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Abstract. Colorectal surgery is the standard treatment for patients with colorectal cancer. To overcome two of
the main challenges, the circumferential resection margin and postoperative complications, real-time tissue
assessment could be of great benefit during surgery. In this ex vivo study, diffuse reflectance spectroscopy
(DRS) was used to differentiate tumor tissue from healthy surrounding tissues in patients with colorectal
neoplasia. DRS spectra were obtained from tumor tissue, healthy colon, or rectal wall and fat tissue, for every
patient. Data were randomly divided into training (80%) and test (20%) sets. After spectral band selection, the
spectra were classified using a quadratic classifier and a linear support vector machine. Of the 38 included
patients, 36 had colorectal cancer and 2 had an adenoma. When the classifiers were applied to the test set,
colorectal cancer could be discriminated from healthy tissue with an overall accuracy of 0.95 (�0.03). This study
demonstrates the possibility to separate colorectal cancer from healthy surrounding tissue by applying DRS.
High classification accuracies were obtained both in homogeneous and inhomogeneous tissues. This is a
fundamental step toward the development of a tool for real-time in vivo tissue assessment during colorectal
surgery. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.10.106014]
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1 Background
Colorectal cancer is the third most common cancer worldwide
and ranks as the fourth cause of death due to cancer.1 About
30% of the cases are located in the rectum.2 For patients with
rectal cancer, surgery, frequently combined with radiotherapy
or chemoradiotherapy, is the standard of care.3 The delicate
balance between complete removal of the tumor and the sparing
of vital surrounding structures is of utmost importance in rectal
cancer surgery. Perioperative tissue differentiation is complex,
especially when there is fibrosis after preoperative chemoradia-
tion. Inadequate tumor recognition can result in tumor positive
resection margins, generally defined as tumor tissue within
1 mm of the circumferential resection margin (CRM).4 In
patients with a positive CRM, the risk of local tumor recurrence
is significantly increased and survival is compromised.5

Although complete tumor removal is essential, damage to vital
surrounding structures should be prevented during surgery.
Damage to structures such as nerves may cause bladder and
sexual dysfunction.6,7 Currently, there is no intraoperative tech-
nique available for the assessment of the CRM or identification
of surrounding structures, such as nerve bundles, except for
the possibility to submit tissue for frozen section assessment.

Real-time tissue differentiation during surgery may aid the
surgeon in choosing the most optimal resection plane, enabling
radical tumor resection while sparing vital healthy tissue.

Optical tissue sensing by diffuse reflectance spectroscopy
(DRS) may offer the possibility for real-time tissue differentia-
tion during surgery. In DRS, broadband white light is sent
through a fiber into the tissue. After interaction with the tissue,
the light is collected and analyzed for spectral changes. These
changes are highly specific for the absorption and scattering
characteristics of the individual tissue types. In this way, the dif-
ferent tissue types can be distinguished based on differences in
the reflected spectrum.8 DRS has already been applied in several
other studies to differentiate tumor tissue from healthy surround-
ing tissues, e.g., in lung and breast.9–11

Although DRS has extensively been studied in many tissue
types, data on the application of DRS in colorectal cancer are
limited. DRS has mostly been evaluated during colonoscopy for
the detection and characterization of premalignant and malig-
nant tissue changes.12–16 However, in colonoscopy, the differen-
tiation that needs to be made is between healthy epithelium
and tumor tissue as assessed from inside the lumen. In contrast,
during surgery, the requirements for tissue characterization are
different and tumor tissue has to be identified from the outside of
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the bowel wall. Hence, differentiation has to be made between
tumor tissue, fatty tissue, and healthy bowel wall. Only a few
studies have applied DRS in a surgical setting for rectal
cancer.17,18 In a study from our group by Langhout et al.,
tumor tissue could be distinguished from healthy tissue,
colon wall, epiploic fat, and mesocolic tissue, with an accuracy
of 91%.17 An analytical model was used to obtain concentra-
tions of the constituents of the tissue. Based on the concentra-
tions, the measurements are classified. This analytical model
assumes that a semi-infinite homogenous optical medium is
measured. However, the colorectal wall is a layered structure
and thus not homogenous limiting the applicability of the ana-
lytical model to this problem as it leads to unstable and inaccu-
rate fit results. In addition, in our earlier study by Langhout
et al., it was not possible, based on histology, to determine inho-
mogeneity at the measurement locations, e.g., at tumor border
locations with more than one tissue type.

