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Abstract. Scattering within biological samples limits the imaging depth and the resolution in microscopy. We
present a prior and regularization approach for blind deconvolution algorithms to correct the influence of scatter-
ing to increase the imaging depth and resolution. The effect of the prior is demonstrated on a three-dimensional
image stack of a zebrafish embryo captured with a selective plane illumination microscope. Blind deconvolution
algorithms model the recorded image as a convolution between the distribution of fluorophores and a point
spread function (PSF). Our prior uses image information from adjacent z-planes to estimate the unknown blur
in tissue. The increased size of the PSF due to the cascading effect of scattering in deeper tissue is accounted for
by a depth adaptive regularizer model. In a zebrafish sample, we were able to extend the point in depth, where
scattering has a significant effect on the image quality by around 30 μm. © 2016 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JBO.21.9.096005]
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1 Introduction
One of the most prominent limitations for light microscopy of
biological samples is the imaging depth. Scattering in tissue is
the limiting factor defining the depth in which biological struc-
tures may still be resolved. Larger samples can only be imaged
superficially. Deconvolution algorithms for multiview selective
plane illumination microscopy (SPIM) have already been shown
to increase the ability to image thick samples, provided they are
optically accessible from multiple angles.1

SPIM2–4 utilizes an extreme darkfield setup by illuminating
only the focal plane in the sample by a light sheet. The illumi-
nation optics is usually positioned perpendicular to the detection
objective. By scanning the sample through the light sheet, a
three-dimensional (3-D) image stack of the sample can be
acquired in a short period of time. The technique offers a high
acquisition rate of entire volumes and low photo damage and
bleaching, thus making it an ideal tool for in-vivo imaging of
fast processes or developing organisms. In multiview SPIM,1,5,6

the sample is rotated and multiple image stacks are recorded
from different angles. Alternatively, multiple excitation and
detection optics allow imaging of the sample from 2 to 4 direc-
tions without rotating the sample. The different views are later
used to reconstruct a single volume. The most prominent tech-
nique to combine the images are blind deconvolution algorithms.

In this work, we introduce a regularizer and a prior to
improve the reconstruction and make it more robust. For dem-
onstration purposes, we concentrate on using a single SPIM
image stack rather then using multiview data (although the reg-
ularizer is applicable to multiview data). This approach offers

the advantage of using an SPIM setup without multiple detec-
tion optics and a fast aquisition without rotation of the sample.
Since the SPIM image stack has to meet only some weak
requirements for the reconstruction, it is also possible to
improve already existing single view SPIM data.

2 Reconstruction Algorithm
The scattering influence on intensity within a sample can be
treated as a convolution between the real object and an increas-
ingly broad point spread function (PSF). The PSF describes the
effect an imaging system has on a point source. For SPIM, the
PSF is shaped by three main contributors: (1) the illumination
function of the sample. The shape of the light sheet as well as
broadening of the light sheet within the sample due to scattering
determines the illuminated areas of the sample. Only from these
regions we can expect fluorescence. To acquire a full 3-D image
of the sample, the light sheet and the sample are moved relative
to each other. The direction of movement will be denoted as
z-direction, while the imaging plane will be labeled the x − y
plane. The function describing the illumination will be called
Pillum. (2) Fluorescence molecules, which are illuminated in
the current z-position, can be considered point sources. The
light from these sources gets scattered on the way to the objec-
tive and will contribute to the PSF. This contribution will be
denoted as Pscatt. (3) Eventually, the detection optics contributes
to the PSF. This contribution Pdet is sample independent and—
for most cases considered here—smaller than the PSF broaden-
ing due to scattering. In the following, all three separate contri-
butions are condensed into one single PSF Pzðx; yÞ
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EQ-TARGET;temp:intralink-;sec2;63;752Iz0ðx; yÞ ¼
�Z

Oðx; y; zÞPillumðz − z0Þ

× Pscattðx; y; z; z0Þdx dy dz
�
× Pdet:

2.1 Spatially Invariant Algorithm

For the sake of clarity, the algorithmic details are first discussed
using a spatially invariant model. In each z-plane, the detected
SPIM image is treated as a convolution between the real object
and the PSF. In this case, the real object is the distribution of
fluorophores in the sample. An additional noise-term accounts
for additive noise influences on the final image introduced by
the imaging system

EQ-TARGET;temp:intralink-;e001;63;592Iz ¼ Oz × Pz þ N; (1)

where N is the noise, I is the image,O is the real object, and P is
the PSF.

