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Abstract. The imaging depth of optical coherence tomography (OCT) in highly scattering biological tissues
(such as luminal organs) is limited, particularly for OCT operating at shorter wavelength regions (such as around
800 nm). For the first time, the optical clearing effect of the mixture of liquid paraffin and glycerol on luminal
organs was explored with ultrahigh-resolution spectral domain OCT at 800 nm. Ex vivo studies were performed
on pig esophagus and bronchus, and guinea pig esophagus with different volume ratios of the mixture. We found
that the mixture of 40% liquid paraffin had the best optical clearing effect on esophageal tissues with a short
effective time of ∼10 min, which means the clearing effect occurs about 10 min after the application of the clear-
ing agent. In contrast, no obvious optical clearing effect was identified on bronchus tissues. © 2016 Society of Photo-

Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.8.081211]
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1 Introduction
Optical coherence tomography (OCT) affords high-resolution
imaging of tissue microanatomy in vivo. However, the limited
imaging depth due to the high scattering of light in biological
tissues hinders its potential applications, where a deeper imag-
ing depth is desired. To achieve a better imaging depth, optical
clearing is regarded as the most effective method. It is generally
considered that optical clearing results from collective effects
including the refractive index matching effect, the cell dehydra-
tion effect, and the increased collagen solubility due to the
osmotic property of optical clearing agents (OCAs), which leads
to a deeper penetration of light in biological tissues.1–9 Recently,
increasing research interest has been witnessed on the efforts to
develop and validate new and more effective OCAs.

New OCAs, mixtures of two or more agents, capable of
extending imaging depth or even making tissue transparent,
such as SeeDB,10 benzyl alcohol and benzyl benzoate,11

Scale,12 and the mixture of tetrahydrofuran and dibenzyl
ether,13 were developed and successfully demonstrated in sev-
eral ex vivo mouse brain tissue studies. With these new OCAs, a
few days’ process for dehydration and maceration of biological
tissues was needed for optical clearing to take effect. In contrast,
a new method for three-dimensional imaging of solvent-cleared
organs successfully reduced the process time to several hours.14

However, all these new OCAs are toxic and suitable only for
ex vivo applications.

For in vivo applications, an ideal OCA should be safe to use
and has a short effective time (which is defined as the time for
the optical clearing effect to take place after the application of
the agent). To this end, some biocompatible hyperosmotic and
hydrophilic chemical agents, e.g., polyethylene glycol,15 glu-
cose,16,17 glycerol,18,19 and propylene glycol,20 have been tested.

The hyperosmotic property leads to an efficient diffusion of
these biocompatible OCAs into biological tissues. For example,
an effective time of about 50 min was reported in an in vivo
study on human skin by using glycerol, which is one of
the most commonly used biocompatible agents for optical
clearing.1 To further shorten the effective time, some physical
methods, such as sonophoresis with ultrasound,21 rubbing
with sandpaper,22 or puncturing with microneedle roller,23

were developed to aid the diffusion of glycerol through the
dense stratum corneum (SC) of skin. However, these methods
cannot be directly or conveniently applied to luminal organs in
vivo. Alternatively, it was proposed to optimize the penetration
efficiency of glycerol in biological tissues by incorporating
a permeation enhancer, such as oleic acid,24 dimethyl sulfox-
ide,24–26 azone,27 thiazone,28,29 or liquid paraffin.30–33 The
enhanced optical clearing effect of liquid paraffin and glycerol
mixture was validated on human skin, where a much shorter
effective time of ∼10 min was achieved.30–32 Furthermore, as
a lipophilic agent, it was found that liquid paraffin can greatly
relieve the severe dehydration effect caused by glycerol,30,31

which induces tissue warping and might not be safe to use
for certain clinical applications. It is noteworthy that liquid
paraffin has been used in cosmetics and food applications for
>100 years.34 Liquid paraffin has also been approved by the
Food and Drug Administration as a safe pharmaceutical vehicle
and is listed in many different pharmacopeia.34

In this paper, we studied the optical clearing effect of liquid
paraffin and glycerol mixture on luminal organs ex vivo with
a spectral domain optical coherence tomography (SD-OCT)
system operating at 800 nm. Our experimental results verified
that the mixture of 40% liquid paraffin had the optimum optical
clearing effect on both guinea pig and pig esophagus tissues
with an effective time as short as only about 10 min, whereas
no obvious optical clearing effect was found on pig bronchus
tissues.
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2 Materials and Methods

