophore in

Fig. 2 (a) Time-resolved wide-field optical tomography system; (b) gray-
scale gradient pattern; (c) pattern projected on the imaging stage. The
detected pattern was normalized to the full-field uniform pattern to
account for nonuniform intensity characteristics; (d) intensity profiles
comparing projected pattern with the ground-truth; (e) through (f) tem-
poral characteristics (IRF FWHM and t0) of grayscale patterns are invari-
ant to the gray level generated.
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the medium that has a mono-exponential decay with lifetime τ,
under the assumption of equal absorption and scattering coef-
ficients at the excitation and emission wavelengths, the fluores-
cence signals can be simulated by convolving the temporal
signals generated at the excitation wavelength by the exponen-
tial time decay of the fluorophore given by e−t∕τ. The Jacobians
for FMT, JfluoðtÞ can therefore be calculated using Eq. (2).

JfluoðtÞ ¼
Zt

0

dt 0Jexcðt 0ÞFðt − t 0Þ

Fðt 0Þ ¼
Zt 0

0

dt 0IRFðt 0 0Þe−ðt 0−t 0 0Þ∕τ:
(2)

JexcðtÞ is the time-gated weight function at the excitation
wavelength and IRFðtÞ is the experimentally recorded IRF. It
should be noted that the experimentally recorded patterns are
used to calculate JexcðtÞ ensuring that the spatial characteristics
of the system are accurately modeled by the MC model. The
forward model Jexc is computed in a massively parallel comput-
ing environment (Blue Gene, Center for Nanotechnology
Innovations, RPI) using 1024 nodes allowing the computation
of the time-gated Jacobian in less than 7 min for each pattern and
all detectors.

To cast the inverse problem, we employed a Born formu-
lation where the experimental time-domain emission measure-
ments are normalized by the continuous wave (CW) excitation
flux at the same position. This normalization efficiently miti-
gates the dependence of the detected fluorescent signal on the
optical properties of the examined tissue.18 Note also that this
formulation employs the CW excitation flux at the same
position to alleviate the unavoidable time errors associated
with drift and jitter in time-resolved studies. The time-
gated Jacobians are computed using the perturbative MC tech-
nique, which is the most computationally efficient when large
number of detectors are considered.19 The inverse problem is
solved using a least-squares solver, lsqr (MATLAB, Natick,
Massachusetts). The solver was stopped after 200 iterations
for all studies herein.

2.3 Optimization Algorithm

The iterative correction of excitation pattern in AWFT modifies
the spatial distribution of incident power by modulating the gray
levels in the pattern. The optimization procedure therefore
employs the measurements from the detectors spanning the
area of the pattern on the surface of the model. As a part of
pre-optimization calibration, the excitation pattern is measured
using a white diffusing paper, and its spatial characteristics are
determined. Next a transformation matrix mapping the image
used to define the full field pattern to the measured full field
is computed. This is done to account for spatial deformations
in the projected pattern due to the projector optics.

Consider the animal model shown in Fig. 3(a) where the
white border represents the excitation pattern. The optimization
of the patterns described here is based on time-resolved data,
and the process begins with the acquisition of temporal measure-
ments for each of the N patterns in the user-defined set with the
laser operating at power Powi (i ¼ 1; 2; 3: : : ) at the ith iteration.
As the dynamic range limits the maximum photons recorded
in each time-resolved curve, for each pattern Pn (n ¼ 1: : : N),

an excitation map (En) is constructed from the maximum mea-
sured counts (peak counts of the TPSF) at each detector. The
underlying principle of the optimization algorithm considers
each pixel in the pattern independently and corrects the gray-
scale level based on the excitation signal in transmittance.
Therefore, at each pixel at ðx; yÞ in the nth pattern at the ith
iteration the multiplicative update value α is computed and the
corresponding pixel is updated using the formula given in
Eq. (3). It should be noted that in Eq. (3), the calculation of
α includes the weighted photon counts within a neighborhood
of radius r, in order to incorporate the effect of diffusion on
transmitted photon counts.

