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Abstract. We present a three-dimensional (3-D) computational method to detect soft tissue sarcomas with the goal
of automatic surgical margin assessment based on optical coherence tomography (OCT) images. Three parameters
are investigated and quantified from OCT images as the indicators for the tissue diagnosis including the signal
attenuation (A-line slope), the standard deviation of the signal fluctuations (speckles), and the exponential
decay coefficient of its spatial frequency spectrum. The detection of soft tissue sarcomas relies on the combination
of these three parameters, which are related to the optical attenuation characteristics and the structural features of
the tissue. Pilot experiments were performed on ex vivo human tissue samples with homogeneous pieces (both
normal and abnormal) and tumor margins. Our results demonstrate the feasibility of this computational method
in the differentiation of soft tissue sarcomas from normal tissues. The features of A-line-based detection and 3-D
quantitative analysis yield promise for a computer-aided technique capable of accurately and automatically iden-
tifying resection margins of soft tissue sarcomas during surgical treatment. © 2014 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JBO.19.2.021102]
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1 Introduction
Soft tissue sarcomas develop within connective tissues such as
fibrous tissue, fat, and muscle.1,2 Surgical resection is currently
the most effective treatment for the patients with this disease.3

However, the macroscopic resemblance between the pathologi-
cal and normal soft tissues causes it difficult to delineate the
negative tumor resection margins intraoperatively, as one of the
key reasons that result in high local recurrence rate of soft tissue
sarcomas.4 Currently, tissue biopsy is the only clinical method
for tumor detection, but its requirement of tissue sampling limits
the accuracy of assessment and leads to significant delay in com-
pleting the surgical resection. 5 Thus, enhanced surgical tech-
niques based on real-time microscopic imaging and detection
is required to reduce the chance of local recurrence, minimize
the resection region, and improve the efficiency of surgical treat-
ment of soft tissue sarcomas.

Optical coherence tomography (OCT) is a noninvasive im-
aging technique with high spatial and temporal resolutions.6,7

The typical imaging depth of OCT can reach 1 to 3 mm in
most highly scattering tissues.8 OCT-based tumor detection
methods have been developed mainly based on the imaging
of tissue structures,9–12 the assessment of tissue optical proper-
ties,13–15 and the measurement of tissue elasticity.16,17 For the
imaging-guided detection of soft tissue sarcomas with OCT,
recent study by Carbajal et al. has demonstrated that the
morphology of liposarcoma and normal adipose tissue can be

distinguished based on the OCT images, suggesting the possibil-
ity of using OCT for the surgical identification of soft tissue
sarcomas.18 However, to meet the requirement of clinical use,
there must be certain effective indicators for the diagnosis of
soft tissue sarcomas through the computational analysis of
OCT images that could aid surgeons with their decision process.
As the use of OCT for the detection of breast cancer and oral
cancer,19,20 computational methods are expected to offer assis-
tance in the transition to clinical applications.

In this paper, we present a three-dimensional (3-D) computa-
tional method to analyze the OCT images for the detection of
soft tissue sarcomas. Three effective indicators, including the
signal attenuation as a function of depth (A-line slope), the stan-
dard deviation of the signal fluctuations of slope-removed
A-line, and the exponential decay coefficient of its spatial fre-
quency spectrum, are combined to provide an advanced diagno-
sis of the tissue types. The differentiation is based on the
quantitative analysis of the optical attenuation property and
the structure information of the tissues. Our results suggest this
method can be potentially utilized as a computer-aided high-
resolution automatic identification technique for the surgical
resection of soft tissue sarcomas.