2.1 Materials

Esophagus and bronchus tissues from four pigs and esophagus
tissues from one guinea pig were harvested for this study right
after the animals were euthanized for other purposes approved
by the Animal Care and Use Committee at the Johns Hopkins
University. The luminal tissues were cut into small pieces of
∼1 × 1 cm immediately after tissue harvest. Fresh specimens
were submerged in phosphate-buffered saline (PBS) solution
and kept in a 4°C refrigerator for no more than 5 h before use.
After being well mixed by stirring for at least 10 min, about
40 μl of the liquid paraffin and glycerol mixture with a volume
ratio of 20% to 60% were immediately applied on the inner sur-
face of the luminal tissues using a syringe needle. It was found
that a well-mixed liquid paraffin/glycerol mixture took over 4 h
to have a complete phase separation, while in our experiments
each test lasted for at most 50 min so as to greatly mitigate the
influence of phase separation. Herein, the volume ratio was cal-
culated as V lp∕ðV lp þ VglÞ, where V lp is the volume of liquid
paraffin and Vgl is the volume of glycerol.

2.2 Imaging System

As shown in Fig. 1, our SD-OCT system adopted a customized
broadband linear-in-wavenumber spectrometer to afford an im-
aging depth of ∼1.2 mm, the detail of which was reported
previously.35,36 A homemade Ti:Sapphire laser with a central
wavelength of ∼825 nm and a 3-dB bandwidth of ∼150 nm

was used to achieve an axial resolution of ∼2.8 μm (in air).
Two galvonometer scanning mirrors were employed in the sam-
ple arm for performing X − Y two-dimensional beam scanning.
A scan lens was used to afford a lateral resolution of ∼16 μm.
Sample imaging was performed at 70 k A-scans/s.

2.3 Experiment Design

All imaging experiments were performed at room temperature.
As shown in Fig. 1, the lower part of the specimen was
immersed in a small volume of PBS solution during imaging to
prevent the specimen from dehydration. The liquid paraffin/
glycerol mixture was applied evenly on the tissue surface and
sealed between a cover glass and the specimen surface. In
our control experiments, PBS instead of the liquid paraffin/glyc-
erol mixture was applied on the tissue surface. The diffusion
process of the mixture was studied by B-scan (cross sectional)
imaging of the tissue at a given place every 5 min for a total of
50-min duration to understand the efficacy of the optical clear-
ing effect. Each B-scan image consisted of 2048 × 2048 pixels
(lateral × axial) corresponding to a physical image size of
2 mm × 1.2 mm. Each dataset consisted of 20 B-scan images,
which were used for averaging to reduce speckle noise.

2.4 Merit Metrics

B-scan images provided direct and qualitative visual assessment
of the optical clearing effect. To quantify such effect, some met-
rics have been proposed previously.17,30,31,37–40 Considering the
heterogeneous nature of tissue structures, tissue optical property,
and their potential changes during the process of OCA applica-
tion and diffusion, evaluating the optical property change at one
fixed tissue depth alone would not be sufficiently accurate.
Therefore, in addition to optical property, we proposed a merit
metric called intensity ratio of regions (RIR),30,31 which calcu-
lates the ratio of average intensities of a designated region
inside the tissue and a region nearby the tissue surface, and
it is defined as30,31

EQ-TARGET;temp:intralink-;e001;326;407RIR ¼
1
N1

P

x;y∈internal
Iðx; yÞ

1
N2

P

x;y∈surface
Iðx; yÞ ; (1)

where N1 and N2 are the number of pixels of the two regions of
interest, respectively, and Iðx; yÞ represents the OCT intensity at
position ðx; yÞ. The time-dependent optical clearing effect was
assessed with RIR and benchmarked with the RIR value a
minute after the application of the clearing agent to obtain the
relative RIRs. Generally, a larger relative RIR value means a
better optical clearing effect.

3 Experimental Results
As shown in Fig. 2, a series of representative B-scan images at a
fixed location on the guinea pig esophagus were displayed over
a time window of about 50 min after the application of the liquid
paraffin (at 30% volume concentration) and glycerol mixture.
Since it was difficult to ensure the same B-scan position before
and after the application of the clearing agent, the B-scan image
used as a benchmark was acquired at the first minute after the
application of the mixture. As shown in Fig. 2(b), the optical
clearing effect of the mixture on the esophagus tissue was evi-
dent. The increased transparency of upper layers, such as epi-
thelium and lamina propria, led to a pronounced muscle layer at
only 10 min after the application of the paraffin–glycerol
mixture.