α ¼ χP
K
k¼1

Enðxk;ykÞ×dkP
K
k¼1

dk

: (3)

In Eq. (3), χ is the maximum desired photon counts, ðxk; ykÞ
is the position of the kth neighbor within a radius r, dk is
Euclidean distance of the kth neighbor from ðx; yÞ, and K is
the total number of detectors included in the neighborhood.
The selection of detectors within distance r incorporates the
effect of photon diffusion when computing the update value

Fig. 3 (a) Optimization scheme; (b) algorithm flowchart for single
pattern optimization.
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for the pattern. Furthermore, we define β as the maximum power
amplification allowed when acquiring the TPSF. This ensures
that the algorithm does not exceed the maximum permissible
exposure limit of laser power during optimization. The iteration
is completed after each pixel in the pattern has been updated.
The update values obtained after this step for pattern Pn
(referred to as An) represent the relative change in laser
power required at each position on the pattern to achieve desired
excitation signal level. The experimental implementation of this
updated pattern is achieved by normalizing the pattern to 1 and
increasing the laser power in the subsequent step by a factor of
the maximum update value, Amax

n .
This process is repeated until Amax

n is less than or equal to 1
(indicating convergence with all detectors reaching χ counts).
Furthermore, we include a second stopping criterion to ensure
the termination of the optimization scheme when Amax

n con-
verges to a constant value greater than 1, wherein the iterations
are terminated when the maximum change in the new pattern
(kPiþ1

n − Pi
nk∞) is less than 10%. The above process is repeated

for all patterns in the base pattern set, and the final set of patterns
is referred to as the transmittance-optimized patterns. This
optimization procedure is outlined in Fig. 3(b).

2.4 Grayscale Limits During Pattern Optimization

As noted in the system description, the experimental imple-
mentation of the adaptive optimization of the patterns was
done using the Pico-projector system. The nonlinearity of
the projected gray levels as shown in Fig. 2(d) results in inac-
curate projection of gray levels below 0.25. In order to mitigate
the effect of this hardware characteristic, the optimization of
patterns was limited to grayscale values above 0.25 with all
pattern positions having values smaller than 0.25 remaining
unchanged during optimization. Furthermore, all patterns
obtained during the optimization process were acquired post-
hoc and used in the Monte Carlo simulations in order to ensure
the accuracy of the model during reconstruction. It should also
be noted that the in silico validation of the algorithm applied no
limits on the pattern.

2.5 Neighborhood Radius

As stated above, the radius of the neighborhood incorporates the
effects of diffusion when updating the gray level for a pixel on
the pattern. The ideal radius selection for each pixel would typ-
ically include the height of the model at the pixel and the local
optical properties, leading to subject dependent radius and thus
necessitating a priori knowledge of the anatomy. In this work,
we select the radius based on the distance of the edge of the
model from the pattern to ensure that all photons exiting the
model are accounted for in the optimization process. It should
be noted that a radius of 2.5 mm was selected for the in silico
studies and 4 mm for the experimental validation. Note that sim-
ulations with radii of 3 and 8 mm were also carried out leading
to identical convergence rate as reported here when using
2.5 mm (results not shown).

2.6 Batch Optimization of Patterns

The optimization procedure shown in Fig. 3(b) will result in
each pattern converging to the optimality condition at a different
rate based upon the region of excitation and will require differ-
ent power amplification. For instance, photons from a pattern

probing the thoracic cavity will be highly attenuated due to
highly absorbing and scattering organs (e.g., heart and lungs),
while the signal from another pattern in the same set probing the
abdominal area will encounter a thicker volume with low
absorbing tissue (e.g., stomach, intestines etc.). This leads to
variation in the signal attenuation profiles recorded on the sur-
face for each pattern and necessitates the individual optimization
of each pattern in the set.

