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Abstract

Significance: Understanding how the valveless embryonic heart pumps blood is essential to
elucidate biomechanical cues regulating cardiogenesis, which is important for the advancement
of congenital heart defects research. However, methods capable of embryonic cardiac pumping
analysis remain limited, and assessing this highly dynamic process in mammalian embryos is
challenging. New approaches are critically needed to address this hurdle.

Aim: We report an imaging-based approach for functional assessment of localized pumping
dynamics in the early tubular embryonic mouse heart.

Approach: Four-dimensional optical coherence tomography was used to obtain structural and
Doppler hemodynamic imaging of the beating heart in live mouse embryos at embryonic day
9.25. The pumping assessment was performed based on the volumetric blood flow rate, flow
resistance within the heart tube, and pressure gradient induced by heart wall movements. The
relation between the blood flow, the pressure gradient, and the resistance to flow were evaluated
through temporal analyses and Granger causality test.

Results: In the ventricles, our method revealed connections between the temporal profiles of
pressure gradient and volumetric blood flow rate. Statistically significant causal relation from
the pressure gradient to the blood flow was demonstrated. Our analysis also suggests that cardiac
pumping in the early ventricles is a combination of suction and pushing. In contrast, in the out-
flow tract, where the conduction wave is slower than the blood flow, we did not find significant
causal relation from pressure to flow, suggesting that, different from ventricular regions, the local
active contraction of the outflow tract is unlikely to drive the flow in that region.

Conclusions: We present an imaging-based approach that enables localized assessment of
pumping dynamics in the mouse tubular embryonic heart. This method creates a new oppor-
tunity for functional analysis of the pumping mechanism underlying the developing mammalian
heart at early stages and could be useful for studying biomechanical changes in mutant embry-
onic hearts that model congenital heart defects.
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1 Introduction

How a valveless embryonic heart tube pumps blood has been a long-standing question.1 Early
observations led to the traditional view that the tubular heart functions with peristaltic waves
pushing the blood through the heart for circulation.2,3 However, hemodynamic data in recent
decades described features of blood flow that could not be explained by the classic peristaltic
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pumping model.4,5 Notably, one study on zebrafish embryos showed that the valveless heart does
not drive blood circulations through peristalsis, but rather through a suction mechanism.6 Such
suction-like pumping was also observed in chick embryos.7 The complexity of the tubular heart
pumping dynamics was emphasized in a review by Männer et al.1 about a decade ago, indicating
that further functional analyses are needed to elucidate how the early embryonic heart works.
So far, studies have mainly focused on avian and teleost models,4–7 leaving the cardiac pumping
mechanism in mammalian embryos largely unexplored.

Live embryonic cardiodynamic imaging is required for mechanistic analysis. However, the
relatively small size and fast dynamics of the heart at this early developmental stage demand a
high spatiotemporal resolution, leaving limited methods available for assessment of the pumping
process. High-frequency ultrasound has been used to capture the cardiac hemodynamics and
wall movements,7–9 but the lack of 3D visualization and the inability to resolve structural details
prevent its use for systematic and accurate pumping characterization. High-resolution, high-
speed optical modalities have enabled promising approaches. By employing postacquisition syn-
chronization,10 4D (3D + time) cardiodynamic imaging in zebrafish embryos was achieved with
confocal microscopy,11 and simultaneous analyses of heart wall motions and movements of indi-
vidual blood cells produced exciting insights into the pumping mechanism.6 Recently, advance-
ments in light-sheet microscopy allowed for direct ultrafast volumetric imaging of the beating
heart in zebrafish embryos at the single-cell level in real time,12 making it more efficient and
convenient to conduct biomechanical analysis. However, with the current imaging depths
achieved by these two modalities, capturing the entire heart tube in mammalian embryos, such
as the mouse, is challenging.