2 Materials and Methods

2.1 Swept-Source OCT System

We utilized a home-built swept-source OCT system to image the
soft tissue samples. The details of the system description are
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presented in our previous work.21,22 Briefly, the system utilized a
swept laser source (Santec, Inc., Komaki, Aichi, Japan) which
has a central wavelength of 1310 nm with a bandwidth of
∼150 nm. The scanning rate over full operating wavelength
is 30 kHz, which determines the system temporal resolution
of ∼33 μs. The OCT system is based on a Mach–Zehnder inter-
ferometer, where the light from the reference and the sample
arms interference. The fringes are recorded through a balanced
photodetector, and the signal is digitized by a high-speed analog
to digital convertor (Alazar Tech, Inc., Quebec, Canada). Fast
Fourier transform is applied to the k-equally spaced interference
signals, and the resulted intensity A-lines are presented with dB
unit. Depth-resolved two-dimensional (2-D) images of
tissue samples can be real-time visualized from the computer.
The system can provide an axial resolution of ∼15 μm and
an imaging depth of ∼9 mm (both in air). The transverse res-
olution of the system is around 15 μm, and the sensitivity is
up to 100 dB. During OCT imaging, the focal plane of scan
lens was kept at the surface position of the tissue samples for
minimizing the effect of the focal function on the computational
analysis.

2.2 Soft Tissue Samples

For the demonstration of our method, pilot experiments were
performed on ex vivo human tissues with two types of samples:
homogeneous pieces (both normal and abnormal) and tumor
margin. For the former, fat, skeletal muscle, well-differentiated
liposarcoma (WDLS), and leiomyosarcoma were used in the
experiments, and total six pieces of samples from six patients
were involved. WDLS is one type of liposarcoma that develops
in the tissue of fat, and leiomyosarcoma is a cancer of smooth
muscle. For the latter, we conducted our feasibility study on the
tissue with the interface between collagen, a normal type of
fibrous tissue, and cellular fibrous tumor. All tissue samples
were taken from the surgical resection at the University of
Texas M.D. Anderson Cancer Center (UTMADCC) Hospital.
Sterile phosphate buffered saline was used to keep the samples
until the experiments. OCT imaging was performed within 12 h
after the surgical resection. The protocols of tissue processing
were approved by the UTMDACC and the University of
Houston Biosafety Committees. After the experiments, the
tissue samples were fixed with formalin, and the hematoxylin
and eosin (H&E) stained histology analysis was performed.
A UTMADCC sarcoma pathologist conducted the diagnosis
and the classification of the samples.

2.3 Computational Method

The computational analysis is based on individual A-line (with
dB unit in log scale) from OCT images. The whole procedure is
presented in Fig. 1 with a typical A-line from the OCT imaging
of human leiomyosarcoma. Due to the large refractive index
change at the air–tissue interface, high reflections of light usu-
ally occur at the surface of tissue samples, which can result in
relatively large intensity jumps, as shown in Fig. 1(a). To avoid
the influence of this effect on the computations, we choose the
start of the target region ∼40 μm below the tissue surface. As
illustrated in Fig. 1(a), an axial region of ∼0.7 mm is selected
for the A-line processing. The selection of this ∼0.7 mm depth
region is based on our purpose of including as much depth infor-
mation as possible from the OCT images for computation, and at
the same time keeping the size of the depth region constant

over the processing for all types of soft tissues. For each
extracted A-line, a linear fit is applied to the signal, and the
slope value is achieved as the first parameter to characterize
the tissue, as shown in Fig. 1(b). Then, the slope information
from the A-line is removed by performing a subtraction of
the linear fitting function, and thus, resulting in an intensity sig-
nal with the mean of approximately zero, as shown in Fig. 1(c).
The standard deviation of the intensity signal is calculated as the
second parameter for tissue differentiation. A fast Fourier trans-
form is then applied on this intensity signal, and the amplitude
information of the spatial frequency spectrum is utilized for an
exponential fit with the function of y ¼ Ae−Bx, as shown in
Fig. 1(d). The exponential decay coefficient B is obtained as
the third parameter for the characterization of tissue. The A-line
slope, the standard deviation of slope-removed A-line, and the
exponential decay coefficient of its spatial frequency spectrum
are finally presented as the indicators of the soft tissue types and
are combined together for advanced tissue diagnosis with 3-D
information.