In this implementation of the above algorithm, all patterns
were batch optimized to ensure experimental efficiency (acquis-
ition time). In other words, the temporal measurements for all
patterns in the set were acquired consecutively and followed by
the optimization of each pattern in the set. Specifically, the opti-
mization algorithm was implemented in two steps. First, the pat-
tern update value was unbounded (β ¼ ∞) during optimization
and the optimal patterns were computed. As stated previously,
each pattern will have been assigned different power amplifica-
tion for the next iteration. In the second step, the minimum
power amplification among all patterns in the set is put as
the upper bound on the value of α [β ¼ minðAmax

n Þ] where,
n ¼ 1; : : : ; N. This ensured that the laser power employed dur-
ing the acquisition step will not saturate the ICCD for any pat-
tern in the set. Moreover, the consistent source power across all
patterns allowed a rapid acquisition of the complete pattern set
with high experimental efficiency (typically less than 5 min for
the optimization of a 36 patterns set). It should be noted that this
algorithm can also be applied to CW and FD datatypes without
loss of generality.

2.7 In Silico Validation

The efficacy of the optimization algorithm for whole-body
imaging of small animals was validated using a synthetic mouse
model (Digimouse).20 Figure 4 shows the model employed,
where seven major organs in the animal torso were modeled
to simulate the propagation of photons in small animals. The
optical properties at 730 nm computed using values given in
Refs. 21 and 22 were assigned to each organ and have been
compiled in Table 1.

Furthermore, two 3 × 3 × 3 mm3 fluorophore inclusions
were positioned as shown in Fig. 4(a) to simulate the effect
of optical properties and/or geometry on the fluorescence signal
intensity. An area of illumination spanning the whole body (as
shown in Fig. 4) was selected as the base pattern, and the exci-
tation field was recorded at discrete detectors at 1 mm separation
in transmittance mode. Three different illumination patterns
were considered for evaluation. First, a uniform bar pattern,6

second a wavelet pattern (Battle-Lemarie, Scale 1),4 and last
a sinusoidal pattern (spatial frequency of 0.125 mm−1) as
shown in Fig. 4(b) to 4(d), respectively.9,10 It is worth noting
that the Monte Carlo simulations of time-resolved excitation
and fluorescence signals also exhibit the Poisson noise charac-
teristics of time-resolved imaging instrumentation. Thus no
noise was explicitly added to the simulated measurements.

The optimization scheme was employed to achieve χ ¼ 4000

counts at each detector, which is less than the maximum number
of photon counts that can be detected by the ICCD camera used
in the study (12-bits). After convergence, the fluorescence for-
ward model was computed for the uniform and optimized pat-
tern to determine the corresponding changes in fluorescence
signal intensity.16
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2.8 In Vitro Validation

The improvement in performance in tomographic reconstruction
was investigated using an agarose phantom mimicking a small
animal model. The baseline pattern set employed in this tomo-
graphic study are binary bar-shaped patterns described in Ref. 6.
The performance of this pattern set in a nonplanar geometry is
tested using a truncated hemi-cylindrical phantom shown in
Fig. 5 with an absorption coefficient of 0.1 cm−1 and reduced
scattering coefficient of 13 cm−1. Furthermore, a cylindrical
absorber with six times absorption (0.6 cm−1) simulating
absorbing organs in the small animal torso (e.g., liver) is placed
along the central axis of the phantom. The geometry of the phan-
tom coupled with the absorber results in a high dynamic range
across the surface in transmittance.

Two 10 mm long capillary tubes (1.5 mm inner diameter)
containing 14 pmol of Cardiogreen (Sigma Aldrich, MO) in
10 μL phosphate-buffered saline were placed at depths of 11
and 9 mm. Moreover, the deeper inclusion was placed below

the absorber simulating the occlusion of fluorescent markers
by absorbing organs in vivo.

The tomographic imaging session employed 36 bar patterns
(34 × 24 mm) described previously. The temporal measure-
ments at excitation wavelength (λex ¼ 780 nm) were acquired
at 40 ps interval spanning 2 ns (50 gates) using 300 ps gates
(MCPVoltage ¼ 570 V; integration time ¼ 25 ms). The mea-
surements at excitation wavelength for 36 patterns were
acquired in 3 min. The fluorescence measurements (at
λem ¼ 832 nm) were acquired for the optimized pattern set
(MCPVoltage ¼ 570 V; integration time ¼ 500 ms). The
acquisition of measurements spanning 3 ns (75 time-gates) was
completed in 18 min. The fluorescence measurements using the
uniform pattern set was also acquired for comparison of
reconstruction performance.