Before taking the next step to in vivo measurements, we
wanted to eliminate these limitations by quantifying the inho-
mogeneity of the sample volume as well as using a classification
technique less sensitive to such inhomogeneity. To this end,
we developed a method for more precise correlation between
measurement location and histopathology as well as a tissue
classification method less sensitive to inhomogeneity of the
measurement site.

2 Materials and Methods

2.1 Study Protocol

In this ex vivo study, patients from the Antoni van Leeuwenhoek
Hospital-The Netherlands Cancer Institute (Amsterdam, The
Netherlands) and the Slotervaart Medical Centre (Amsterdam,
The Netherlands) were included. The study was performed
under approval of the protocol by the Hospital Ethics Review
Board. All patients were undergoing surgery for colorectal cancer.

Immediately after surgical resection, three tissue samples
were taken from the specimen—tumor tissue, healthy colon
or rectal wall, and (pericolorectal) fat—and were placed into
separate pathology cassettes. Within 1 h after resection, DRS
measurements were performed on all three tissue samples.
Measurements of healthy colon wall were always performed
on the muscular layer, i.e., the muscularis propria. For the micro-
scopic verification of the DRS measurement locations after-
ward, the tissue samples were kept in the pathology cassettes.
Furthermore, an overview image and images of each measure-
ment recording the exact measurement locations (Fig. 1) were
captured by an RGB-camera. Per patient, three measurements
per location were performed, in at least three different locations
per tissue type. The three measurements per location were
averaged before the analysis. After acquisition of all spectra, the
tissue samples were returned to the Pathology Department
where the samples were further processed according to standard
protocols. The resulting slides were examined by a pathologist,
who marked the various tissue types. These annotated pathology
slides were visually correlated with the RGB images taken from
the measurement locations to identify the histological tissue
type at each measured location (Fig. 1).

Measurements on locations, which were on microscopic
analysis proven to be fat, healthy colorectal wall, and tumor,
were included in the further analysis. Measurements were
excluded when the measurement location was not present in
the pathology slide. Locations at the border of two tissue types
were initially excluded from the analysis to reduce bias. At
a later stage, these locations were analyzed separately.

2.2 Diffuse Reflectance Spectroscopy System and
Probe

The DRS system consists of a Tungsten halogen broadband light
source (360 to 2500 nm) with an embedded shutter and two
spectrometers. Together, the two spectrometers cover the visible
and near-infrared light range; the first spectrometer resolves

Fig. 1 Match of RGB image (a) with the measurement probe (P) and (b) pathology slide. In the pathology
slide, the measurement location is indicated by the black circle and the tumor area is indicated by
the red line.
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light in the visible range 400 to 1100 nm (Andor Technology,
DU420ABRDD), whereas the second resolves light in the
near-infrared range 900 to 1700 nm (Andor Technology,
DU492A-1.7) (Fig. 2). The spectrometers are controlled by
custom LabView software (National Instruments) to acquire the
data. The DRS system used in this study has been extensively
described previously together with the calibration used for
the system.19,20

In all patients, the same probe, shown in Fig. 2, was used to
obtain the DRS measurements. The probe consists of three opti-
cal fibers with a core diameter of 200 μm. One of the three fibers
was used to transport the light from the source to the tissue,
whereas the other two were used to transport the light from
the tissue to one of both spectrometers. The distance between
the two collecting fibers and the delivering fiber is 2 mm. This
gives a mean sampling depth of about 2 mm (max 4 mm).

2.3 Data Analysis

All analyses were performed using the perClass toolbox
(Academic version 5.0, PR Sys design, Delft, The Netherlands)
in MATLAB (version 8.5, MathWorks Inc., Natick,
Massachusetts). To create and test a classifier, the data were
first divided randomly into a training and test set. The data
were split such that measurements of one patient were not
divided between training and test set: 80% of the patients
were used for training the classifier and the remaining 20%
were used for testing the classifier.

