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Abstract. We introduce the FullMonte tetrahedral 3-D Monte Carlo (MC) software package for simulation, visu-
alization, and analysis of light propagation in heterogeneous turbid media including tissue. It provides the highest
computational performance and richest set of input, output, and analysis facilities of any open-source tetrahe-
dral-mesh MC light simulator. It also provides a robust framework for statistical verification. A scripting interface
makes set-up of simulation runs simple, including parameter sweeps, while simultaneously providing custom-
ization options. Data formats shared with class-leading visualization tools, VTK and Paraview, facilitate
interactive generation of publication-quality fluence and irradiance maps. The simulator can read and write file
formats supported by other similar simulators, such as TIM-OS, MMC, COMSOL (finite-element simulations),
and MCML to support comparison. Where simulator features permit, FullMonte can take a single test case, run it
in multiple software packages, and load the results together for comparison. Example meshes, optical proper-
ties, set-up scripts, and output files are provided for user convenience. We demonstrate its use in several test
cases, including photodynamic therapy of the brain, bioluminescence imaging (BLI) in a mouse phantom, and
a comparison against MCML for layered geometries. Application domains that can benefit from use of FullMonte
include photodynamic, photothermal, and photobiomodulation therapies, BLI, diffuse optical tomography, MC
software development, and biophotonics education. Since MC results may be used for preclinical or even clinical
experiments, a robust and rigorous verification process is essential. Being a stochastic numerical method, MC
simulation has unique challenges associated with verification of output results since observed differences may
be due simply to output variance or actual differences in expected output. We describe and have implemented
a rigorous and statistically justified framework for comparing between simulators of the same class and for per-
forming regression testing. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or

reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.23.8.085001]
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1 Introduction
Monte Carlo (MC) modeling of the Boltzmann (radiative trans-
fer) equation for light propagation has a long history,1 including
previous 2-D open-source implementations for layered media
(the venerable MCML2) and 3-D open-source efforts based
on cubic voxel models3–5 or tetrahedral mesh representations,
such as MMC6 and TIM-OS.7 Unlike the commonly used dif-
fusion approximation method, which makes physical approxi-
mations and is therefore inaccurate under certain conditions,8

MC methods will converge toward the exact solution as the
number of photon packets is increased, making them an attrac-
tive “gold standard” option for nontrivial geometries. The refer-
ences cited above provide thorough coverage of the universally
adopted “hop, drop, spin” kernel and its associated variance-
reduction techniques, so we will not re-explain them here.

We prefer a tetrahedral mesh geometry over a cubic grid
voxel approach for both computational efficiency in low-scatter-
ing voids, as well as its ability to approximate smooth surfaces,
which is important where abrupt changes in optical properties
occur.9 In cases with refractive index changes (notably areas with
air- or liquid-filled voids), the lack of smooth normals causes

inaccurate refraction calculations. When disparate materials
meet at a curved surface, voxels containing a mix of materials
also hinder estimation of fluence from the absorbed photon
weight. By contrast, a tetrahedral-mesh approach permits arbi-
trarily good approximation to curved surfaces, as well as the
ability (supported in FullMonte but not TIM-OS or MMC) to
directly score fluence transmission through interior triangular
mesh faces where desired. We use this feature to simulate
fluence in the very thin surface layers such as the urothelium in
the bladder.

Despite on-going advances in processor and compute-
accelerator technologies, MC simulation run-time remains a
constraining factor. Compared with cases constrained by sym-
metry (e.g., MCML’s cylindrically symmetric geometry reduces
the dimensionality), working with 3-D heterogeneous tissue
requires more packets and hence more run time for accurate
results. The time and expertise required to develop, validate, and
tune high-performance MC software remain substantial as well.

Our open-source package “FullMonte” addresses all of these
concerns by providing the highest-performance open-source
simulation kernel, augmented by scripting visualization and
analysis capabilities that are easy to use and customize.
Performance is achieved through the use of low-level optimized
C++ code described in Sec. 6. Since the code is interoperable
with other MC simulators and comes with both unit and
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regression tests, users may have confidence in results obtained
by FullMonte and may easily cross-verify them with other sim-
ulators using our statistical framework. Not only is such com-
parison possible, it is also integrated within an automatic test
suite for multiple test cases and can be run at any time with
a single command to give a summary of test pass/fail results.
For ease of use, integration of the Tcl (“tickle,” Tcl developer
xchange www.tcl.tk) scripting language relieves the burden of
reading and writing C++ code for most users while permitting
efficient batch processing. By connecting to the widely
used open-source, cross-platform Visualization Toolkit (VTK,
Kitware, Inc., New York, New York www.vtk.org), and the
Paraview GUI built on top of it (Kitware, Inc., New York,
New York www.paraview.org), we also enable interactive, pub-
lication-quality 3-D graphics with a powerful and intuitive inter-
face used by many leading organizations including US national
labs. The C++ code provides many customization points for
software developers to build on, avoiding duplication of effort
in recreating and reverifying the basic kernel before testing new
types of MC data collection, simulation methods, or light
sources. By building on top of the provided platform, developers
can save considerable time in designing, tuning, and verifying
their code and storing and analyzing data.

Users are invited to register free of charge at our Gitlab site
GitLab, San Francisco, California (www.gitlab.com/FullMonte/
FullMonteSW) and view the most up-to-date code, testing
results, Docker images, wiki tutorials (including inputs, outputs,
and visualizations), and issue tracker. The remainder of the
paper shows the highlights of that content: how to install and
run the simulator, use cases and means of extending the
simulator’s functionality, verification methodology, verification
results against other simulators, and performance comparisons.

2 Using the Simulator
To illustrate the use of FullMonte, we provide in the package the
data and scripts necessary to simulate photodynamic therapy
(PDT10) of the brain using an interstitial point source. Since
PDT relies on light-activated drugs, the treatment efficacy
depends on the fluence, throughout the target volume.