Optical coherence tomography (OCT) is a 3D imaging modality13 providing unique imaging
scales and contrasts that are increasingly utilized for developmental biology studies14 and par-
ticularly for investigations of the embryonic heart.15–18 By employing near-infrared light and
low-coherence interferometry, OCT enables a millimeter-level imaging depth in scattering tis-
sues with a microscale resolution, ideal for covering the entire mouse heart in cultured embryos
at midgestation stages and resolving fine cardiac structures, such as the endocardium.16 In addi-
tion to structural imaging, OCT allows for the use of dynamic contrast for functional imaging of
blood flow,19 where quantitative imaging of cardiodynamics and hemodynamics of the mouse
embryonic heart can be achieved simultaneously with Doppler OCT.20 The high imaging speed
of OCT enables a sufficient temporal resolvability to capture heart movements in mouse
embryos, either through direct volumetric data acquisition with an ultrafast system21 or through
postacquisition synchronization.16 Using sequential acquisition, retrospective gating, and syn-
chronization, we routinely achieve a 100-Hz volume rate in reconstruction for combined 4D
structural and hemodynamic imaging of the mouse embryonic heart.20 This represents a sam-
pling rate of over ∼50 times of the heart rate at the studied developmental stages, providing
valuable information for time-resolved mechanistic investigations. Biomechanical factors, such
as the flow-induced shear force, are essential in driving and regulating cardiogenesis;22,23 since
the assessment of pumping investigates the fundamental process of flow generation, pumping
analysis is of critical value for understanding the early cardiac development and congenital heart
defects. Although OCT has been employed for biomechanical analysis of embryonic hearts,24–26

to our knowledge, no methods are currently available for assessment of the pumping process.
To address this need, we report an OCT-based approach for functional assessment of pump-

ing dynamics in the mouse tubular embryonic heart. Inspired by the recent biomechanical
model,27 the method investigates the effects of the pressure gradient induced by heart wall move-
ments and the viscous resistance on the volumetric blood flow through high-resolution temporal
analysis and statistical causality test. Although structurally simpler than the mature heart, the
early embryonic heart tube presents complex dynamic activities.28–30 In particular, the conduc-
tion wave velocity differs among regions of the tubular heart,31–33 as explained by their different
developmental cell origins.34 Particularly in the mouse model, it has been shown that over early
development before embryonic day 9.5 (E9.5), the conduction velocity, responsible for active
regional contraction, increases only in the ventricles, leaving the conduction velocity signifi-
cantly lower in the atria, atrioventricular ring, interventricular groove, and outflow tract.35

This motivated us to focus on localized pumping assessment on cardiac regions with relatively
homogeneous electrophysiological characteristics. With this approach, we performed analyses
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on the ventricles and the outflow tract of E9.25 mouse embryonic hearts. The temporal analyses
presented detailed pumping processes in the ventricles that suggest combined pushing and suc-
tion activities. In contrast to ventricles, the assessment revealed distinct pumping dynamics from
the outflow tract where blood flow stays ahead of active local contraction waves. Our results
indicate that the presented OCT-based functional approach can be a useful tool to characterize
cardiac pumping in the tubular embryonic heart, which could bring new opportunities to study
biomechanics in normal and defected cardiogenesis.

2 Materials and Methods

2.1 Mouse Embryo Manipulations

Wild-type CD-1 mice were used in this study. All animal manipulations have been approved by
the Institutional Animal Care and Use Committee at Baylor College of Medicine, and experi-
ments followed the approved procedures and guidelines. Embryos were dissected live at E9.25
with the intact yolk sac in 37°C culture medium following established protocols.36 After recovery
in the incubator at 37°C and 5% CO2, embryos were positioned with the heart facing up and
placed on the OCT imaging stage maintained at 37°C and 5% CO2 within an incubator.37 At
E9.25, the interventricular groove separates the left and right ventricles,35,38 as illustrated in
Fig. 1. This morphological feature of the heart tube allows for distinguishing the two ventricles.
The culture environment has been previously optimized for early stage mouse embryonic
development.37 A normal heart rate (∼1.5 to 2 Hz) and an active blood cell circulation were
monitored in real time with OCT during imaging. Three stage-matched embryos were used for
imaging and analysis of cardiac pumping in the right ventricle, left ventricle, and outflow tract;
one embryo per each of the three cardiac regions. Different regions were studied in different
embryos to ensure the best OCT visualization of the cardiac region under study and strong axial
component of blood flow for Doppler analysis.