In soft tissues, the intensity of transmitted light, I, can be
first-order approximated by the Beer–Lambert law, I ¼
I0e−μz, where μ is the attenuation coefficient of light, I0 is
the incident light intensity, and z is the depth of light traveling
inside the tissue.23 Thus, with the intensity values rescaled in dB
unit, the measured slope value is determined by the optical
attenuation property of the soft tissue for which a higher
slope indicates a larger optical attenuation coefficient of the tis-
sue sample. As OCT detects the backscattered light from the
tissue, the mismatch of the refractive index inside the tissue pro-
vides the contrast of OCT depth-resolved images.24 With the
slope removed, the OCT A-line signal can be a representation
of the variations of tissue refractive index (structure) along the
depth. Hence, the amplitude and frequency of the intensity fluc-
tuation, characterized by the standard deviation of the slope-
removed A-line and the exponential decay coefficient of its spa-
tial frequency spectrum, respectively, are dependent on the
structural features of the soft tissues. Specifically, a greater
variation of refractive index along the depth will result in a
higher value of standard deviation; also, a larger exponential
decay coefficient suggests that there exist more of low frequency
components in the change of tissue refractive index. Therefore,
the combination of these three parameters provides relatively
thorough characteristics of the tissue samples.

3 Results

3.1 Homogeneous Fat and WDLS

Figure 2 shows the selected H&E histology images [Fig. 2(a)
and 2(d)] for fat and WDLS with the corresponding depth-
resolved 2-D OCT images [Fig. 2(b) and 2(e)] and typical A-
lines [Fig. 2(c) and 2(f)], respectively. By comparing with the
histology results, it can be seen that OCT images clearly reveal
the morphology of the tissues of fat andWDLS. Specifically, the
adipocytes can be easily distinguished with the cell shape pre-
sented in OCT images. An important feature can be seen from
the OCT images that WDLS involves more nonadipocyte-struc-
ture areas compared with fat, which can be explained by the
presence of thicker septa in WDLS.25 From the typical A-
lines, it is clear that over the 1.8 mm depth differences exist
between the fat and WDLS in terms of the slope of the signal
and the amplitude and frequency of the intensity fluctuation.
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Fig. 1 Computational procedure illustrated with A-line from the optical coherence tomography (OCT) imaging of human leiomyosarcoma. (a) Original
intensity A-line with the indication of the region for analysis; (b) indication of linear fit of A-line for the slope value; (c) slope-removed A-line for the
standard deviation calculation; (d) spatial frequency spectrum presented with the amplitude information for exponential fit to quantify the exponential
decay coefficient.

Fig. 2 Selected histology images (a) and (d) for fat and well-differentiated liposarcoma (WDLS), respectively; corresponding OCT images (b) and (e) for
fat and WDLS, respectively; typical A-lines (c) and (f) from OCT images of fat and WDLS, respectively. The scale bars in (b) and (e) represent 0.5 mm.
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The quantitative representations of these differences are pre-
sented in Fig. 3, which shows the statistical results of fat and
WDLS with the parameters of the A-line slope, the standard
deviation of the slope-removed A-line, and the exponential
decay coefficient of its spatial frequency spectrum. Data points
from 40,000 and 240,000 recording positions are involved for
fat and WDLS, respectively. The slope values of A-line are
quantified as −0.0031� 0.0102 dB∕μm for fat and −0.0192�
0.0100 dB∕μm for WDLS, as shown in Fig. 3(a). The higher
absolute value of the slope from WDLS indicates the tissue
of WDLS, compared with fat, attenuates more of the laser
light with the same penetration of depth. From Fig. 3(b), the
computation of the standard deviation shows 9.4� 1.4 dB
for fat and 8.0� 1.2 dB for WDLS, which indicates that
there exist larger variation of refractive index along the depth in
the tissue of fat. We also quantified the exponential decay coef-
ficient of 19.9� 4.8 and 16.8� 5.8 μm for fat and WDLS,
respectively, as shown in Fig. 3(c). This suggests that, relative
to WDLS, in the tissue of fat more low frequency components
exist in the depthwise change of refractive index. For each of
the parameters, we performed two-sample unequal-variance

Student’s t-test and the results indicate all these three parameters
can be effective indicators for the differentiation of WDLS
from fat.