To quantitatively study the optical clearing effect and find the
optimum paraffin–glycerol volume ratio, mixtures of 30%, 40%,
and 50% of liquid paraffin were used on pig esophagus tissues.

Fig. 1 Schematic of the ultrahigh-resolution spectral-domain OCT im-
aging system. BS, beam splitter; C, multielement achromatic collima-
tor; charge coupled device (CCD), line scan CCD; CG, cover glass;
G, grating; GSM, galvonometer scanning mirrors; M, mirror; MESL,
multielement scan lens; P, linear K mapping prism; PP, prism pair;
S, specimen; PBS, phosphate-buffered saline; PD, Petri dish; SL,
scan lens; and TF, tunable filter.
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Small image regions of 400 × 100 pixels (lateral × axial) near
the tissue surface and at different depths were used to calculate
the RIRs. In this study, regions starting from pixel 1, 600, and
1000 below the tissue surface along the imaging depth were
selected, which correspond to 0, ∼360, and ∼600 μm below
the tissue surface, respectively, as shown in Fig. 2.

As shown in Fig. 3, the relative RIR value [calculated by
using Eq. (1) and then dividing by the RIR benchmark value]
was studied at different tissue depths and plotted along with time
after the application of the mixture. As mentioned earlier, the
RIR benchmark value was the one calculated over the same
image region but at the first minute after the mixture application.
The standard deviations were calculated with three pig esopha-
gus tissues and displayed as error bars in Fig. 3. It is found that
optical clearing by the mixture occurred on the esophagus tissue
with the relative RIRs > 1 for all paraffin volume ratios used
in this study. The bigger the relative RIR is, the higher the
improvement is for the intensity value at the internal position
relative to that at the surface, which means a better optical clear-
ing effect. The best optical clearing effect (represented by the
highest relative RIR) was achieved with a paraffin volume
ratio of 40% by comparing the relative RIR values at different
tissue depths (in particular at depths of ∼360 μm), which is con-
sistent with the observation reported in Ref. 30. As seen from
Fig. 3, the optical clearing effect took place very rapidly during
the first 10 min for all tested mixtures on the esophagus tissue.
This is a remarkable property, which may be very useful for
the in vivo applications, where a fast optical clearing effect is

needed. Validation experiments using guinea pig esophagus tis-
sues revealed the similar results (results not shown).

To further scrutinize the consequences of optical clearing,
depth-resolved optical properties (i.e., the attenuation coeffi-
cient) of the esophagus tissue have been studied versus time
after the application of the liquid paraffin/glycerol mixture. The
algorithm used for quantifying the optical attenuation coefficient
is similar to the one reported in Ref. 41. In essence, the depth-
resolved attenuation coefficients for each A-scan were calcu-
lated with the following equation:

EQ-TARGET;temp:intralink-;e002;326;180μ½i� ≈ I½i�
Δ ·

P∞
iþ1 I½i�

; (2)

where μ½i� is the attenuation coefficient at the i’th pixel of a
given A-scan, which is defined as the averaged attenuation
over the pixel size of Δ. I½i� is the OCT intensity at the i’th
pixel of that A-scan. It is noteworthy that Eq. (2) is slightly dif-
ferent from the one reported in Ref. 41 by assuming the OCT

Fig. 3 Relative RIR variation versus time after applying the liquid par-
affin and glycerol mixture on pig esophagus tissues with different vol-
ume ratios of (a) 30%, (b) 40%, and (c) 50%. Red solid circles and
black solid squares correspond to different depths in the tissue.

Fig. 2 Representative B-scan images of guinea pig esophagus at
(a) 1 min, (b) 10 min, (c) 20 min, (d) 30 min, (e) 40 min, and
(f) 50 min, after the application of 30% paraffin/glycerol mixture.
Yellow rectangle boxed regions in (a) correspond to 0, ∼360, and
∼600 μm below the tissue surface, respectively, and are selected
to calculate RIRs. SE, stratified epithelium; LP, lamina propria;
MM, muscularis mucosae; SM, submucosa; and MP, muscularis
propria. Scale bars in (a): 100 μm.
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signal of each A-scan follows I½i� ∝ e−μðzÞ·z, where μðzÞ is the
attenuation coefficient at medium depth of z.