2.2 OCT System and 4D Imaging

We employed a customer-built spectral-domain OCT system37 with an ∼810-nm central wave-
length and an ∼110-nm bandwidth. The system axial resolution was measured as ∼5 μm in
tissue (assumed refractive index of 1.4), and the transverse resolution was measured as
∼4 μm. The B-scan rate was set at 100 Hz with an A-scan rate of ∼68 kHz. The sample arm
was placed in a 37°C, 5% CO2 incubator for embryo experiments. Toward 4D reconstruction of
the beating heart, the data were acquired as a single, dense 3D set covering the embryonic
heart.19 The frame sequence was split into individual heartbeat cycles, then each subsequence
was assigned to a spatial location separated from neighboring subsequences by a small step. The
subsequences for all spatial locations have been synchronized to the same phase of the heartbeat
cycles to reveal a 4D cardiodynamic dataset. The postprocessing method for a combined 4D
structural and Doppler OCT reconstruction of the entire beating embryonic heart was previously
established.20 Briefly, based on the OCT complex signal I ¼ xþ iy, structural images were
obtained with the intensity jIj of each pixel in the logarithm scale, and Doppler images were
achieved by the windowed Kasai autocorrelation function,39 where axial flow velocity va was
mapped to each pixel. The calculation for the spatial location (m; n) was via

EQ-TARGET;temp:intralink-;e001;116;188va ¼
λfA
4πn

arctan

P
M
m¼1

P
N−1
n¼1 ðxm;nþ1ym;n − ym;nþ1xm;nÞP

M
m¼1

P
N−1
n¼1 ðxm;nþ1xm;n þ ym;nþ1ym;nÞ

; (1)

where λ is the central wavelength of light, fA is the A-scan rate of the OCT system, n is the
refractive index of blood assumed as 1.4,20 and M × N is the spatial window in pixels. The
synchronization was conducted based on structural images, which guided the rearrangement
of corresponding Doppler images for registered 4D cardiodynamics and hemodynamics of the
whole heart. Volumetric rendering and visualizations were performed in the Imaris software
(Bitplane). An example for combined 4D structural and Doppler imaging of the entire E9.25
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mouse embryonic heart is shown in Fig. 1 and Video 1, where the myocardium, endocardium,
cardiac jelly, and trabeculation can be well distinguished and the color-coded blood flow is
clearly seen. After the 4D reconstruction of the entire beating heart, specific cardiac regions
were selected for pumping analysis. The pumping assessment was performed in the right ven-
tricle, left ventricle, and outflow tract of the heart tube. According to previously published stud-
ies,35 the ventricles and the outflow tract have distinct electrophysiological properties with
different conduction velocities, as illustrated in Fig. 1.

2.3 Biomechanical Model and Measurements

Based on the recent work27 from Bulk et al., by modeling the heart tube as a differential cylin-
drical volume, neglecting radius variations along the cross section of tube, and assuming axi-
symmetric wall movements, the final pressure gradient ΔP over the distance z along the tube is
contributed by two factors, the pressure gradient ΔPwall induced by heart wall movements and
the viscous resistance R, with ΔP ¼ ΔPwall − R. The heart-wall-movement-induced pressure
gradient ΔPwall is determined by the luminal area changing rate normalized by the area,
described as

EQ-TARGET;temp:intralink-;e002;116;99ΔPwall ¼ Δ
�
−
μ

A
dA
dt

�
; (2)

Fig. 1 Structural and Doppler 4D-OCT imaging of E9.25 embryonic heart (Video 1). Illustration and
representative frames through the 4D-OCT reconstruction at different phases of cardiac cycle
showing the relative locations of sinus venosus, atria, left ventricle, right ventricle, and outflow tract.
The OCT images are en face visualizations. Time stamps correspond to the time in Video 1. The
approximate conduction velocity values at this stage are adopted from previous work.35 Scale bars
are 100 μm (Video 1, mov, 9.39 MB [URL: https://doi.org/10.1117/1.JBO.25.8.086001.1]).
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where A is the luminal area, μ is the viscosity, and t is the time. The viscous resistance R is also
related to the luminal area though