If N is Gaussian noise, the original image can be estimated
by minimizing the least-square error E.

EQ-TARGET;temp:intralink-;e002;63;519E ¼ kIz − Pz ×Ozk22 : (2)

It should be noted that image noise is typically not Gaussian but
Poisson distributed. Nevertheless, the image space reconstruc-
tion algorithm (ISRA) which will be introduced below turned
out to also be stable in the case of Poisson noise. This recon-
struction framework is easy to implement and will be used to
demonstrate the function of our regularizer and the prior we
use. Equation (2) is typically ill conditioned, even if the PSF
P is known. In most cases, multiple views are used to provide
the necessary amount of information in order for the algorithm
to converge. In our case, the acquired image stack I is the only
known variable. Trying to minimize the least-square error will
not necessarily converge to one solution. To obtain a converging
solution, a prior is used. The main assumption for this prior is
that if the step size between two consecutive z-planes is small
enough so it can be assumed that the same object is illuminated
in both positions, while the PSF varies. This idea of using neigh-
boring z-planes is depicted in the illustration of the algorithm in
Fig. 1(b). Under ideal conditions and under the assumption of
multiple observations, Piði ¼ 1; 2; 3Þ, which are neighboring

z-planes, in our case, the coprimeness equation: Pj × Ii − Pi ×
Ij ¼ 0, ∀ i ≠ j, can be used to determine the PSF. In the pres-
ence of noise, this equation becomes an optimization problem

EQ-TARGET;temp:intralink-;sec2.1;326;719Ecoprime ¼
X
i≠j

kPj � Ii − Pi � Ijk22:

The effectiveness of algorithms based on this prior has already
been shown by multiple groups.7–9 However, they use either dif-
ferent views or time series of the same view with slightly vary-
ing PSF. Due to the physical properties of the imaging system, it
can additionally be assumed that PSF P ≥ 0, as well asP

x;yPðx; yÞ ¼ 1. The sum constraint is only valid if absorption
in the sample can be neglected, which is reasonable for adjacent
z-planes. The positive constraint is also true for the object O.
Furthermore, the support of the PSF should be smaller than
the image I. These constraints together with the assumptions
of a constant object over neighboring z-planes [whereas the
PSF Piði ¼ 1; 2; 3Þ changes] lead to the following minimization
problem:

EQ-TARGET;temp:intralink-;sec2.1;326;533 min
Pi≥0;

P
Pi¼1;O≥0

X
i

kIi − Pi ×Ok22

þ
X
i≠j

kPj × Ii − Pi × Ijk22:

The last term, the coprimeness regularization mentioned
above, helps to stabilize the deconvolution problem and can
even lead to a unique solution.7

To ensure the convergence of both the PSF P and the object
O, an alternating optimization scheme is used, where the opti-
mization iterates between P and O. In this work, the optimiza-
tion is done with a modified nonnegative least-square estimator,
the ISRA.10–12 In the first step, the PSF is updated by applying
the ISRA

EQ-TARGET;temp:intralink-;sec2.1;326;369

Pkðtþ 1Þ ¼ PkðtÞ
O ×O� × Ik þ

P
j≠k Ij × I�j × PjðtÞ × Ik

ðO ×O� þP
ðj≠kÞ Ij × I�j Þ × PkðtÞ

:

In the second iteration step, the PSF is fixed and the object is
updated in the same way. The iteration scheme is illustrated in
Fig. 1(b) on the right. To ensure convergence of both the PSF
and the object, a proximal minimization method is applied to the

Fig. 1 (a) Schematic of the SPIM setup and (b) illustration of the algorithm with the quadratically increas-
ing regularization (graph to the left), the coprimness prior (to neighboring slices are used to reconstruct
the red plane) and the iteration scheme to the right.