The easiest way to install and run FullMonte is through its
Docker image available from our Gitlab registry (www.gitlab
.com/FullMonte/FullMonteSW). Docker, San Francisco,
California (www.docker.com) is a lightweight virtual machine
that runs on Linux, Mac, and Windows, and provides a way
for differing host operating systems to run programs in a uni-
form environment. It runs images (which contain their own
files, libraries, programs, and configuration settings) in isolated
environments called containers. There are also convenient facili-
ties for “pulling” images from remote servers when new ver-
sions are available. Since all necessary data are stored in
the image, FullMonte can run from its Docker image without
the need to install prerequisite libraries or compile code; on
starting the container, the simulator is ready to run.

The Tcl scripting interface exposes all the functionality of
the underlying C++ classes. On a successful install, there
will be a program tclmonte.sh, which can be called with
a single argument specifying the Tcl script file to run. Most
of FullMonte’s examples are provided as Tcl scripts within
the Docker image (see container path /usr/local/
FullMonteSW/share/Examples), so that users may set
up experiments by modifying existing scripts rather than starting
from scratch. Several of the scripts come with comprehensive

tutorials on the Gitlab wiki (www.gitlab.com/FullMonte/
FullMonteSW/wikis), which include step-by-step discussion
plus all input data, scripts, output data, and visualization files
required to replicate the figures. Paraview can load and save
its program state (data files, filters, color map, viewpoint, etc),
and we provide such state files with the examples to make figure
generation simple.

New users should start by locating a suitable example in our
wiki, running it, confirming that the output is as expected, and
then modifying the associated script appropriately to change the
mesh, optical properties, source characteristics, packet counts,
etc. Tcl’s syntax is simple, admitting a single-page description
yet still permitting access to all of FullMonte’s predefined
classes, whose capabilities include batch runs, material property
perturbation, source placement, loading and saving any of the
supported file formats, simple GUI support with Tk.

Within the FullMonte distribution (Docker image or fully
compiled suite), there are also command-line tools designed
to present FullMonte in a way that mimics the calling conven-
tions and input file types (meshes, sources, optical properties) of
other simulators (MMC, TIM-OS). These are primarily useful
when cross-verifying with the other simulators. To understand
how those programs work, please consult the documentation for
MMC or TIM-OS, the FullMonte wiki, and the built-in test
cases within the source tree.

Advanced users and developers may also opt to install
directly from source code using the Git repository, which
requires installation of several prerequisite packages and is con-
siderably more time-consuming. The only benefit of that
approach is the ability to customize the code. Since FullMonte
is open-source with a modular design, advanced users may also
customize and/or link FullMonte into their own C++ code, as we
have done to apply FullMonte to convex optimization of PDT
source power allocation and placement.11

Below, we provide details of each of the phases of an
in-silico experiment with FullMonte.

2.1 Running Your First Simulation on Docker

After creating a Gitlab user account (replace user.name
below with your account name), you can login to the registry
and run the image by typing: docker login -u user.name
registry.gitlab.com/fullmonte/fullmontesw
/fullmonte-run docker run –pull –rm -ti -v
/host/path:/output registry.gitlab.com/
fullmonte/fullmontesw/fullmonte-run

Note that only a single login command is required per ses-
sion. The options provided cause Docker to pull an updated
image from the registry (–pull) when available, delete the con-
tainer when it is finished running (–rm), make a host path acces-
sible to the container (/host/path, which should be replaced
by the location you want the output data to appear; data written
to /output in the container will appear on the host at that
path), provide a terminal (-t) and run interactively (-i).
Within that container, you can run a simulation of a point source
located inside the bladder by invoking the simulator inside the
container and giving it a script name to run: cd /output
tclmonte.sh /usr/local/FullMonteSW/share/
Examples/BladderDirectional/sim.tcl

Simulation time will depend on machine performance but
may be a few tens of seconds. The wiki page “directed surface
scoring” gives a detailed walkthrough of the simulation results
and visualization.
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2.2 Problem Definition

Inputs which define the problem—geometry, optical properties,
and source configuration—are the key arguments to the program
that change the expected result. The FullMonte kernel itself
outputs its results in terms of packet weight. If N packets are
launched, then the total energy absorbed plus exited from the
system will equal N arbitrary units. To model total energy emis-
sion from the source E0 in physical units (e.g., Joules), the
results must be normalized by a factor of E0∕N, which is
a task left to the user.

Technically, packet count then alters the expected output, but
only by a proportionality constant that should be removed in
postprocessing. Its most important effects are on result variance
and run time, so we class it as a runtime option instead of part of
the problem definition.

The units of length must be consistent between the mesh and
the optical properties, which are given in inverse-length units,
and results will be reported in the same units. For instance, if
a mesh is given in mm, then the optical properties will be inter-
preted as mm−1 and after applying the EnergyToFluence
filter on the data, results will be in packet weight

mm2 (which can be
rescaled to Jmm−2 orWmm−2 as desired). A mismatch between
the mesh unit and optical-property unit will cause the simulator
to use incorrect optical properties.

2.2.1 Geometry

Delineation of medical images and conversion of the results into
a volumetric tetrahedral mesh (www.cgal.org) are complex tasks
but both commercial and open-source (segmentation: ITK-Snap
www.itksnap.org, meshing: CGAL www.cgal.org) tools exist,
so we provide only file import-export facility in FullMonte.
While there are many file formats, tetrahedral meshes are fun-
damentally composed of points and tetrahedra, with each tetra-
hedron being assigned to a region. Points are specified in a list
with ðx; y; zÞ coordinates for each. Tetrahedra are given by
the index in the point list for each of its four vertices and
an associated material code. FullMonte can read and write
the mesh formats used by other simulators (TIM-OS, MMC),
the COMSOL multiphysics package, and the open-source
Visualization Toolkit (VTK). The Colin27 brain mesh produced

by Fang6 and distributed with MMC is used below as an exam-
ple (Fig. 1) with over 400,000 tetrahedra.