EQ-TARGET;temp:intralink-;e003;116;711R ¼ π

4

μCu
A

Δz; (3)

where u is the flow velocity and C is a constant of velocity profile. Thus, a smaller luminal area
creates a dominantly high resistance to flow, whereas a larger area leaves a minimal flow re-
sistance. In our method, both ΔPwall and R were taken into account for analyzing the pumping
process. However, due to the difficulty of accurately measuring certain parameters, including the
blood viscosity and the flow profile, the final overall pressure gradient ΔP was not quantified.
Instead, we separately assessed the pressure gradient induced by heart wall movements and the
averaged viscous flow resistance and evaluated their combined effects on the volumetric blood
flow. Specifically, the blood viscosity was assumed as constant over the localized region of
assessment,40 and ΔPwall was thus characterized as

EQ-TARGET;temp:intralink-;e004;116;565ΔPwall ∝ Δ
�
−
1

A
dA
dt

�
: (4)

Also similar to the previous study,27 the flow resistance was evaluated as

EQ-TARGET;temp:intralink-;e005;116;508R ∝
1

Aa
; (5)

with a normalization to the range of [0, 1], where Aa is the averaged area of endocardial lumen in
the region. Such strategies simplify the measurements of essential parameters and improve the
efficiency of this method for pumping analysis.

Each localized pumping assessment was conducted with three measurement planes
perpendicular to the heart tube axis within the 4D cardiodynamic dataset at the selected region
of interest, as illustrated in Fig. 2. The planes were spaced by ∼30 μm and named L1, L2, and L3

Fig. 2 (a) Illustration showing locations L1, L2, and L3 along the heart tube in the direction of
forward flow to measure the dynamics of endocardial lumen at L1 and L3 and blood flow at
L2. All measurement planes are set perpendicular to the tube axis. (b) Structural 4D-OCT imaging
of E9.25 embryonic heart showing the open and closed endocardial lumen. An example of lumen
segmentation is presented with the green line for the fully open endocardial lumen. Scale bars are
100 μm.
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in the direction of forward blood flow. All measurements were performed at the intersections
between the planes and the endocardial lumen. The endocardial layer outlining the lumen can be
well delineated from the cross sections in the OCT images, as seen in Fig. 2. The measurements
were conducted for all time points over one heartbeat cycle. At L1 and L3, the endocardial lumen
area A was measured with three manual segmentations in ImageJ (an example shown in Fig. 2),
and the data were plotted as mean� std. The mean values were used to assess the pressure
gradient induced by heart wall movements between L1 and L3 with Eq. (4), and also to calculate
the averaged area Aa for evaluating the resistance to flow with Eq. (5). At L2, the volumetric flow
rate V was quantified as the integration of absolute blood flow velocity over the endocardial
lumen area through

EQ-TARGET;temp:intralink-;e006;116;616V ¼
Z

va
cos θ

dA; (6)

where θ is the angle between the blood flow direction and the imaging beam. The measured
parameters were plotted over time for detailed temporal analyses. Granger causality test41 was
employed for statistical evaluation of the causal relation between dynamics, specifically to deter-
mine whether the observed blood flow is caused by the localized pressure gradient produced by
heart wall movements.

3 Results

In the right ventricle of E9.25 embryonic heart, both forward and retrograde flows were
observed, as shown in Fig. 3 and Video 2. Over the heartbeat cycle, the retrograde flow
formed at the beginning of the lumen opening, which switched to forward flows during the
process of luminal opening. The forward flows were then maintained as the right ventricle
continued to relax and reached the most expanded state, as well as over the entire contraction
phase.

From the plot of endocardial lumen area over time shown in Fig. 4, the lumen at L1 and L3
opened and closed at approximately the same time, but the time of the maximal luminal area at
L3 was delayed relative to L1. Between L1 and L3, the dynamic processes revealed distinct
profiles with L3 having a smaller luminal area at the most relaxed state and a generally slower
area changing rate, which was especially obvious at the beginning of the right ventricle relax-
ation. The flow resistance profile as a result of the luminal area change presented a high
resistance to flow when the lumens were just opening and were about to close, as shown in
Fig. 4.