Before training the classifier, the number of features used for
the classification was reduced with the use of spectral bands.
The spectral bands are selected using k-means clustering and
consist of continuous wavelengths with similar spectral inten-
sity. The mean intensity per spectral band is used as input for
the further classification method. After determination of the
spectral bands, two different classifiers were trained to separate
the three different tissue types. First, a quadratic classifier
was used to separate the measurements on fat tissue from the
measurements on healthy colorectal wall and tumor tissue.

Thereafter, a linear support vector machine (SVM) was used
to distinguish measurements on healthy colorectal wall from
tumor tissue. The SVM was optimized using a receiver operat-
ing curve (ROC) created with a 10-fold cross validation using
the training data. The optimal point selected in the ROC is the
point that maximizes the mean accuracy. The final classifier
pipeline included the spectral band selection, the quadratic
classifier, and the linear SVM (Fig. 3).

After training the classifiers, the classifier pipeline was
applied to the test dataset to assess the performance of the clas-
sifier pipeline on separating the data of the different tissue types.
The training and testing of the classifier was repeated 10 times,
with different randomly selected training and test sets, to obtain
a more precise accuracy.

Finally, the dataset, consisting of all measurement locations
containing one tissue type, was used to train the classifier
pipeline once more. In clinical practice, there is a chance of
measuring more than one tissue type in a single measurement.
To evaluate the accuracy of the developed classifiers in such
circumstances where only part of the measurement volume
contained tumor tissue, the measurements that contained more
than one tissue type were further analyzed using this final devel-
oped classifier pipeline. The proportions of the different types of
tissue involved were estimated based on visual correlation with
the pathology slides.

3 Results

3.1 Patients

Specimens were obtained from 38 patients: 22 male and 16
female, with a median age of 65 years (interquartile range 59
to 73). Most of the tumors were located in the sigmoid
(17 patients), followed by the ascending and descending colon
(14 and 5 patients, respectively) and rectum (2 patients). Of
the included tumors, two were adenomas and the remainder
was carcinomas, in which three were mucinous carcinomas
and the rest conventional adenocarcinomas. The pT stage of
36 carcinomas was as follows: 2 were pT1, 5 were pT2, 20
were pT3, and 9 were pT4.

3.2 Data

In total, 595 locations were measured, in which 147 were
excluded based on the microscopic assessment. Of these, 111

(a)

(b) (c)

Fig. 2 Probe used in this study. (a) A schematic image of the probe is
shown. (b) An image of the probe. (c) A schematic image of the tip.
The distance between the two collecting and the delivering fiber is
2 mm.

Fig. 3 Data analysis workflow. SVM, support vector machine.
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locations were excluded because they were not present in the
pathology slides, or the measured tissue type was not of interest.
The other 36 locations were analyzed separately during a second
analysis, because they were located at the border between two
tissue types.

Measurements made on the mucinous carcinomas and
adenomas were excluded from the dataset, because the number
of measurements done in these tissue types was too low to create
a separate group.

After exclusion, 448 locations remained with a clear-cut
microscopic tissue. From these locations, 134 were located in
fat tissue, 150 in healthy colorectal wall, and the remaining
164 in tumor tissue.

3.3 Training of the Classifier

After randomly selecting 80% of the patients, the training set
consisted of 30 patients and 373 measured locations. Based
on the spectra from the training set, 16 spectral bands were
selected (Fig. 4). The quadratic classifier, applied on the training
data, could distinguish fat from tumor tissue and healthy
colorectal wall with a mean accuracy of 1.00 (Table 1).

The ROC used for the optimization of the SVM is shown in
Fig. 5. The accuracy of the SVM on the training data was 0.92
(Table 2).

Once the quadratic classifier and SVM were combined
and applied to the training data, a mean accuracy of 0.95 was
obtained.

3.4 Performance of the Classifier on the Test Set

The test set consisted of 20% of the patients (n ¼ 8) and a total
of 75 measurement locations. The classifier pipeline applied to
the test set provided a mean accuracy of 0.95 in discriminating
tumor tissue from fat and healthy colorectal wall. The results
from the 10 iterations in the training and testing of the classifiers
are shown in Table 3.

Fig. 4 Spectral bands selected on the training set. The graphs
represent the mean spectra of fat (blue), healthy colon wall (green),
and tumor tissue (red). In light and dark gray, the selected spectral
bands are shown. Two bands, around 450 and 590, cannot be
visualized in the graph because they are too small.