The combination of the three parameters provides the iden-
tification of WDLS and fat in a 3-D space of slope versus stan-
dard deviation versus exponential decay coefficient, as shown in
Fig. 4. Figure 4(a) indicates the spatial regions occupied by
these two types of tissues through the plots of the data points
and the 95% confidence ellipsoids. The 2-D projections of the
plots are shown in Fig. 4(b)–4(d). Based on the 3-D information,
the tissues of WDLS and fat can be clearly distinguished.

3.2 Homogeneous Skeletal Muscle and
Leiomyosarcoma

For the tissues of skeletal muscle and leiomyosarcoma, Fig. 5
shows the histology images [Fig. 5(a) and 5(d)], the correspond-
ing OCT images [Fig. 5(b) and 5(e)], and typical A-lines
[Fig. 5(c) and 5(f)], respectively. Based on the structural OCT
images, the skeletal muscle and the leiomyosarcoma appear sim-
ilar, because at the scale-level of the system spatial resolution the

Fig. 3 Box plots of the quantified results of (a) the A-line slope, (b) the standard deviation of the slope-removed A-line, and (c) the exponential decay
coefficient of the spatial frequency spectrum of slope-removed A-line for fat and WDLS. The solid dots and the whiskers represent the mean and the
standard deviation of the data, respectively. N ¼ 40;000 and 240,000 for the measurements conducted on the tissues of fat and WDLS, respectively.
The P values are from the two-sample unequal-variance Student’s t-tests.
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cells inside both types of the tissues are relatively homogeneous.
However, from the intensity A-lines, differences can be clearly
observed in the amplitude and frequency of the fluctuation of
intensity as well as in the slope of the A-lines.

Similar to Fig. 3, for quantifying the differences between
skeletal muscle and leiomyosarcoma, we present the statistical
results of the A-line slope, the standard deviation of the slope-

removed A-line, and the exponential decay coefficient of its spa-
tial frequency spectrum in Fig. 6. Our computations involve a
total of 40,000 and 80,000 data points from different measure-
ment positions on the tissues of skeletal muscle and leiomyo-
sarcoma, respectively. From Fig. 6(a), the skeletal muscle has
a slope value of −0.0285� 0.0089 dB∕μm, while the slope
value for leiomyosarcoma is −0.0351� 0.0073 dB∕μm. This

Fig. 4 (a) Three-dimensional (3-D) plot of the data points and the confidence ellipsoids (95%) for fat andWDLS in the spatial region composited by the
parameters of the A-line slope, the standard deviation of the slope-removed A-line, and the exponential decay coefficient of its spatial frequency
spectrum. Two-dimensional (2-D) projections are presented in the spatial plane of (b) exponential decay coefficient versus slope, (c) standard deviation
versus slope, and (d) exponential decay coefficient versus standard deviation.N ¼ 40;000 and 240,000 for the data points involved for fat and WDLS,
respectively.