A representative attenuation image of the pig esophagus tis-
sue at 10 min after the application of a 40% paraffin/glycerol
mixture is shown in Fig. 4(a). As highlighted with a dashed
line rectangle in Fig. 4(a), a region of interest with 400 ×
1300 pixels (lateral × axial) was selected to calculate the
averaged attenuation coefficient along the A-scan. A significant
time-dependent change on the attenuation coefficient was
observed as shown in Fig. 4(b). It was found that the attenuation
coefficient decreased gradually at the region near the tissue sur-
face and increased at the deeper tissue regions with time. This
change eventually led to a decreased attenuation inhomogeneity
of the esophagus tissue with the most dynamic change happen-
ing during the first 10 min after the application of the optical
clearing mixture.

To study the optical clearing effect of liquid paraffin and
glycerol mixture on other internal organs, we further tested

the pig bronchus tissues. No significant optical clearing effect
was observed for all tested mixtures with different volume
ratios. As shown in Fig. 5 (for a representative 30% paraffin/
glycerol volume ratio), the relative RIR values changed only
slightly with time at different tissue depths. The error bars were
calculated with three pig bronchus tissues. It is also noteworthy
that in the control experiments no optical clearing effect of PBS
was observed for either esophagus or bronchus tissues.

4 Discussions and Conclusion
It has been proved that lipophilic agents, such as liquid paraffin,
are capable of penetrating epithelium tissue and can serve as a
carrier for drug delivery.34,42–44 Our experimental results verified
that liquid paraffin can facilitate the penetration of glycerol
through the dense stratified squamous epithelium of esophagus
tissue into deeper layers and work collaboratively with glycerol
for tissue index matching. This effect was also confirmed in our
previous studies on human skin, where a significantly enhanced
optical clearing effect was found by using liquid paraffin to aid
the penetration of glycerol through the SC layer of skin.30–32 The
reason that this facilitation effect does not work for bronchus
tissue may be due to the difficulty for the mixture to penetrate
the cartilage rich in pig bronchus.

Compared with our previous studies, where a 1500-nm light
source was used, higher relative RIR values (i.e., more pro-
nounced optical clearing effect) were found in this study
with an 800-nm SD-OCT system. This finding coincides with
many previous publications reporting a better optical clearing
effect at shorter wavelengths.20,26,28 Furthermore, it was found
that a fine balance between the dehydration effect of glycerol
and the water retention capability of the liquid paraffin helped
avoid tissue deformation when using the mixture of 40% liquid
paraffin. This feature is very useful for potential in vivo appli-
cations. In contrast, it was also noted that with the mixture of a
low-volume ratio, such as 20%, the esophagus tissues showed
some obvious warping of tissue surface due to the dominant
dehydration effect of glycerol.

The phenomena of a decrease in scattering in upper layers
and an increase in scattering in lower layers with time in
Fig. 4 prove the attenuation coefficient tends to become homo-
geneous. From Fig. 4, we can see the attenuation coefficients
that have the most dynamic change in the first 10 min after
the application of the optical clearing mixture, which means

Fig. 4 (a) Representative attenuation image of the pig esophagus tissue 10 min after the application of
40% paraffin/glycerol mixture. (b) The time-dependent change of the averaged attenuation coefficient
along depth within a region of interest [boxed by a black rectangle with 400 × 1300 pixels in (a)].
Curves of different colors correspond to different times after the application of the mixture. Scale
bars in (a): 100 μm.

Fig. 5 Relative RIR versus time calculated from the B-scan images of
the pig bronchus tissue applied with 30% paraffin/glycerol mixture.
Red solid circles and black solid squares correspond to different
depths in the tissue. The optical clearing effect of the agent on the
bronchus tissue is not evident.
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glycerol rapidly penetrates into inner tissue with the help of
liquid paraffin. After 20 min, they change slowly with time
until they become homogeneous. This change can be attributed
to the index matching effect of the liquid paraffin/glycerol mix-
ture, which leads to more homogeneous tissue refractive index
that in turn reduces tissue attenuation (mainly scattering) and
consequently enhances light penetration in the tissue.

In summary, the optical clearing effect of the liquid paraffin/
glycerol mixture on luminal organs, such as the esophagus and
bronchus, was studied for the first time at 800-nm wavelength
region with an ultrahigh-resolution SD-OCT system. A signifi-
cant optical clearing effect on esophagus tissues was observed
with a short effective time of ∼10 min, whereas no obvious
optical clearing effect was found on bronchus tissues. We vali-
dated that the mixture of 40% liquid paraffin afforded the opti-
mum optical clearing effect on the esophagus tissues. These
findings will facilitate the use of the liquid paraffin/glycerol
mixture in the in vivo endoscopic imaging of lumen organs in
the future.
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