The calculated pressure gradient produced by heart wall movements and the volumetric flow
rate at L2 are shown in Fig. 5. The flow resistance (color coded in red) was overlaid with the
pressure gradient profile for demonstration of their contribution to flow dynamics. It can be seen
that at the beginning of the luminal relaxation, a negative pressure gradient from L1 to L3 formed

Fig. 3 Structural and Doppler 4D-OCT imaging of the right ventricle of E9.25 embryonic heart
(Video 2). The positions of the measurement planes L1, L2, and L3 are shown in the left panel.
Scale bars are 100 μm (Video 2, mov, 8.59 MB [URL: https://doi.org/10.1117/1.JBO.25.8
.086001.2]).
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and lasted for ∼100 ms, which coincided with the timing of the retrograde flow (double arrow
A). As the luminal opening proceeded, the pressure gradient from L1 to L3 changed to positive,
after which the flow switched its direction to forward (double arrow B). As the positive pressure
gradient reached its peak, the forward flow rate also reached its maximum, though with a small
time delay (double arrow C). These observations suggest coordination between the pressure
gradient induced by heart wall movements and the volumetric blood flow. The resistance to
flow, however, exhibited less pronounced effect on the flow dynamics than the heart-wall-move-
ment-induced pressure gradient. In particular, at the beginning of luminal opening, as the flow
resistance is high, despite a very strong negative pressure gradient from L1 to L3, the retrograde
flow did not show an instantly large magnitude but rather gradually increased. In addition, as the
lumen was closing, the negative pressure gradient from L1 to L3 failed to induce a retrograde
flow due to high resistance to flow at the same time. During the heartbeat phase of relatively low
flow resistance (below 0.1), we tested the causal relation between the pressure gradient and the
volumetric blood flow using Granger causality test at different lag values. The lag represents the
temporal data point, with the lag values of 1, 2, and 3 corresponding to the time differences of 10,

Fig. 4 (a) Temporal profiles of endocardial lumen area at L1 and L3 at the right ventricle of E9.25
embryonic heart and (b) the corresponding normalized resistance to flow between L1 and L3.
The luminal area in (a) is plotted as mean� std. Data are from one embryo.
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Fig. 5 The relation between pressure gradient, resistance to flow, and volumetric flow rate at
the right ventricle of E9.25 embryonic heart. Data are from one embryo.

Table 1 Granger causality test for the right ventricle of E9.25 embryonic heart. **p ≤ 0.01.

Causal direction Lag ¼ 1 Lag ¼ 2 Lag ¼ 3

Pressure gradient → flow p ¼ 0.859 p ¼ 0.006** p ¼ 0.149

Flow → pressure gradient p ¼ 0.346 p ¼ 0.544 p ¼ 0.768
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20, and 30 ms, respectively. As shown in Table 1, the only statistical significance was detected at
the lag of two temporal data points in the causal direction of pressure gradient to flow, indicating
that, in the right ventricle, the localized pressure gradient produced the specific flows while the
viscous resistance is low.

Based on the luminal area data shown in Fig. 4, we marked the time periods for common
contractions and relaxations of this localized right ventricle region in Fig. 5. Interestingly, it can
be seen that the heart wall relaxation generated both negative and positive pressure gradients that
led to the corresponding retrograde and forward flows, suggesting suction process, while over
the contraction, the heart wall movements created a positive pressure gradient with the corre-
sponding forward flows, suggesting a pushing process. These suggest that the pumping at the
right ventricle combines suction and pushing mechanisms.

The left ventricle of the heart also revealed both forward and retrograde flows, as shown in
Fig. 6 and Video 3. The forward flow was detected during about 90% of the heartbeat cycle. The
retrograde flow, which lasted for about 10% of the heartbeat cycle, was detected at the last frac-
tion of the luminal contraction phase.

The temporal profiles of the endocardial lumen area and the flow resistance are shown in
Fig. 7. Similar to the right ventricle, the cardiac wall activities at the left ventricle also featured
a slower relaxation process in contrast to a faster contraction. Both L1 and L3 reached the most
relaxed points at around the same time and had a very similar rate of luminal area change
during contraction. However, over the luminal expansion, different rates were observed at
L1 and L3 with L3 having a more distinguished temporal variation. Although the area at
L3 was smaller than that at L1 for the majority of the cycle, it reached a higher value at the
peak. The resistance to flow reached its maximum at the last phase of contraction with the
luminal area close to zero.