Fig. 5 Selected histology images (a) and (d) for skeletal muscle and leiomyosarcoma, respectively; corresponding OCT images (b) and (e) for skeletal
muscle and leiomyosarcoma, respectively; typical A-lines (c) and (f) from OCT images of skeletal muscle and leiomyosarcoma, respectively. The scale
bars in (b) and (e) represent 0.5 mm.
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difference indicates, with respect to the wavelength range from
the laser source, the tissue of leiomyosarcoma has a relatively
higher optical attenuation coefficient compared with skeletal
muscle. In Fig. 6(b), our computations show a larger standard
deviation of 6.2� 0.8 dB for skeletal muscle than 5.7� 0.5 dB
for leiomyosarcoma, which suggests the variation of refractive
index along the depth appears to be relatively lower in the tissue
of leiomyosarcoma. Also, the exponential decay coefficients are
quantified as 10.8� 3.5 μm for skeletal muscle and 4.9�
1.9 μm for leiomyosarcoma, as shown in Fig. 6(c). Compared
with skeletal muscle, the lower value of exponential decay coef-
ficient indicates that for the tissue of leiomyosarcoma, there
are fewer of low frequency components existing in the refractive
index change over depth. Similar to the study with fat and
WDLS, we conducted the two-sample unequal-variance
Student’s t-test for all three parameters, and the differences
between skeletal muscle and leiomyosarcoma have been found
to be statistically significant.

The 3-D plots of the data points and the 95% confidence
ellipsoids are presented in Fig. 7(a) indicating the relative

positions of skeletal muscle and leiomyosarcoma in the spatial
region composited by the three parameters. Figure 7(b)–7(d)
show the corresponding 2-D projections for both the types
of tissues. It can be clearly seen that the differentiation of leio-
myosarcoma from the tissue of skeletal muscle can be achieved
based on our 3-D computational method.

3.3 Cellular Fibrous Tumor Margin with Collagen

Our method is also demonstrated on the soft tissue sample with
tumor margin. The histology result and the corresponding OCT
image from the same location of the tissue are shown in Fig. 8(a)
and 8(b), respectively. The vertical margin between the tissues
of collagen and cellular fibrous tumor can be clearly visualized
from the histology image. The 3-D computational method was
performed for every individual A-line from the OCT image, and
the quantified values are color-coded and plotted below the OCT
image at the corresponding A-line positions. The color of red,
green, and yellow are utilized to represent the parameters of
the A-line slope, the standard deviation of the slope-removed

Fig. 6 Box plots of the quantified results of (a) the A-line slope, (b) the standard deviation of the slope-removed A-line, and (c) the exponential decay
coefficient of the spatial frequency spectrum of slope-removed A-line for skeletal muscle and leiomyosarcoma. The solid dots and the whiskers re-
present the mean and the standard deviation of the data, respectively. N ¼ 40;000 and 80,000 for the measurements conducted on the tissues of
skeletal muscle and leiomyosarcoma, respectively. The P values are from the two-sample unequal-variance Student’s t-tests.
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A-line, and the exponential decay coefficient of its spatial fre-
quency spectrum, respectively. For all of them, darker regions
represent larger values, while brighter regions indicate smaller
values. Figure 8(c) is the combination of the three parameters
with the overlap of three colors. It can be seen that the part
of cellular fibrous tumor is relevant to the brighter regions of
all three colors, suggesting the tissue of cellular fibrous tumor
has higher attenuation of the light from the system laser, smaller
variation of the refractive index and fewer of low frequency
components for the refractive index change inside the tissue.

The estimated position of the vertical tumor margin based on
the 3-D computational method is indicated with blue arrows
in Fig. 8. The good agreement with the histology results dem-
onstrates the feasibility of our method in the accurate delineation
of the vertical margin between cellular fibrous tumors and the
tissue of collagen.

4 Discussions
These pilot studies demonstrate the feasibility of the proposed
method in the detection of soft tissue sarcomas based on the

Fig. 7 (a) 3-D plot of the data points and the confidence ellipsoids (95%) for skeletal muscle and leiomyosarcoma in the spatial region composited by
the parameters of the A-line slope, the standard deviation of the slope-removed A-line, and the exponential decay coefficient of its spatial frequency
spectrum. 2-D projections are presented in the spatial plane of (b) exponential decay coefficient versus slope, (c) standard deviation versus slope, and
(d) exponential decay coefficient versus standard deviation. N ¼ 40;000 and 80,000 for the data points involved for skeletal muscle and leiomyo-
sarcoma, respectively.