Table 1 Results of quadratic classifier on training dataset.

Classification outcome

Fat Other Total

Histology Fat 112a 0 112

Other 1 260b 261

Total 113 260 373c

aSpecificity = 1.00.
bSensitivity = 1.00.
cAccuracy = 1.00.

Fig. 5 ROC of the SVM. The ROC was made with the use of a 10-fold
cross validation on the training data

Table 2 Results of SVM on training dataset.

Classification outcome

Colorectal wall Tumor Total

Histology Colorectal wall 115a 6 121

Tumor 14 125b 139

Total 129 131 260c

aSpecificity = 0.95.
bSensitivity = 0.90.
cAccuracy = 0.92.

Table 3 Results of 10 time iterations of the creation and testing of the
classifier. Mean and standard deviations of the accuracy per tissue
type obtained on the test set, over 10 iterations are shown. Finally,
the mean across all tissue types is shown.

Fat Colorectal wall Tumor Mean across all tissues

Mean 1.00 0.93 0.92 0.95

STD 0.00 0.05 0.09 0.03
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3.5 Performance Classifier on Measurements of
Border Locations

The classifier trained on the 448 locations with a clear-cut
microscopic tissue was applied to the 36 measurements that
were located at the border of two tissue types. The classification
of 29 (80%) of these locations was in accordance with the most
prominent tissue type observed in these border locations.

4 Discussion
In this ex vivo setup, colorectal tumor tissue can be distinguished
from healthy bowel wall and surrounding fat tissue, through
the use of DRS, with a mean accuracy of 0.95 (�0.03). The
distinction of fat from the other two tissue types is the most
accurate distinction (accuracy of 1.00).

The results obtained in this study are similar to the results
reported by Schols et al.18 and Langhout et al.17 The first
was able to distinguish tumor tissue from the surrounding tissue
including mesenteric fat and colon tissue with an accuracy of
0.99. However, no more than 60 tumor measurements obtained
from only 6 patients were included. This limited dataset will
increase the risk of overfitting. Moreover, the gold standard
used by Schols et al. is the classification achieved by visual
assessment by the surgeon. However, the final classification of
the CRM requires histopathological examination. Therefore,
it would be more accurate to use the histopathological classifi-
cation as the gold standard and not the visual classification as
assessed by the surgeon.

In the study by our own group reported by Langhout et al., an
analytical model was used, in which knowledge about the spec-
tra of various chromophores is used to fit a curve to the obtained
spectra. With the use of this knowledge, the assumption is made
that the measured tissue is homogeneous. The colorectal wall
exists of several layers of different tissues such as muscular
and connective tissue. Therefore, the measured tissue is far
from homogeneous and the analytical model cannot be applied
without any reservation. In this study, no a priori knowledge
about the homogeneity of the tissue was made. Moreover,
compared to the study reported by Langhout et al., this study
protocol was changed in such a way that the correlation of
the measurement locations with the histology was better docu-
mented. With the use of the RGB images made of every meas-
urement, the spectra could be linked accurately to the histology
annotated on the pathology slides. Furthermore, the design of
the probe used in this study is closer to a surgical tool compared
to the needle used in the study reported by Langhout et al.
Finally, the results obtained in this study are as good as the
results reported by Langhout et al., but were obtained without
the use of fluorescence data. This does not only decrease the
number of measurements needed to obtain a high accuracy,
but it also reduces the costs by essentially simplifying the instru-
mentation and reduces the time needed for the measurements
as the fluorescence signal is weak and requires a much longer
integration time (s) than the DRS measurements.

To classify all measurements, two classifiers were used in
this study. First, the most prominent spectrum of fat was differ-
entiated from healthy colorectal wall and from tumor tissue,
both being classified into the same class. Second, to separate
healthy colorectal wall from tumor measurements, a more com-
plex classifier was needed since the differences in the spectra of
both tissue types are subtle (Fig. 4). Because classification was
reduced to a binary task, a linear SVMwas used to separate both

tissue classes from each other. For well-defined tissue classes,
this approach resulted in an overall accuracy of 95%.