When asked to handle MCML layered geometries, each layer
is represented as a degenerate tetrahedron with two parallel faces
in the xy-plane (the top and bottom layer bounds) and two faces
at infinity. Layered cases may therefore be run through the
unmodified tetrahedral kernel.

2.2.2 Optical properties

Each of the regions (subsets of the tetrahedra with identical
material code) is associated with a material for simulation.
FullMonte currently supports a maximum of 32 distinct materi-
als, though that could be increased without major effort if
needed. Optically, each material is described by its scattering
coefficient μs, absorption coefficient μa, anisotropy factor g,
and refractive index n, which can be provided by TIM-OS or
MMC formatted text files, or directly in the body of a Tcl script.
The scattering and absorption coefficients are specified in
inverse length units, which must match the units of the geometry
description.

2.2.3 Light sources

FullMonte currently supports many source types, a superset of
its peer simulators with the exception of MMC’s wide-field
illumination:12 isotropic point source, isotropic line source,
isotropic emission from within a tetrahedral element, pencil
beam, ball [sphere discretized into a set of tetrahedral mesh
elements, useful for bioluminescence imaging (BLI)13 experi-
ments], and composite sources consisting of any weighted
linear combination of the above.

We place sources by using FullMonte to convert the input
mesh from its native format to VTK and loading it in Paraview
for visualization. Paraview provides widgets for placing geo-
metric primitives like points, lines, and spheres as well as facili-
ties for picking geometric elements like individual tetrahedra
from the mesh. The resulting parameters can be provided
through the scripting interface (or indeed C++ code if the
user is linking FullMonte with their own program).

Settings can also be saved to or read from text file formats
using a few lines of script. When running MMC-format cases,
the source parameters are extracted from a JSON settings file.
FullMonte can also read TIM-OS’ text source definition, which
is limited to combinations of point, triangle, tetrahedral, and
pencil beam sources. Due to its radial symmetry, MCML allows
only a pencil beam normally incident on its layers, so the use of
FullMonte’s layered kernel implies that choice of source.

2.3 Runtime Options

By runtime options, we mean settings which impact the behav-
ior of the simulator in ways other than the first moment of the
output distribution. The expected results are invariant to the run
parameters, but the result variance, the distribution of variance
across different output quantities, and the computational run
time may change significantly.

The number of packets to simulate (N0) is the most important
such quantity, since run time is proportional to N0 while output
quantity uncertainty (standard deviation) decreases in propor-
tion to

ffiffiffiffi
N

p
0. Users will need to assess qualitatively or quanti-

tatively what level of accuracy is acceptable given the runtime
cost. We opt for 106 as a default value that often yields a fluence

Fig. 1 Cutway view of Fang’s Colin276 mesh used for testing, a good
example of adaptive mesh sizing and representation of curved
surfaces.
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map of subjectively reasonable quality within seconds to tens of
seconds for the BLI and PDT cases tested so far. The packet
count required to achieve a given level of quality depends on
a complex interaction of mesh fineness, optical properties,
the output quantity of interest, tolerable level of variance,
and region of interest. Unfortunately, a general method for deter-
mining an acceptable packet count for a given application does
not exist so the user must rely on judgment and experiment.
When examining linear combinations of elements, or when
the output quantity otherwise contains some variance-reducing
tendency (e.g., dose-volume histograms for PDT),14 then far
fewer (10× or more) packets may be required with correspond-
ingly faster run time. For high spatial resolution, low desired
output variance, and low-fluence/low-interaction regions of
interest, orders of magnitude more packets may be called for
to get acceptable output statistics. The user can assess result
variance by running multiple times with different random
seeds. FullMonte provides both command-line and scripting
methods to generate per-seed results or a mean–variance
summary.

For finer control of time-quality tradeoffs, the roulette
threshold15 (weight threshold below which packets are subjected
to roulette elimination) modifies the run time-variance tradeoff
in elements with very low fluence. Since roulette bundles a num-
ber of low-weight packets into a single higher-weight packet,
increasing the threshold will speed up the simulation at the
cost of fewer but higher-weighted absorption events (i.e., higher
result variance) in low-fluence regions. MMC provides a com-
mand-line option with a default value of 10−6, whereas TIM-OS
has an unnamed constant fixed at compile time (TIMOS.cpp line
1782), FullMonte has multiple ways to set the value which
defaults to 10−5, and MCML is fixed at compile-time to 10−4

(MCML.h line 74). To compare simulator performance and
quality fairly, this value should be set equally for all parts of
the comparison. We use FullMonte’s value of 10−5 when com-
paring with MMC and TIM-OS, and 10−4 to match MCML.

2.4 Simulation Kernel

FullMonte’s kernel is designed so that the same photon-propa-
gation logic can be used to capture a number of different life-
cycle events in various and configurable ways detailed in Sec. 3.
The most common case—scoring surface exit and volume
absorption events—is the one provided with the standard com-
mand-line interface. It outputs the total, non-normalized (non-
unitized) packet weight exiting through each surface face and
deposited in each volume element. These choices reflect
a design preference for maximal simplicity so that the output
from the kernel is exactly what was recorded in the simulation,
with all normalization, unit conversion, and changes of physical
quantity (e.g., energy to fluence) being deferred to a postpro-
cessing stage. Conservation of energy can be checked by sum-
ming the total surface and volume scores, and comparing against
the total launched.

When cross-verifying FullMonte, we found and reported
a bug in MMC that appears under certain combinations of
options (Havel raytracing, energy output, piecewise-constant
scoring basis -O E -C 0 -M H) that is a direct artifact of a
more-complex control path in which the control flow through
photon tracing depends on multiple command-line options:
ray-tracing method, output type, and output coordinate basis.
Our election to keep photon propagation, event scoring, and

output postprocessing code fully separate with well-defined
interfaces reduces the probability of such errors.