Fig. 8 Vertical tumor margin between collagen and cellular fibrous tumor presented with (a) histology image, (b) OCT image, and (c) color-coded plot
combining the parameters of the A-line slope, the standard deviation of the slope-removed A-line, and the exponential decay coefficient of its spatial
frequency spectrum. The arrows point at the estimated position of the vertical tumor margin. The scale bars represent 0.5 mm.
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information of tissue optical property and structural features. We
have found that the pathological tissues of WDLS, leiomyosar-
coma, and cellular fibrous tumor appear to have smaller values
of all three indicators compared with their corresponding normal
tissue types. With the relationship of the parameters to the tissue
characteristics, the results indicate that the optical attenuation
coefficients of the three types of soft tissue sarcomas are higher
than the relevant healthy types of tissues, and this effect turns
out to be similar to the results observed in the breast cancer.13,26

Also, in terms of the tissue structure, all the three pathological
tissue types have shown reduced variation of tissue refractive
index and fewer components of low frequency in the depthwise
refractive index change. For the pair of WDLS and fat, this is
caused by the thicker septa presented in the tissue of WDLS,25

which compared with adipocytes, appears in the A-lines with
smaller amplitude but higher frequency of intensity fluctuation.
For the other two pairs of tissue types, the differences can be
explained by the more compact cellular arrangement in the tis-
sues of leiomyosarcoma and cellular fibrous tumor,27,28 which
can also be observed in Figs. 5(d) and 8(a).

Three features of the proposed method can be summarized as
A-line-based computation, 3-D analysis, and quantitative detec-
tion. First, the computation of the individual A-line allows the
method to achieve the same transverse spatial resolution of the
OCT system. For the axial direction, the detection can also be
performed for layered tissues with horizontal tumor margins by
using a window of particular size to move and select regions for
processing along the depth. However, in this case, the limited
imaging depth of OCT technique may affect the areas inside
the tissue that can be assessed. OCT system combined with for-
ward or sideward scanning needle probe29,30 can be considered
to be incorporated with our method to address this problem.
Second, the development of 3-D analysis is for including
more thorough information from the tissues to assist the diag-
nosis of the tissue types. With the 3-D plot, training data can be
presented with particular spatial reference regions, and this will
provide a convenient visualization of the relative position where
the testing data fall, which is expected to lead to a rapid assess-
ment. Finally, the quantifications of the effective indicators pro-
vide more reliable information compared with the methods only
based on the observation of the structural OCT images. Also, the
quantitative detection holds the potential to be further developed
into a computer-aided automatic detection technique.

As a feasibility study of the proposed method, the presented
results provide the demonstration for the detection of WDLS
and leiomyosarcoma and the delineation of the vertical margin
of cellular fibrous tumor. To further investigate the efficiency of
this method, more number of tissue samples should be included,
full statistical analysis, including sensitivity and specificity,
must be conducted, and the detection of other types of soft tissue
sarcomas needs to be studied. The complete evaluation of this 3-
D computational method will be the focus of our future work.

5 Conclusions
We have demonstrated a 3-D computational method to analyze
OCT images for the detection of soft tissue sarcomas. Our
method is based on the information of the tissue optical attenu-
ation property and the structural features. Three effective indica-
tors, including the A-line slope, the standard deviation of the
slope-removed A-line, and the exponential decay coefficient
of its spatial frequency spectrum, are presented and studied.
The combination of these three parameters from OCT images

offers advanced diagnosis of soft tissue types with the 3-D
plots of data points and confidence ellipsoids in the spatial
region composited by the parameters. With further evaluation,
this method can be potentially developed as a computer-aided
technique capable of accurately and automatically identifying
resection margins of soft tissue sarcomas during surgical
treatment.
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