For the left ventricle, the volumetric blood flow rate at L2 as well as the heart-wall-move-
ment-induced pressure gradient between L1 and L3 are presented in Fig. 8. The resistance to
flow is color coded and overlaid with the pressure gradient profile. The beginning of the heart
wall relaxation produced positive pressure gradient from L1 to L3 with strong forward flows at
L2 (double arrow A). As the lumen at L3 rapidly expanded, it generated a peak of the positive
pressure gradient from L1 to L3 that coincided with the maximum of the forward flow rate
(double arrow B). At the second half of the luminal contraction phase, a transient increase
of the negative pressure magnitude from L1 to L3 was detected at nearly the same time as the
retrograde flow reached its peak (double arrow C). Over the most contracted state, although large
pressure gradients were seen between L1 and L3, the strong flow resistance lasting for at least
∼75 ms maintained the flow rate close to zero. Granger causality test was performed on the
pressure gradient and volumetric flow rate at the heartbeat phase when the resistance to flow
was relatively low (below 0.1). The statistical significance was detected at lag values of 1 and 2 in
the direction from the pressure gradient to the flow (Table 2), suggesting that the pressure

Fig. 6 Structural and Doppler 4D-OCT imaging of the left ventricle of E9.25 embryonic heart
(Video 3). The positions of the measurement planes L1, L2, and L3 are shown in the left panel.
Scale bars are 100 μm (Video 3, mov, 9.96 MB [URL: https://doi.org/10.1117/1.JBO.25.8
.086001.3]).
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gradient induced by heart wall movements produced the local blood flow in the left ventricle. As
marked in Fig. 8, the forward flows were mostly generated with a positive pressure gradient
during the relaxation of left ventricle, whereas the contraction produced retrograde flows through
a negative pressure gradient. This suggests that, similar to the right ventricle, the localized pump-
ing in the left ventricle also combines suction and pushing mechanisms.

The outflow track of the heart has smaller luminal areas during opening than the ventricles.
Fig. 9 and Video 4 show the combined 4D structural and hemodynamic imaging of the outflow
tract, where only forward flows were observed over the heartbeat cycle.

The temporal profiles of the endocardial lumen area in the outflow tract (Fig. 10) revealed
different dynamics from the above described regions of right and left ventricles. In contrast to
the slow relaxation and fast contraction in the ventricles, the outflow tract exhibited fast
opening and slow closing. Another major difference detected in the outflow tract is that the
time of luminal opening and closing was delayed at L3 relative to L1 by ∼20 to 30 ms.
Similar to the ventricular regions, the profile for the viscous resistance in the outflow tract

Fig. 7 (a) Temporal profiles of the endocardial lumen area at L1 and L3 in the left ventricle of E9.25
embryonic heart and (b) the corresponding normalized resistance to flow between L1 and L3. The
luminal area in (a) is plotted as mean� std. Data are from one embryo.

Wang and Larina: Live mechanistic assessment of localized cardiac pumping in mammalian tubular. . .

Journal of Biomedical Optics 086001-10 August 2020 • Vol. 25(8)

https://doi.org/10.1117/1.JBO.25.8.086001.4


Table 2 Granger causality test for the left ventricle of E9.25 embryonic heart. *p ≤ 0.05.

Causal direction Lag ¼ 1 Lag ¼ 2 Lag ¼ 3

Pressure gradient → flow p ¼ 0.045* p ¼ 0.046* p ¼ 0.125

Flow → pressure gradient p ¼ 0.898 p ¼ 0.855 p ¼ 0.876

Fig. 8 The relation between pressure gradient, resistance to flow, and volumetric flow rate in the
left ventricle of E9.25 embryonic heart. Data are from one embryo.
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revealed relatively higher resistance at the beginning of luminal expansion and right before
luminal closure.

Figure 11 shows the pressure gradient induced by heart wall movements from L1 to L3, the
flow resistance, and the volumetric flow rate at L2 of the outflow tract. No apparent relation
between the pressure gradient and the blood flow were observed from these plots, except that
when lumens at both L1 and L3 were just opened, a positive pressure gradient appeared at the
same time as the forward flows. Moreover, the pressure gradient profile largely exhibited an
overall opposite trend from the blood flow profile, suggesting the absence of a causal relation,
which is confirmed by Granger causality test. No statistical significance was detected, as shown
in Table 3.