2.5 Output Data

When the result is normalized by the number of packets (a factor
of 1∕N0), it gives a Green’s function solution in units of dimen-
sionless weight. Packet weight is analogous to photon arrival
probability (directly proportional to energy via Eγ ¼ hν), so
multiplication of the Green’s function by the appropriate num-
ber of physical photons emitted Nγ , or the total energy E0 emit-
ted gives the result as a physical quantity. The results may also
be interpreted per unit time as photon or radiant flux.

FullMonte also has the ability to score the energy crossing
internal boundaries, which can be useful for modeling thin
layers, such as the urothelium for PDT of the bladder.
Meshing such structures directly is computationally expensive,
may produce meshes with many small tetrahedra that degrade
quality (in terms of output variance) and numerical stability.
Separate logging of photon transit through the layer is preferable
because it avoids these issues. A detailed example is provided
with the source distribution and Docker image (Examples/
BladderDirectional).

2.6 Postprocessing

From the raw exit and absorption scores (s) and a specification
of total energy emitted (E0), FullMonte can produce a number of
different outputs. Per volume element, it can provide physical
energy absorbed by rescaling weight (E ¼ s∕E0), average
energy density (E∕V), or average fluence (Φ ¼ E∕Vμa). Over
the surface, typically, it is the emittance (exit energy per
unit area) that is of interest. Other options include dose–
volume and dose–surface histograms for regions partitioned
by tissue type.

2.7 Visualization

Visualization is made possible using VTK. Basic Tcl script users
can export .vtk files for viewing in Paraview, as shown in the
examples. More advanced users can automate generation of
figures using VTK’s own Tcl scripting interface from the
files generated. VTK and Paraview provide their own extensive
documentation and tutorials showing how to use them.

2.8 Result Export

We provide simple text-format export facilities so that the mesh
and associated per-element data can be saved and read into other
postprocessing tools, such as MATLAB.When running multiple
simulations of the same problem, we define a mean–variance
file format for future comparison. Data from TIM-OS, MMC,
and MCML can also be imported for comparison or conversion
purposes.

3 Extensibility and Use Cases
Those interested in simply using FullMonte may safely skip
this section; anyone interested in understanding how it was
constructed or in customization should find this of interest.

Since it was designed with modularity and customization in
mind, it is easy for developers to add features to FullMonte
while preserving the correctness and performance of the existing
code. We discuss in Sec. 4 a set of verification strategies that
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reduce the probability of modifications introducing undetected
bugs. Functionalities, such as reading input, simulating, post-
processing, and writing output, are grouped into related con-
cepts (families of related C++ classes) in FullMonte, including:

• Reader—reads geometry definitions from various formats

• Scorer—processes event notifications from the photon-
tracing logic to accumulate output scores

• Kernel—binds one or more scorers to the photon-
tracing loop

• Query—takes output data and converts or compares it

• Source—a theoretical description of a light source

• Emitter—a concrete class responsible for launching pho-
tons described by a source into the tracing loop given
a random-number generator

• OutputData—holds output scores from the scorer

• Writer—writes geometry, material, source, and output-
data information to various file formats.

The various concepts are largely independent and relate only
through well-defined interfaces, which helps to localize the
scope of changes to be made to add new features. None of
the extensions listed below required any change to the core pho-
ton-propagation logic, which benefits simplicity, verification,
and maintenance.

3.1 MCML Support

For verification, we modified FullMonte to support MCML-like
geometry definitions and scoring since it is widely used and
trusted. Handling the problem description required creation
of a new reader class to handle the.mci file format, extracting
the material definitions, layer information, and scoring grid
information. We created a facility to convert the layered geom-
etry into a degenerate tetrahedral mesh in which the top and bot-
tom faces of each tetrahedron are parallel in the xy-plane,
and the other two are at infinity. Since FullMonte typically
scores absorption per tetrahedral element, we created a new
Scorer class that accepts absorption events and accumulates
them to cylindrical bins defined by ðr; zÞ as MCML does. Last,
the conversion from output weight score to fluence used the
existing EnergyToFluence class and required only that the
newly created layered geometry description provide the volume
and material identifier for each bin. The core photon-tracing
logic is completely unmodified compared to the normal 3-D
tetrahedral mode, meaning the change set is confined to a small
amount of new code and no modifications to the propaga-
tion core.

3.2 Path Tracing

To visualize the operation of the simulator for debugging and
educational purposes, we produced a version of the simulator
to capture the full position trace of each photon, producing
Fig. 2. We added a PathScorer that concatenates
the positions from event notifications of launch, reflection,
refraction, and scattering. To invoke that scorer, we created a
TetraTraceKernel that binds the standard core loop to
the PathScorer, without altering the core photon-propaga-
tion logic. After postprocessing to reformat the data, the result
is saved as a .vtk file for visualization.

3.3 New Source Types

Physical light sources are represented by two classes in
FullMonte: a class which specifies the logical description of
the optode and an Emitter-derived class which has the
machinery to use a random-number generator to emit photons
matching that description into a specific mesh. We provide an
EmitterFactory class that maps logical source descriptions to
concrete Emitter derived classes. When launching photons,
we use C++ virtual function mechanism to dispatch a launch
request from the kernel, which knows only that it has a pointer
to some kind of Emitter, to a specific derived class which
handles the details. Since photon launch is infrequent compared
to ray-tetra intersection, scattering, and other operations, the
overhead imposed is negligible.

4 Verification Methodology
Unit tests are provided to test that key pieces (e.g., random
number generation, scattering, photon launch) behave in the
expected ways. Since other MC simulators exist which employ
the same roulette termination scheme, we validate against
those—TIM-OS and MMC for tetrahedral meshes, MCML for
layered geometries—to check that overall results are correct.
As development proceeds, we rely on regression tests to check
that future versions of the software produce output that con-
forms to the previously accepted version.