Journal of Biomedical Optics 096005-2 September 2016 • Vol. 21(9)

Benno et al.: Scattering correction through a space-variant blind deconvolution algorithm



algorithm.13,14 Alternatively to ISRA, a Richardson–Lucy
deconvolution could be used for deconvolution which should
result in a slightly longer computation time.

With increasing imaging depth, the images will suffer from
increased scattering. The idea in this work is to compensate for
this increased scattering by adjusting the algorithm along with
the imaging depth. A simple approximation for light scattering
in tissue is found in Refs. 15 and 16. With increasing depth, the
size of the PSF grows quadratically [see Fig. 1(b), where the
increase in regularization with depth is schematically plotted].
This simple model was implemented by the use of the Tikhonov
regularization.17 A higher Tikhonov regularization leads to an
increased PSF size in the reconstruction. This is not an intrinsic
effect of the regularization itself, but a combination effect with
the constant intensity constraint

P
Pi ¼ 1. The ratio between

the l1-norm (sum constraint) and the l2-norm (Tikhonov regu-
larization) is a measure of signal sparsity with higher values
describing sparser signals. Since the Tikhonov term reduces the
l2-norm of the solution (this is penalized in the final cost func-
tion), the regularized solution automatically has a lower sparsity,
i.e., it has a larger support (broader blur).

To reflect the increase in PSF size, the regularization param-
eter was increased quadratically, which was empirically found to
be an effective way to model the increased scattering. However,
no assumptions about the exact shape of the PSF are made. As a
result of this, even elliptical-shaped PSF (due to aberrations or
motion) can be corrected.

2.2 Spatially Varying Algorithm

In general, the scattering will not only vary with depth, but will
also depend on the x − y position within the sample. Hence,
Eq. (1) generalizes to

EQ-TARGET;temp:intralink-;sec2.2;63;392Izðx; yÞ ¼ Oðx; y; zÞ × Pzðx; yÞ þ N:

Space variant deconvolution has been successfully used by
other authors to remove motion artifacts.18,19 To account for this
spatial dependency, a Gabor transform (GTx) was added to the
algorithm to divide the original image into several smaller over-
lapping windows. The GTx in this algorithm20 is defined as
GTxðIÞ ¼ F ½I × hðxÞ0.5�, where hðxÞ is the window function.
In the presented algorithm, a sin ðxÞ2 is used to model the
window. Consequentially, the inverse transform is given as
I ¼ P

F−1½GTxðIÞ� · hðxÞ0.5. The original image is multiplied
by overlapping window functions and the iteration of the PSF
together with the deconvolution is done independently on each
window. In the end, the object is put back together with the
inverse transform. The size of the windows was chosen to be
large enough to most closely satisfy the

P
Pi ¼ 1 constraint.

Since the sample is not necessarily flat and the position of
the sample surface might vary from window to window, the
depth regularization by the adapted Tikhonov parameter was
done independently for each window. A threshold was used to
locate the z-position of the sample surface and the depth was
measured from there.

3 Results
We demonstrate the effect of the algorithm on a real dataset of a
common model organism for biological research, a transgenic
zebrafish embryo. The 3-day-old embryo of the type Fli1A
had its vasculature labeled with enhanced green fluorescent pro-
tein (EGFP). Imaging was done ex vivo with SPIM. The