In this study, 36 locations, which were located at the border
between two tissue types, were classified as well. With an accu-
racy of 80%, these locations were classified as the tissue type
that was most prominently present in the measured volume as
judged histologically. It should be noted that the histological
classification of the border locations may be less accurate
than the histological classification of the locations containing
a single tissue type. Small inaccuracies in matching the RGB
images to histopathology may evidently affect inhomogeneous
measurement volumes more than homogenous measurement
volumes. During surgery, there is a fair chance to obtain such
border measurements. In fact, the entire measurement procedure
is intended to assist the surgeon in assessing such locations.
Therefore, these locations at the border of two tissue types are
of great importance to the further development of an in vivo
application. In addition, the absolute minimum volume of tumor
tissue that can be measured should be further determined. With
the current measurement technique, in which we measured
a volume of about 2 mm3, it was not possible to determine
a lowest detection level for small amounts of tumor tissue.

The main limitation of this study is the generalizability of the
results. Neither the quadratic classifier nor the SVM provides
the wavelengths or tissue constituents on which the distinction
is based between tumor tissue and the healthy surrounding tis-
sues. Therefore, from our model, it is not known on what fea-
tures fat can be distinguished from tumor tissue and healthy
colorectal wall, and on what basis healthy colorectal wall can
be distinguished from tumor tissue. As a result, it is not possible
to generalize the results obtained in this study to an in vivo
setting or to a differently designed measurement set up. In
the transition to the in vivo setting, there will be many changes
that might influence the optical spectra. For example, blood, as
may be present during surgery, may have a major influence
on the obtained spectrum. Still, as shown by Spliethoff et al.,
the influence of blood in lung biopsies may be minimal
depending on the attribution of the different wavelengths to
the classification.21 The spectral bands used in this study
included the entire blood absorption band (450 to 600 nm) in
one spectral band. As shown in Fig. 4, the intensities of the
three mean spectra do not differ much in this spectral band.
This suggests that the absorption of blood may not have
a major influence in the present classification.

The fiber distance used in this study was 2 mm; this implies
that the measurements were made at a depth of about 2 mm in
the tissue. To be useful in colorectal surgery, a sampling depth of
about 5 mm is required. To increase the sampling depth of the
DRS measurements, the fiber distance needs to be increased.
However, with an increase in fiber distance, the entire sampling
volume increases. This results in less sensitivity of the
DRS measurements to small amounts of for instance tumor.
Therefore, a study needs to be conducted to determine if the
DRS measurements are still able to detect tumor at 5-mm
depth using increased fiber distance.

In this study, fibrosis (connective tissue without tumor cells)
was not included in the measured tissue types, which is another
limitation of this study. Patients with advanced stage rectal
cancer almost always receive neoadjuvant chemoradiotherapy.
These patients are highly likely to develop fibrosis on the radi-
ation site. Fibrosis is challenging to distinguish from tumor
tissue through the surgeon’s visual assessment alone. Therefore,
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it would be beneficial to include this tissue type when real-time
tissue classification is done. In this study, fibrosis was not
included because of the limited occurrence of fibrosis in the
examined specimens.

For future research, two main challenges need to be
addressed. First of all, fibrosis needs to be added to the tissue
types that are examined. Therefore, an additional study needs to
be performed that concentrates on rectal specimens of patients
who underwent neoadjuvant chemo- and radiotherapy. Second,
the advance to an in vivo setting needs to be made. The results of
an in vivo study will be closer to the ultimate application of
the real-time tissue assessment. Moreover, an in vivo study will
give more insight into the workflow during surgery, which will
provide a basis for the design and use of a final device used for
real-time tissue assessment. The challenges of an in vivo study
are first of all the identification of tumor tissue based on the
visual assessment of the surgeon. Furthermore, the correlation
with pathology will be challenging in an in vivo setting.

5 Conclusion
In this ex vivo study, the distinction between tumor tissue and
healthy surrounding tissue in patients with colorectal cancer can
be made with a high accuracy through the use of DRS measure-
ments. The mean accuracy of the classification is 0.95 (�0.03).
However, the results of this study are still limited to this study
setup and protocol. Future research must be focused on the
translation to the in vivo setting. This should ultimately result
in reliable real-time tissue assessment leading to the increase
of radical resections and decrease of postoperative morbidity
rates after colorectal cancer surgery.
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