Since MC simulation is by nature a stochastic approximation
to the real solution, the output will always have some level of
variance, which must be accounted for when comparing results
within or between simulators to determine if the difference is
due to random fluctuation or a systematic difference. Random
fluctuation is expected but systematic difference suggests a dis-
agreement in result that needs to be explained. Previous efforts
have tended to focus on qualitative comparison of results6 or on
aggregate reflectance/absorption with standard deviation,7 or on
imposition of arbitrary error bounds for very long (high packet
count/low-variance) simulation runs.7 In contrast, we introduce
here a statistically justified comparison method based on the
well-known χ2 test.

Software testing tends to be effective only when it is repeat-
able, automatic, simple, and has clear results. We have

Fig. 2 A BLI testcase using an embedded source with 1k packet
traces simulated by TetraTraceKernel, rendered by Paraview (script
file mouse_paths.tcl, state file MouseTrace.pvsm)
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incorporated a number of such formalized tests into FullMonte,
so that both users and developers are more likely to catch faults
in their code. The statistical method adopted for comparing data-
sets has the advantage that the developer may choose the trade-
off of run time cost versus sensitivity (both increase with N0).

4.1 Internal Consistency Checks

In addition to the primary outputs of exit and absorption photon
scores, the simulator also produces other quantities of interest to
assess performance and check conservation of energy. All pro-
vided FullMonte kernels return a result specifying the disposi-
tion of weight between total absorption, roulette increase/
decrease, and exit. The values can be compared against the totals
launched to verify that all energy is accounted for (Table 1 sum-
marizes lifecycle events), where a conservation failure would
indicate either a problem in the scoring logic, an unaccounted
loss of weight within the kernel, or a numerical problem in
weight accumulation.

MMC invests some extra computational effort in performing
double-precision Kahan summation for each mesh element
score to guard against underflow. We opted instead for higher-
performance simple summation at double precision and check
ex post if there are problems arising from that choice in the
form of lost weight, an event which has not yet arisen. The
total over all elements for absorption and exit can be checked
against the sum of the per-element scores as well to identify
whether numerical underflow is a significant issue. Such checks
would also catch catastrophic failures of simulation logic in
which packets are lost, which is primarily useful for developers
to quickly identify logical errors or numerical precision issues
when making changes in the core photon propagation loop
(which ought to be infrequent, per Sec. 3).

Checks take the form of both rigid conservation laws which
must be true to within rounding error and statistical checks
which are zero-mean with an associated variance. Physically,
photons entering the tissue will either exit or be absorbed, so
the physical energy launched should equal the energy absorbed
plus exiting. In simulation, roulette is a random process intro-
duced as a computational shortcut that preserves expected con-
servation of weight (energy), so weight added via roulette wins
less that dropped by roulette termination should equal zero
within statistical variance. The results should account for all
energy so the total weight sourced (by launch and roulette)
and disposed should be equal to within rounding error; any

imbalance in excess of the roulette variance can be attributed
to numerical precision effects.

Regardless of the scoring system (spatial binning) employed,
the total of each absorption or exit score should also match that
shown in the conservation scorer to within rounding error.
Intuitively, the total weight of all photon absorption or exit
events ought to equal the sum over all volume and surface
elements.

4.2 Unit Testing

The source code provided for FullMonte includes a number of
unit tests verifying key functions, such as the distribution of
photons emitted by the various Emitter classes, the distribu-
tions of the random-number generators, and geometric primi-
tives, such as ray-tetrahedron intersection tests crucial to the
success of the kernel. After compiling the code, a complete
set of unit tests can be run by the command ctest -R
unit_ to provide a summary with the number of tests run
and identification of any failing tests. Provision of unit tests
also provides a quick check that any new feature or performance
enhancement has not caused the existing code to become inac-
curate, so that developers may work to improve performance
or features but remain confident that key specifications are
still met.

4.3 Cross-Verification with Other Simulators

In the physical system being simulated, the radiance Lðr; n̂; tÞ as
a function of position r, direction n̂, and time t must be a sol-
ution to the radiative transfer equation. The MC scoring system
traces photon packets through the geometry, reporting photon
lifecycle events (e.g., launch, arrival at an element boundary,
refraction, reflection, absorption, scattering, domain exit) to
Scorer classes, which accumulate scores to approximate
physical quantities of interest. Typical scoring arrangements
include the energy absorbed within a volume or passing through
a surface, though they can be further refined by subdividing into
slices of time, angular resolution, etc. We consider the statistical
distribution of a single packet’s contribution S to the output
score vector in terms of its mean μ and variance σ2. In any cor-
rect MC formulation, the mean μ must be proportional to the
physical solution dictated by the radiative transfer equation.
On the other hand, the per-packet variance and its distribution
between the output elements depend on the exact MC formu-
lation and variance-reduction schemes (most notably here,
roulette form and parameters).

To conduct a simulation, we generate N independent photon
paths whose contributions to the score vector s are drawn from S
and sum their contributions to produce an output score x with
elements xj ¼

P
N
i¼1 sij. Its expected value and variance are

given by

EQ-TARGET;temp:intralink-;e001;326;187E½X� ¼ Nμ; (1)

EQ-TARGET;temp:intralink-;e002;326;157Var½X� ¼ Nσ2: (2)

When using an MC simulator, variance is typically a secon-
dary consideration as users are concerned only to set a packet
countN to make the variance negligibly small for their purposes.
To robustly compare two datasets, though, the tolerance permit-
ted needs to account for the expected variance to assess whether

Table 1 Events impacting conservation of energy in the simulation
kernel, wherew0 is the packet weight before the event,P is probability
of roulette win, and μa; μs are the optical absorption/scattering
coefficients.

Event δw

Source Launch þ1

Roulette win þðP − 1Þw0

Sink Exit −w0

Roulette termination −w0

Absorption − μa
μaþμs

w0
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a difference is statistically significant, or can plausibly be dis-
missed as random variation.