The tomographic reconstruction of the effective quantum
yield of the two inclusions in three-dimensional (3-D) was per-
formed using measurements at 231 point detectors uniformly
sampling the surface of the phantom at 2 mm intervals. The

Fig. 4 (a) Synthetic mouse model used for in silico validation. Three 3 × 3 × 3 mm3 fluorescent inclusions are shown in red. The profile marked in black
and the dotted line represents the region of excitation and the discrete detectors, respectively; (b) uniform bar illumination pattern; (c) Battle-Lemarie
wavelet pattern; (d) sinusoidal illumination pattern.

Table 1 Optical properties of major organs in a small animal model
at 730 nm.

Organ μa (cm−1 μ 0
s (cm−1

Heart 0.35 23.0

Lungs 0.25 30.0

Liver 0.90 6.0

Spleen 0.90 6.0

Stomach 0.05 13.0

Kidneys 0.20 20.0

Bladder 0.02 8.0

Bone 0.10 20.0

Muscle 0.30 10.0

Fig. 5 Tissue-mimicking phantom used for in vitro validation. The
uniform full-field pattern (recorded during the experiment) projected
on the phantom is shown on the xy-plane at z ¼ 0. The green tubes
represent the fluorophores contained in glass capillaries located in
the center of the phantom. The red tube shows the position of an
absorbing perturbation occluding the central fluorescent inclusion.
The black dotted lines represent the projection of the tubes on the
excitation field.
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time-gate datatype derived at each detector was defined by the
number of photons measured relative to the peak photon count
and was used to construct the time-gated measurement vector.
The effective quantum yield was reconstructed by solving the
inverse problem with measurements derived from multiple-
gates spanning the rising portion of the TPSF. Furthermore,
an x-ray CT image of the phantom was acquired following the
optical imaging protocol using small animal CT imaging system
(Scanco VivaCT40). The CT data was acquired at an isotropic
resolution of 0.038 mm. The images were subsequently
resampled to 1 mm isotropic resolution and segmented into
three regions—agarose, absorber, and fluorophore—using
Amira (VSG US, Burlington, Massachusetts). It should, how-
ever, be noted that beside the geometrical boundary information,
no a priori information on the location of the fluorescence inclu-
sion was enforced in the inverse problem. The 3-D image of the
volume (obtained by combining the three regions specified
above) was used to generate a voxel-based model geometry
with 1 mm voxels. The 3-D model was registered with the opti-
cal measurements using fiducial markers positioned outside the
phantom. The fully segmented model was subsequently used for
validation of the tomographic performance of the pattern opti-
mization scheme.

The dimensions of the 50% isovolume of the reconstructed
quantum yield and the position of the centroid of the recon-
structed inclusions are used as the resolution metrics to compare
the adaptive pattern optimization scheme with the uniform pat-
tern set.

3 Results

3.1 Transmittance Optimized Patterns

The optimization of photons transmitted through the synthetic
animal model using the full-field pattern shown in Fig. 4 was
completed in six iterations for the bar pattern, seven iterations
for the wavelet pattern, and eight iterations for the sinusoidal
pattern. Figure 6(a) and 6(b) shows the change in the two stop-
ping criterion parameters over the optimization process and for
all patterns the process was terminated due to less than 10%
change in pattern characteristics. Figure 7(a), 7(c), and 7(e)
shows the iterative optimization in the pattern spatial intensity
distribution and the corresponding change in transmitted signal
intensity on the surface for each of the three patterns. It should
be noted that the gray levels on the pattern are adjusted to match
the geometry and organ distribution in the animal model with
the maximum intensity retained in the thickest portion of the
body comprising of the highly absorbing organs like the liver
and spleen.

Figure 7(b), 7(d), and 7(f) shows the transmitted excitation
field measured on the surface of the animal model. The
excitation measurements obtained using the baseline patterns
indicate a dynamic range of ∼4 orders of magnitude across
the area of illumination due to high fluence near the edge
of the model and negligible transmission through the central
portion. Following the characteristics of the optimized
patterns described above, the optimization process leads to
∼2 orders of magnitude improvement in transmitted light
for the central portion of the torso reducing the effective
dynamic range in the excitation field to less than 2 orders
of magnitude.