microscope setup, which is schematically shown in Fig. 1(a),
was built by ZEISS, (Carl Zeiss AG, Jena, Germany) with a
custom-made Apo Z 1.5 × ∕0.37 objective (free working dis-
tance 30 mm). Two cylindrical lenses (f ¼ 30 mm) are used
to achieve a double-sided illumination with a light sheet thick-
ness of 16 μm (full width at half maximum). For detection, an
sCMOS camera (pco.egde, PCO, Kelheim, Germany) is
mounted on the microscope and the raw data are saved as a tiff
image stack. The fish was imaged sideways with a step size of
5 μm between adjacent z-planes. Two complete 3-D image
stacks of the zebrafish embryo were acquired, and the sample was
rotated by 180 deg between the image stacks. While reconstruc-
tion was only performed on the first image stack (S1), the sec-
ond image stack (S2) was used as a control image. Since the
imaging was done from two opposed sites, structures which
appear deep and scattered in S1 are more visible in S2. This cir-
cumstance is used to validate the reconstruction results from S1.
To be able to use the second dataset (S2) for validation, a region
from the tail of the fish with a width of about 175 μm was
selected. Figures 2(a)–2(c) show image slices from three differ-
ent depths: 105, 130, and 155 μm, respectively. For this sample,
the depicted depths are just in the range where scattering starts to
drastically reduce the image quality. In the left column, the origi-
nal slice from dataset S1 is presented, the column in the middle
shows the same slice after processing with the introduced algo-
rithm, and the column to the right shows the corresponding slice
from dataset S2.

The section shown was reconstructed using 25 windows. The
red arrows indicate regions where the reconstructed dataset
shows a clear improvement in image quality compared to the
original dataset S1. The structures which can be seen in
105-μm depth agree well with the structures in the second data-
set S2. The effect is still visible at a depth of 130 μm. The
good agreement with the control dataset S2 can also be seen
in Figs. 2(g) and 2(h), where line profiles through the slices
at 105- [Fig. 2(g)] and 130-μm depth [Fig. 2(h)] are plotted.
The original dataset S1 is plotted in blue, red represents our
reconstruction, and green corresponds to the control dataset
S2. The position of the chosen cut is indicated by a white dashed
line in Figs. 2(a) and 2(b). Deeper inside the sample, the ability
of the algorithm to correct the image diminishes. At a depth of
155 μm, the image improvement is no longer able to reveal
detailed structures.

The adaptive regularization prevents overregularization on
image planes closer to the surface. Images from all planes ben-
efit from the used prior, since the algorithm can correct for small
motion artifacts which alter the PSF shape of neighboring
planes. A region of interest covering part of the head and the eye
of the zebrafish is marked red in Fig. 2(d). Figure 2(f) shows a
projection of the original image stack. A projection of the recon-
structed image stack is depicted in Fig. 2(e). The overall thick-
ness of the head is around 320 μm. The blur due to scattering
and other effects is clearly reduced in the reconstructed image
and virtually no artifacts can be seen. Two red arrows mark
small details which are not/only partly visible in the original
maximum intensity projection (MIP) but are clearly visible in
the reconstructed MIP.

To further highlight the advantage over deconvolution algo-
rithms without the suggested prior and regularization, two slices
from the head region of the zebrafish are shown in Fig. 3. In the
upper row, Figs. 3(a)–3(d) depict a plane from a depth of around
140 μm. The lower row in Figs. 3(f)–3(i) show an image plane
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from the eye close to the surface at a depth of 5 to 10 μm. The
original image slices can be seen in Figs. 3(a) and 3(f), and the
result from our algorithm in Figs. 3(b) and 3(g). The two planes
in Figs. 3(c) and 3(h) were reconstructed without the coprime-
ness prior and with a fixed PSF. Instead of iteratively recon-
structing both the PSF and the image, a fixed (simulated)
Gaussian PSF was used. This kind of correction is widely
used in microscopic imaging to correct the optical aberrations
of the microscope. Figures 3(d) and 3(i) show a modified
version of our algorithm where we kept the prior but used a con-
stant regularization. The amount of regularization was opti-
mized for a depth of around 140 μm. To visualize the dif-
ference between the three reconstructions, Figs. 3(e) and 3(j)
show a cut through the images. The location of this cut though
is indicated by a white dashed line in the original image. In
Fig. 3(e), a cut through the plane of 140 μm depth is shown.
The original dataset is plotted in blue, the reconstruction with
fixed PSF in green, and the results from our algorithm in
red. The results from the constant regularization are identical
to the results from our algorithm since the regularization was
optimized for the depth of 140 μm. As expected, our algorithm
enhances structural contrast and is reducing the structure size to
correct the scattering, while the reconstruction with the fixed
PSF falls behind. In this depth, the PSF broadening due to scat-
tering is much larger than the microscope PSF, therefore, the
PSF size in the fixed reconstruction is not sufficient to yield
a better result.