We pose equality comparison of two independent output
samples x; y as a test of the null hypothesis that they are
drawn from independent MC simulations of the same problem,
which necessarily means independent identically distributed
packet score contributions described by μ; σ. Considering
a measure of the difference Δ with different numbers of packets
simulated Nx; Ny yields

EQ-TARGET;temp:intralink-;e003;63;653E½X� ¼ Nxμ; (3)

EQ-TARGET;temp:intralink-;e004;63;623E½Y� ¼ Nyμ; (4)

EQ-TARGET;temp:intralink-;e005;63;598Δ ¼ Nyx − Nxy; (5)

EQ-TARGET;temp:intralink-;e006;63;572E½Δ� ¼ 0: (6)

While the difference simulating identical systems is expected
to be zero, it will, in practice, have some variance, which must
be distinguished from systematic difference. Previous work has
relied on subjective comparison, imposition of arbitrary toleran-
ces, excluding low-value (which generally means high-variance)
elements, or running very long large packet counts to drive the
variance to nearly zero. By considering the MC result variance,
we arrive at a more rigorous standard in which the simulated
data itself is used to derive an appropriate comparison tolerance.
Under the null hypothesis, the per-packet score contribution
parameters are the same, so by substitution of Eq. (2), we
know the variance of the difference vector:

EQ-TARGET;temp:intralink-;e007;63;414Var½Δ� ¼ σ2ðN2
yNx þ N2

xNyÞ: (7)

Since the actual score contribution variance σ2 is not known,
it must be estimated. Let us consider the comparison of a refer-
ence arm x generated by simulating Nr independent runs of Np

packets to provide empirical estimates of variance via Eq. (2).
Though the score contribution vector is not normally distributed,
a sufficiently large summation of such event contributions will
converge toward normal. With that estimate in hand, we may
proceed to test whether an observed difference Δ falls within
the distribution proposed by the null hypothesis.

To assess whether the simulator in the test arm produces sig-
nificantly different results, we use it to generate a single simu-
lation output y, possibly using a different number of packets.
Using the variance estimated from the reference arm, we assume
that the variance of the test arm is the same, scaled to the number
of photons run by using Eq. (2). Since the convergence relied
upon above for estimating σ depends on the frequency of accu-
mulation events in the score vector, different vector elements
will require different numbers of packets to converge to a
given level. We can speed up the test by considering only a sub-
set of elements C that converge at a relatively small number of
packets for comparison. Taking elements with a coefficient of
variation (σ∕μ) that is under 10% in both the reference and
test arms has worked well as a guideline.

Under those assumptions, we produce a vector of z-scores for
the difference Δ between the reference and test results:

EQ-TARGET;temp:intralink-;e008;326;752zi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N2
yNx þ N2

xNy

q Nyxi − Nxyi
σi

: (8)

The sum of squares of k ¼ jCj such variables is χ2 distributed
with k degrees of freedom, leading to a standard statistical test of
the null hypothesis with test statistic:

EQ-TARGET;temp:intralink-;e009;326;676X2 ¼ 1

N2
yNx þ N2

xNy

X
i∈C

ðNyxi − NxyiÞ2
σ2i

: (9)

If the observed vector is sufficiently improbable given the
variance established in the reference arm, then we conclude
that the test and reference arms model different phenomena.

4.3.1 Test coverage

Because the test requires that the elements in the comparison set
C are approximately normally distributed, we must ensure that
we run sufficient packets to achieve good statistics for all ele-
ments in C. If there are not, then the sample variance is not
a reliable estimate and the observed difference may not be nor-
mally distributed so the test statistic will not be χ2 distributed.
Each component of the score vector will have a different distri-
bution and rates of interaction, implying a different number of
packets to satisfy the assumption. All else equal, the higher the
fluence in an element the higher the probability of an interaction
event, so regions closer to light sources will have better statis-
tics. Larger elements (volume or area) also receive more events
due to a larger region of integration. For volume elements, the
transport mean-free path (1∕μα þ μs) also impacts the frequency
of photon-packet interactions since more interactions occur per
unit length traveled. We can choose a trade-off between test
coverage and run time by comparing a subset C of the domain.

We use the coefficient of variation of the score as a reason-
able and readily available criterion for choosing that subset.
Since the actual distribution is non-negative, we must at least
ensure that zero values of the normal distribution are many stan-
dard deviations away. In practice, excluding elements with a
coefficient of variation exceeding v0 ¼ σ∕μ > 0.1 has worked
well. In the software implementation of the χ2 test, we order the
elements in terms of ascending coefficient of variation. The user
may request tests of two forms: either include elements with a
coefficient of variation below a cutoff value v ≤ v0 or include
elements in ascending order until they cumulatively account for
some specified fraction (e.g., 95%) of the total weight emitted.
As more packets are simulated, the coefficient of variation of
each element will decline so more elements will meet the inclu-
sion criteria, providing a way to trade-off speed (smaller N0,
faster simulation, higher variance) for sensitivity (larger N0).

4.3.2 Use in regression testing

In software engineering, regression testing is the process of
ensuring that modifications (feature additions, bug fixes, perfor-
mance enhancements) do not invalidate the existing key behav-
iors of a piece of software. We can use the developed χ2 test
method above to compare two versions of the same piece of
software for regression testing, by using stored mean and vari-
ance data from a previous version of the software to provide the
reference arm with the new software under test as the test arm.

One of the benefits of this test policy is that the runtime is
tilted strongly toward the reference arm, since it requiresNr runs
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of Np packets (we have generally opted for Nr ¼ 64 and
Np ¼ 106, respectively). Since the idea is to ensure that the soft-
ware’s key behaviors have not been altered in the course of mod-
ifications, a regression test should be changed rarely if at all so
the expensive variance-estimation runs are only required when
establishing a new regression test. Once the test is accepted and
added to the suite, only the mean and variance values need to be
stored. Subsequent checks of the test case require only a single
run of Np (or even possibly fewer) packets, which is Nr times
faster than test case creation.