3.2 Fluorescence Signal Optimization

In order to test the hypothesis that the optimization of transmit-
ted excitation field improves the fluorescence measurements, we
considered the maximum photon fluence at each inclusion
shown in Fig. 4. Figure 8 shows the relative change in the num-
ber of photons generated by each of the two inclusions during
the optimization process. It is worth noting that the adaptive illu-
mination intensity resulted in more than 600% increase in signal
generated at inclusion 1 while retaining the signal level from
inclusion 2 at the original level. A comparison of the fluores-
cence signal measured on the surface at an early time gate
(10% of peak) and the maximum gate in Fig. 9(a) to 9(f)
demonstrates the effect of nonoptimized measurements in
fluorescence tomography with significantly lower signal
from deeply embedded fluorescent sources like inclusion 1.
Additionally, the optimization process resulted in an improve-
ment in signal from inclusion 1 at both gates suggesting the
advantages of this approach for fluorescence tomography.
Specifically, the early gate measurements were improved with
more than 1.5 order of magnitude increase in signal from inclu-
sion 1 compared with ∼1 order of magnitude increase at the
maximum gate. Moreover, the signal from inclusion 2 is not
modified for both gates considered and retains the high signal

Fig. 6 Stopping criteria for in silico validation of optimization scheme:
(a) value of Amax

n (pattern update parameter) for each iteration;
(b) change in pattern for each step during optimization. The dotted
lines in (a) and (b) indicate the target value of respective parameter
for stopping condition.
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level obtained using the original patterns. The effect of signal
improvement for tomographic imaging was quantified by meas-
uring the number of detectors which had a useful signal level
(above threshold of 200 counts) at both gates [c.f. Fig. 9(g)
to 9(h)]. For all patterns considered, the optimization process
resulted in ∼60% increase in number of detectors at the early
gate and ∼75% increase for the maximum gate.

An important characteristic of the measurements shown in
Fig. 7 is the near equivalence of the signal obtained using all
three types of patterns considered. Specifically, the improve-
ment in signal resulting from pattern optimization (and the cor-
responding increase in useful detector readings) is the same for

all patterns indicating the general applicability of this approach
for fluorescence imaging. It suggests also that, due to the highly
diffusing and heterogeneous nature of the preclinical models,
different patterns will have similar performances when
employed in transmittance.

3.3 Tomographic Reconstruction Using Optimized
Patterns

The experimental validation of AWFT using the small animal
phantom was performed by batch optimization of the 36 patterns
in the baseline set. The iterative scheme was terminated in 4

Fig. 7 Pattern optimization: (a) optimization of uniform bar pattern over five iterations; (b) excitation signal (log scale) for each step of optimization
shown in (a); (c) optimization of wavelet pattern over six iterations; (d) excitation signal (log scale) for each step of optimization shown in (c); (e) opti-
mization of sinusoidal pattern over seven iterations; (f) excitation signal (log scale) for each step of optimization shown in (e). All excitation signal maps
have been normalized to 4000 counts to account for increase in laser power during practical implementation.
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iterations with the power amplification factor for pattern 31
reaching a value of 0.65 as shown in Fig. 10(a) while the change
in pattern characteristics [Fig. 10(b)] was significantly higher
than stopping condition, indicating a successful convergence
of the optimization scheme.

All patterns were simultaneously optimized in ∼3 min
(including ∼1 min of pattern setup time per iteration). The opti-
mization procedure of the entire pattern set (4 iterations), includ-
ing the acquisition of temporal measurements was completed in
24 min (note that the full time-gated data was acquired for each
pattern at every iteration). Figure 11(a) and 11(b) compare the
structure of a baseline half-field pattern and the corresponding
transmittance-optimized grayscale patterns. It can be inferred
that the optimization procedure removed the sections of pattern
beneath the region with smaller thickness to correct for the
dynamic range while retaining the high intensity across the cen-
tral axis to compensate for the absorber. Figure 11(c) and 11(d)
compare the excitation field acquired for the original and opti-
mized patterns for the maximum gate. As expected, the original
pattern results in a higher signal towards the edges of
the phantom [c.f. Fig. 11(c)] demonstrating the role of model
geometry as a source of high dynamic range. Conversely, the
transmittance optimized field provides a high signal across
the area of the pattern [c.f. Fig. 11(d)] with maximum of
4000 photons across the area of the pattern representing the
successful optimization of the transmitted signal.