The effect of scattering can be neglected at a depth of only
5 μm. Here, we assume the original image Fig. 3(f) to be very
close to the ground truth.

Applying excessive regularization can lead to artifacts in
planes close to the surface. Figure 3(j) shows a cut through
to one of these planes at a depth of 5 μm. The reconstruction
with constant regularization is plotted in cyan. One artifact of
overregularization could be observed in our simulation and
which is also visible in Fig. 3(j) is the formation of oscillations
near plateaus or structures of high intensity. The plot in Fig. 3(j)
shows an example of such an oscillation at a position of around
50 μm (marked the red arrow). Our algorithm and the fixed PSF
reconstruction are much closer to the original dataset at this
point. In the image, the oscillations might appear as a “shadow”
around bright structures and spatially overlapping objects of dif-
ferent intensity are artificial separated.

The selected step size of 5 μm was sufficiently small for a
stable reconstruction. In the shown datasets, most observed fea-
tures were at least three times larger than the step size. For sam-
ples with smaller labeled structures, a smaller step size together
with a thinner light sheet would probably be beneficial.

The results from the imaged zebrafish show that the algo-
rithm works on z-stacks of SPIM images. However, this does
not mean that the algorithm is limited to this imaging modality.
The algorithm should be able to work with other optical micros-
copy methods, as well as other imaging methods which are lim-
ited by the scattering of light in tissue. There are three
requirements which must be met: a full 3-D image stack is avail-
able, the step size between two adjacent planes is small com-
pared to the observed structures, and the scattering in the
sample can sufficiently be described by the introduced model.
While a single dataset was used for this demonstration, the algo-
rithm can be extended to handle multiple datasets to form one

Fig. 2 The images show details of a zebrafish from the genetic line Fli1A 3 days post fertilization. The
vasculature is labeled with EGFP. (a)–(c) show the same region from the tail of a zebrafish at different
depths (105, 130, 155 μm). The column on the left shows the original dataset (S1), the column in the
middle shows the reconstruction of the dataset to the left, and the column on the right side shows a second
dataset (S2), which was recorded from the opposite side of the fish to validate the reconstruction results.
(d) MIP of the original dataset. The red-colored box indicated the region which can be seen in (e) and (f). In
(e), the MIP of the reconstructed image stack can be seen, in (f), the MIP of the original image stack. The
red arrows indicate areas where the improvement can clearly be seen. (g) and (h) show cuts through the
slices in (a) and (b), as indicated by the dashed lines. The blue graph corresponds to the original dataset
S1, red to our reconstruction, and green represents the control dataset S2. Scale bar indicates 100 μm.
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sample, either with varying illumination or even with varying
views of the sample.

All animal experiments have been carried out according to
national and institutional guidelines of the Government of
Upper Bavaria and the highest standards of safety have been
maintained during the course of the project.

4 Conclusion
The acquired results show that the regularizer and prior pre-
sented in this work are able to partially correct for scattering
within the sample and enhance the image quality and depth. The
adaptive regularizer effectively avoids overregularization of the
reconstruction. In the specific case of the zebrafish sample, the
increase in imaging depth was about 30 μm. For this correction,
only information from a single image stack was used, together
with a simple model for the dispersive broadening of light in
tissue. Tikhonov regularization was used efficiently as a model
to account for an increased scattering, which comes along with
an increased imaging depth. The advantage of this approach is
that neither multiple image stacks have to be acquired nor adap-
tations on the hardware level are required and the algorithm can
be applied to already acquired data. The algorithm only requires
a volumetric image stack with a small step size between two
adjacent imaging planes, thus the algorithm should also be
able to work on other imaging techniques which provide a 3-D
image volume.
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