4.3.3 Use in cross-verification testing

In creating the regression test cases described above, the test
engineer must be concerned with the validity of the reference
data. In isolation, the test will only show if the behavior has
changed, not whether it was correct in the first place. Before
committing a new regression test to the version-control reposi-
tory, we therefore check it against one or more other simulators.
For tetrahedral geometries, we run two tests against the provided
reference arm, with either MMC or TIM-OS providing the test
arm. In the layered case, we compare against MCML using a
modified tetrahedral geometry kernel and the same cylindrical
scoring system. The null hypothesis is that the result provided
by the other simulator is similar within statistical variance to
the stored regression test mean and variance. If agreement is
sufficiently improbable, it indicates a problem with the test
case that must be diagnosed and resolved before committing it.

5 Cross-Verification Results
As part of the FullMonte distribution (www.fullmonte.org), we
provide four full regression test cases with mean–variance refer-
ence data and a build target that runs the checks (details are
provided on the software’s wiki page). To facilitate three-way
comparison, the tetrahedral cases were restricted to point
sources so they could be run exactly on both TIM-OS and
MMC. For each case, mean–variance data were generated
with FullMonte and compared to the applicable other simulators
prior to acceptance. Acceptance criteria require that the χ2 tests
cover both 95% of total scored weight and all elements with a
coefficient of variation v ≤ 10%, with a rejection significance
of p ¼ 0.05.

The Digimouse mesh and optical properties were obtained
from TIM-OS’ example suite and contain different values for
the various anatomical structures. The Colin27 mesh was bor-
rowed from MMC’s example suite, including a set of optical
parameters for 630 nm for scalp/skull, cerebral-spinal fluid,
gray matter, and white matter. For both Colin27 and Digimouse,
the refractive indices are all matched, with the exception of
the skin/air interface. Meshes were converted to VTK format
using FullMonte’s import–export facilities, and then loaded into
Paraview for manual source placement at an arbitrary location
deep within the mesh. The two MCML cases are taken from
the MCML source code distribution with multiple layers of
inhomogenous optical properties (including refractive index);
the light source is implicitly a normally incident pencil beam.
The test cases are summarized below with their relevant statis-
tics (Table 2).

Both MCML test cases were very narrowly rejected as origi-
nally posed. If we permitted a very small increase to the coef-
ficient of variation, adding an extra 0.1% of the mean to the
standard deviation, then the test passes. MCML uses a less

sophisticated, shorter-period random number generator so it
may be that some residual correlation is causing a bias. The
results matched MMC exactly as run, while TIM-OS required
a 5% increase in variance to be accepted. These results are
within reason and have adopted the slightly looser standard
deviation bounds (TIM-OS, MMC 1.05σ, and MCML
σ þ 0.001μ) into our regression tests.

5.1 Subjective Comparison

In all test cases, the difference appears subjectively zero-mean,
with the magnitude increasing away from the source as elements
receive fewer scoring events, and hence, have higher variance
due to a lower frequency of packet arrival and hence smaller
sample. Spatially correlated structure would indicate an under-
lying difference in the phenomena simulated, but we note no
such structure in any of the comparisons. The figures below
illustrate a 3-D case (Colin27-Point0 MMC vs. FullMonte) in
Fig. 3 and a 2-D case in Fig. 4 with MCML.

5.2 Delta Statistics

Since our comparison test relies on assumptions about the stat-
istical distribution of the difference between simulation runs,
we must first validate those assumptions. If the assumptions and
the null hypothesis are true, then the scaled difference vector z
of Eq. (8) will have a unit normal distribution. We checked
this assumption using a Q-Q (quantile–quantile) plot, which
shows each measured data point’s measured value on the y
axis against the value of the test distribution at the same quantile
on the x. A unit-slope straight line through the origin indicates
a perfect match. Figure 5 shows the result from the MCML-
Sample0 case was the difference vector, which is indeed
normally distributed with zero mean. The variance very slightly
exceeds expected, which suggests that it may be slightly under-
estimated, likely due to low-fluence regions that have not quite
converged to a normal distribution. Results for the other test
cases were similar, indicating that the model is correct for
the simulators, test cases, and parameters (run counts and pack-
ets per run) posed, so the results are well described by a normal
distribution.

5.3 χ2 Test Validation

Since the test is statistical, we need to check that our test is suit-
ably sensitive and specific.

Table 2 Summary of regression test cases. In each case, the refer-
ence arm was generated from Nr ¼ 64 runs of Np ¼ 106 packets.

Volume Elements

Case name Type Total jCj
MCML-Sample0 Layered 2000 1972

MCML-Sample2 Layered 2000 1999

Colin27-Point0 Tetrahedral 423,375 17,655

Digimouse-Point0 Tetrahedral 306,773 28,060
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5.3.1 Specificity

We ran our Colin27-Point0 test case with 164 different random
seeds, each time with 106 packets. The first 64 runs were used to
produce the reference mean–variance output.

First, we ran an in-set test in which each of the 64 elements
used to estimate the reference parameters was tested

sequentially against the reference mean–variance values.
Though this is not quite proper since the test and reference
are slightly correlated (each test contributed to the reference
statistics), it was a reasonable first check. Consistent with the
findings on examining the delta statistics above, the variance
was just slightly underestimated, which led to an incorrect
rejection of the null hypothesis. We remedied that by increasing
the observed standard deviation by 5%, i.e., multiplying the
standard deviation by a factor of 1.05, for all comparisons.
Following that change, 1/64 was flagged as having a significant
difference, which is well within the specified p value for false
positives.

For a more proper test of specificity, we did an out-of-set test
with the additional 100 fully independent runs. Of those, 0/100
was flagged as significantly different, though the χ2 values were
on average slightly higher than the in-set test, as expected. We
conclude that the test is reasonably specific as configured.

5.3.2 Sensitivity

To check that we can indeed detect correctly when the null
hypothesis is false, we altered the optical parameters subtly
and ran another 64 simulations at 106 packets to compare
against the reference arm. With Colin27-Point0 and an increase
of 1% in scattering in the gray matter, the test flagged a differ-
ence in absorbed energy 27/64 times. The distribution of χ2

statistics from the test runs is presented in Fig. 6, with a vertical
line showing the p ¼ 0.05 critical value. Values to the left are
accepted as identical to the reference within variance at
p ¼ 0.05 while those to the right are significantly different.