A similar comparison of the fluorescence field shown in
Fig. 11(e) to 11(j) demonstrates that the optimization of the exci-
tation field improves the fluorescence signal from inclusion 1.
This demonstrates an improved contrast and higher signal over a
larger number of detectors when using AWFT. The results of
optimization of all the patterns used in the study are shown
in Video 1.

3.4 Improved Information Content

The impact of the improvement in the overall signal level dem-
onstrated in the measurements on the quality of the tomographic
information recorded is quantified using a two-step process.
First the percentage increase in number of source-detector
pairs at different gates along the temporal measurement which
are above the noise threshold level is used to quantify an
increase in the number of usable measurements The noise
threshold for this system was empirically determined to be
200 photon counts. Figure 12(a) and 12(b) shows ∼200%
increase in the number of s-d pairs for excitation signal and
∼80% in the fluorescence signal at the early gates, with a
smaller yet significant improvement for the maximum gate
(∼25% for fluorescence field, 15% for excitation field). The
improvement in the time-gated signal at the early gates and
the late gates establishes the advantages of this imaging tech-
nique for high-resolution optical reconstruction23–25 and lifetime
multiplexing applications, respectively.14 It is also worth noting
that the transmittance optimized patterns result in a higher
increase for the late gates when compared with the early gates
as the optimization procedure corrects for the effects of the
highly absorbing local perturbation in the experimental phantom
which reduces signal at the late gates.

Next, the analysis of tomographic information content in the
measurements is extended to the quantification of increase in non-
redundant information using a model based analysis. Following
the work by Freiberger et al., we define the orthogonality of the
different rows in the fluorescence weight matrices (obtained by

Fig. 8 Relative change in the number of photons generated by
inclusion 1 (solid line) and inclusion 2 (dotted line) for the three
patterns.

Fig. 9 Improvement in fluorescence signal at the early gate (10% of
peak) and maximum gate measured on the surface after excitation opti-
mization for (a) to (b) uniform bar pattern; (c) to (d) wavelet pattern; and
(e) to (f) sinusoidal pattern. (g) to (h) Number of detectors on the surface
having signal higher than threshold of 200 photons for the early gate
and maximum gate, respectively.
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discretizing the fluorescence sensitivity function Jfluo) as a mea-
sure of the information content.26

For a set of N patterns, let M be the total number of mea-
surements (s-d pairs) above the set threshold. Consider a set
of measurements Sn for the nth pattern. Then the nonredundant
information hn for the nth pattern is defined as the average
orthogonality of each measurement in Sn with respect to the
remaining measurements (M \ Sn). hn is computed using
Eq. (4):

hi ¼ 1 −
1

jM \ SijjSij
X

n∈M\Si

X
m∈Si

ðjm; jnÞ2
kjmk2kjnk2

: (4)

Here, jm and jn are the mth and nth rows from Jfluo. The
average nonredundant information content for the entire pattern
set is therefore given by

H ¼ 1

N

XN
i¼1

hi: (5)

The average information content value of 1 represents maxi-
mal nonredundancy in the measurement suggesting maximum
information content in the measurements. Figure 12(c) shows
the comparison of average nonredundant information content
for the uniform and the transmittance-optimized pattern set at
individual time-gates along the TPSF.

It is observed that the optimization of transmittance excita-
tion field leads to ∼6% increase in the information content at the
early gates and ∼16% increase for gates along the decaying

section of the TPSF. This closely follows the trend in increase
in number of s-d pairs observed in Fig. 12(a).

3.5 Reconstruction Results

In order to determine the impact of increased information con-
tent on the quality of reconstructions in the image space, the
effective quantum yield was reconstructed using three time
gates spanning the rising portion of the TPSF (early gates at
20%, 50%, and the maximum gate). These gates were selected
on the rising part of the TPSF as it correlates to resolution
improvement in the reconstruction, whereas late gates are criti-
cal in lifetime multiplexed studies, which we do not consider
herein.16,27 Figure 13(a) and 13(b) shows the 50% iso-volumes
of the effective quantum yield obtained by solving the inverse
problem by least-squares minimization. The lower number of
source-detector pairs available when using the uniform pattern
set (more than 36% reduction) leads to reduced tomographic
information in the measurements as discussed previously.
This results in poor discrimination of the two objects in the
reconstruction and their incorrect localization [c.f. Fig. 13(a)].
Specifically, both objects are reconstructed 5 mm above the
expected position along the z-axis. Moreover, the lower resolu-
tion of the reconstructed volume is evidenced by the connected
reconstructed objects. On the contrary, the reconstructed volume
obtained using the transmittance optimized patterns allows us to
discriminate and accurately localize the two inclusions as shown
in Fig. 13(b). The resolution metrics comparing the recon-
structed 50% isovolumes with the ground-truth values obtained
from the x-ray CTare compiled in Table 2. It is worth noting that
the two inclusions are accurately localized with ∼1 mm error.

Fig. 10 Stopping criterion parameters for each of the 36 patterns over four iterations: (a) pattern update parameter Amax
n ; (b) change in patterns over

iterations. The black arrows denote the pattern with lowest value of Amax
n for the respective iteration. This value is used as β in the second step of

the batch optimization. The optimization process was stopped when value of Amax
n for pattern 31 reached the target condition of Amax

n < 1.
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Also, the separation between the two objects was found to be
9 mm (expected—8.3 mm) resulting in less than 1 mm locali-
zation error. Furthermore, the reconstructed dimension of the
inclusions had ∼1 and ∼2 mm error along the x-axis and
y-axis, respectively. The resolution of inclusion 2 along the
z-axis also had less than 2 mm error; however, inclusion 1
had significantly lower z-resolution due to the limited projection
angles in the planar imaging configuration. Note that the imag-
ing volume was discretized with 1 mm3 voxels, and hence the

reported errors are on the same scale as the smallest element
of volume (voxel).

4 Discussion
The optimization of excitation patterns for more accurate
reconstruction in wide-field optical tomography of small ani-
mals is an emerging area of investigation owing to the experi-
mental advantages provided by wide-field imaging techniques.
Conversely to model-based optimization techniques, in this

Fig. 11 In vitro demonstration of uniform bar pattern optimization: (a) baseline bar pattern illuminating the phantom shown in Fig. 5; (b) excitation
optimized pattern after four iterations. The blue profile represents the detector area shown in the measurements in (c) to (j), the orange outline identifies
the full-field of illumination, and the green lines are projections of the fluorescent inclusions; (c) to (d) comparison of excitation signal at maximum gate
using the baseline and optimized pattern; (e) to (f) comparison of fluorescence signal at an early gate (10% of maximum) using the baseline and
optimized pattern; (g) to (h) comparison of fluorescence signal for the early gate at 50% of maximum using the baseline and optimized pattern;
(i) to (j) comparison of fluorescence signal at maximum gate using the baseline and optimized pattern. All measurements shown here represent
raw photon counts with a threshold at 200 counts. The measurements for the remaining 35 patterns are shown in Video 1 (MOV, 8.18 MB)
[URL: http://dx.doi.org/10.1117/1.JBO.18.3.036006.1].
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work we investigated a novel measurement-guided pattern opti-
mization technique with the objective of reducing the dynamic
range in intensity of photons transmitted through the small ani-
mal model. The iterative pattern correction scheme described in
this work was based upon the characteristics of the transmitted
excitation field allowing a fast optimization of excitation pat-
terns during acquisition. Furthermore, the associated improve-
ment in fluorescence signal by proxy upon the optimization
of the transmitted field established AWFT as a useful technique
in FMT. It is worth noting that the acquisition-time optimization
of patterns in AWFT introduced minimal time cost to the

experimental protocol. Hence it can be readily implemented
for in vivo studies to acquire optimal data sets by taking into
account at each imaging session the geometry of the specimen
imaged (animal and posture specific) and its optical parameter
characteristics (e.g., spatial distribution of organs, which is
dependent on posture, functional state, disease progression).