Fig. 3 Colin27-Point0 case showing a cut view through a 3-D model. Samples with a coefficient of varia-
tion exceeding 20% have been excluded. The red sphere shows the point source location. From left to
right: (a) fluence, (b) MMC/FM result ratio, and (c) difference z-score.

Fig. 4 Comparison of FullMonte versus MCML showing from left to right: (a) fluence, (b) percentage
difference, and (c) z-score difference.

Fig. 5 A Q–Q plot of the scaled MCML-FullMonte difference vector
(z-score) against the standard normal distribution, showing strong
agreement for the MCML-Sample0 regression test.
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We conclude that the test as configured is acceptably sensitive to
changes in optical properties, despite its modest run time (sec-
onds to tens of seconds). Choosing longer simulations (larger
packet counts) will leave the mean unchanged while reducing
variance, which would increase sensitivity even further if
needed.

6 Performance
The FullMonte kernel is written in low-level optimized C++ to
make full use of x86 vector instructions (AVX/AVX2) and
multithreading. Compiler intrinsic directives and the C++11
threading facilities were used directly rather than relying on
compiler autovectorization (TIM-OS) or OpenMP (MMC).

Some of FullMonte’s performance-enhancing features
include vectorized generation of random numbers (Henyey–
Greenstein, 2-D/3-D isotropic unit vectors, exponential random
variables, etc.) and use of SIMD vector instructions for key
geometry steps. While TIM-OS used compiler autovectorization
and the Intel Math Kernel Library (MKL) to achieve some of the
gains, vectorization of key distributions such as Henyey–
Greenstein is both crucial to MC simulation performance and
beyond the ability of compilers to do automatically. This
extends the approach similar taken by Fang and Kaeli16 in
enhancing MMC, most notably using AVX2 instructions

where available, hand-writing the key ray-tetrahedron intersec-
tion code, and vectorizing the Henyey–Greenstein distribution.
Further advantage is gained by using Cartesian coordinates over
barycentric coordinates, which is unlikely to lead to precision
issues in a well-conditioned mesh. FullMonte also use single-
precision floating-point arithmetic for positions and distances,
and double-precision for energy accumulation to avoid rounding
and underflow errors. We take the tight result agreement
between MMC, TIMOS, and FullMonte as practical confirma-
tion of these points.

All performance data presented here were measured on an
Intel Xeon E5-1620 quad-core CPU running at 3.5 GHz, with
AVX2 instructions. Since the processor uses Hyperthreading,
each physical core can act as two logical cores, so both
TIM-OS and FullMonte were run using eight threads for best
performance. Performance scales linearly with the number of
cores (up to 8 on an 8-core machine tested so far), so it should
be possible to achieve performance that is integer factors faster
with higher core counts and clock rates.

TIM-OS was compiled using the Intel C/C++ compiler with
the settings as specified on its website. The website states that
a lower optimization level (GCC-O2) must be used due to
a crash; we remedied the cause of that bug to enable full opti-
mization level.

MMC was installed from the binary provided online
(mcx.sourceforge.net on May 29, 2017) and ran in its default
tracing mode. FullMonte was compiled in Release mode with
AVX2 extensions enabled (Table 3).

In the original TIM-OS study,7 the authors demonstrated
that TIM-OS outperforms MMC, parallel MCML,2 and a GPU-
accelerated version of MCML.17 We have repeated the compari-
son with TIM-OS, MCML, and MMC here. The GPU-
accelerated MCML code is no longer maintained, and is in any
case such a restricted geometry model that we do not consider it
a relevant basis for comparison. We conclude that FullMonte is
the fastest open-source tetrahedral MC code available by a
significant margin.

7 Conclusion
Custom MC code is time-consuming to write and validate,
duplicates efforts others have already made, and without signifi-
cant effort and expertise may risk being incorrect or run orders
of magnitude slower than a tuned implementation. The commu-
nity is better served by sharing a common, customizable, high-
performance, validated platform so that researchers can answer
their questions faster and with less effort. Beyond class-leading
performance, it is distinctive in its extensible modular software
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Fig. 6 The empirical cumulative distribution (CDF) of observed χ2 val-
ues for the test covering 95% of absorbed energy in Colin27-Point0.
The critical value χ2c ¼ 8911.91 is shown as a vertical line and was
computed for p ¼ 0.05 using the normal approximation for 8694
degrees of freedom (the number of tetras included).

Table 3 Performance data for the test cases specified in Table 2 (described in Sec. 5). Speedup refers to FullMonte speed over the named
simulator.

TIM-OS MMC MCML

Case FullMonte (s) Time (s) Speedup Time (s) Speedup Time (s) Speedup

MCML-Sample0 2.9 8 2.7

MCML-Sample2 3.8 12 3.2

Colin27-Point0 37 64 1.73

Digimouse-Point0 7.3 8.9 1.22 17.7 2.42
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architecture, statistically robust regression test suite, unit testing,
and extensive input–output facilities. Tools for modeling, visu-
alizing, and analyzing results are provided that integrate with
powerful and widely used open-source visualization tools.
The software should run on any recent x86 processor with
AVX instructions (AVX2 provides a significant performance
boost); we have tested it on Linux (Ubuntu 14.04, GCC 4.9)
and Mac OS (GCC 4.9 and LLVM 6.0). It is also deployed via
Docker, a lightweight container system for Windows, Linux,
and Mac, which enables fast, easy, consistent deployment with-
out compiling from source. FullMonte will be useful across
many domains, including optical detection, imaging, and treat-
ment of disease as well as in biophotonics education through its
visualization capabilities. Prospective users are invited to our
website at www.fullmonte.org to view documentation, exam-
ples, and to download the package.
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