The in silico validation of this approach in a synthetic animal
model demonstrated an increase in transmitted photon intensity
by ∼2.0 orders of magnitude for all patterns considered.
Furthermore, the adaptive correction of excitation pattern was
simultaneously able to improve the signal from both fluorescent
inclusions located in the animal torso. Specifically, the fluores-
cent signal from inclusion 2 located in the center of the torso
occluded by highly absorbing organs (e.g., liver and spleen)
was increased by approximately two orders of magnitude
after pattern optimization. More importantly, the optimization
scheme provided equivalent results for all three types of patterns
investigated here, indicating the applicability of this approach
to any type of illumination pattern. The increase in informa-
tion content with the increase in s-d pairs allows the accurate
reconstruction of deep-seated fluorescent inclusions, which
are poorly localized when using the nonoptimized patterns.

The application of this technique in FMTwas found to espe-
cially improve the signal level at the time gates on the early-
rising and late-falling portion of the TPSF that correlates
with lower photon counts. The corresponding 80% increase in
the number of source-detector measurements above the noise

Fig. 12 (a) to (b) Increase in number of source-detector pairs with signal above 200 counts after pattern optimization at excitation and emission
wavelengths, respectively; (c) increase in nonredundant information with increase in s-d pairs shown in (a) and (b).

Fig. 13 Reconstructed effective quantum yield using three gates span-
ning the rising portion of the TPSF at 10%, 50%, and 100% of maximum
value using (a) uniform patterns and (b) transmittance optimized pat-
terns. 50% isovolume of reconstructed effective quantum yield when
using uniform patterns and transmittance optimized patterns, respec-
tively. The 50% iso-contours across x ¼ 28 mm and z ¼ 12 mm are
projected along the corresponding planes.
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threshold acquired in experimental settings demonstrates the ad-
vantage of this approach in FMT applications employing early
photons for high-resolution optical reconstructions.24 Similarly,
the improvement in signal level at the late gates implies more
robust measurements in fluorescence lifetime based tomo-
graphic imaging where multiple fluorophores can be resolved
with lower crosstalk owing to improved signal-to-noise
ratio.28,29 Moreover, the advantages of pattern optimization in
FMT also extend beyond the improvement in tomographic
information content, in that the improved signal level from
deep-seated fluorescent markers will allow the robust estimates
of fluorescence lifetime due to the higher SNR of the
measurements.

The application of the pattern optimization technique
described in this paper is directed toward time-resolved fluores-
cent tomographic imaging. However, it is worth noting that this
approach can be readily translated to other optical tomographic
imaging paradigms. For instance, by assuming equivalent char-
acteristics of the continuous-wave datatype and the time-gate at
maximum intensity, it can be determined that the pattern opti-
mization scheme also provides added information in tomo-
graphic systems employing the CW datatype. Similarly, the
optimization scheme can also be an effective imaging approach
in systems implementing a cylindrical imaging geometry or a
multiview setup based on mirrors where dynamic range is a
critical issue in experimental implementation.30 We further
hypothesize that the approach described here can also be
extended to point source excitation schemes, wherein the opti-
mized pattern derived from a full-field illumination pattern can
be used as a template to assign the relative power injected into
the model at each source location.31

Lastly, the iterative optimization scheme also has applica-
tions in related optical imaging applications. For instance, in
the case of fluorescence reflectance imaging, which is a
commonly used preclinical imaging modality, a measurement
guided optimization of excitation field based upon the fluores-
cence signal detected may improve the depth sensitivity of the
technique.

In conclusion, we have for the first time described a
measurement-guided pattern optimization scheme, which
increases the tomographic information collected in whole-
body small animal imaging applications. The preliminary results
presented here establish the feasibility and the applicability of
the technique. The future work will focus on the impact of spe-
cific parameters of the optimization scheme (e.g., variable
neighborhood radii) on the convergence of the technique. We
next plan to extend the approach to include optimization of pat-
terns based upon the fluorescence field. Pattern optimization

based on this criterion will allow the detection of lower con-
centrations of fluorophores, increasing the sensitivity of the
technique. We anticipate the use of measurement-guided exci-
tation optimization schemes to further improve the applicability
of FMT in molecular imaging applications.
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