The outflow tract at this embryonic stage is known to contain cardiomyocytes, which have
conduction and contraction capability.30,34 However, these cardiomyocytes are less mature than
the ones from the ventricles.33 In fact, they are similar to the myocytes in the initial heart tube as
they are poorly coupled and contractile.28 On the molecular genetic level, cardiomyocytes in the
outflow tract do not initiate the expression of certain genes permitting fast conduction, which, in
contrast, are expressed in the early ventricles.32 This leaves the outflow tract slowly conducting
with poor contractions until a later stage.33 For the mouse embryos, Chen et al. experimentally
measured the conduction velocity in different heart regions from E8.5 to E10 embryonic stages.
According to that study, at the E9.25 stage, the left and right ventricles have a conduction veloc-
ity of 5.5 to 10 mm∕s, whereas the outflow tract has a lower conduction velocity of only 0.2 to
1.0 mm∕s,35 as illustrated in Fig. 1. Table 4 summarizes the averaged peak blood flow speed
from these three regions in E9.25 mouse embryonic hearts in our studies and the conduction
velocity in corresponding regions at the same stage from Ref. 35. As one can see from Table 4,
the conduction velocity in the left and right ventricles is higher than the peak blood flow speed in
those regions. However, in the outflow tract, the peak blood flow speed is over five times higher
than the conduction velocity. This suggests that the observed luminal dynamics in the outflow
tract is a passive contractile wave with minimal contributions from localized active contraction
and that the observed blood flow in the outflow tract is likely produced by the right ventricle
ejection. This unique fluid-solid interaction process explains the faster luminal expansion in the
outflow tract compared with the ventricles (Fig. 10). Furthermore, this agrees with our pumping
assessment of the outflow tract that reveals no significant causal relation between the localized
pressure gradient and the volumetric flow rate.

Fig. 9 Structural and Doppler 4D-OCT imaging of the outflow tract in E9.25 embryonic heart
(Video 4). The positions of the measurement planes L1, L2, and L3 are shown in the left panel.
Scale bars are 100 μm (Video 4, mov, 8.64 MB [URL: https://doi.org/10.1117/1.JBO.25.8
.086001.4]).
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4 Discussion

We presented an approach for investigation of early embryonic heart pumping from the aspect of
causal relation between the localized cardiodynamics and blood flow, which we applied to three
distinct regions of the heart. Our pilot observations suggest that, in the ventricles where active
pumping is presented, the localized heart tube functions through a combination of suction and
pushing mechanisms. Such analyses could be of significance for an improved interpretation of
hemodynamics in mouse mutants modeling human congenital heart defects at early embryonic
stages. This method sets up a new way of studying developmental cardiac biomechanics. By
building temporal profiles of critical parameters in the heart tube, evaluating their relevance,
and performing causal statistical analysis, the complexity of the mechanical aspect of a beating
embryonic heart can be well resolved and analyzed systematically. As biomechanical factors are
increasingly recognized for their essential roles in stimulating and regulating the heart develop-
ment via mechanotransduction, we hope this approach could inspire new ideas and innovative
designs in imaging and measurement techniques to assess the embryonic cardiac biomechanics.

Fig. 10 (a) Temporal profiles of the endocardial lumen area at L1 and L3 in the outflow tract of
E9.25 embryonic heart and (b) the corresponding normalized resistance to flow between L1 and
L3. The luminal area in (a) is plotted as mean� std. Data are from one embryo.
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Fig. 11 Pressure gradient, resistance to flow, and volumetric flow rate in the outflow tract of E9.25
embryonic heart. Data are from one embryo.

Table 3 Granger causality test for the outflow tract of E9.25 embryonic heart.

Causal direction Lag ¼ 1 Lag ¼ 2 Lag ¼ 3

Pressure gradient → flow p ¼ 0.687 p ¼ 0.222 p ¼ 0.195

Flow → pressure gradient p ¼ 0.249 p ¼ 0.552 p ¼ 0.476
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The important features of OCT in 3D imaging, deep penetration, microscale resolution, and
high sampling rate, enable robust analysis of embryonic heart in the mouse model. Mice are the
most popular mammalian research organism with well-established genetic engineering tools for
mutagenesis, and thousands of mutant mouse lines modeling different aspects of congenital heart
diseases are already available.42 This stimulates a critical need for methods toward investigation
of cardiac development in mouse embryos structurally and functionally. The presented method
can be useful for functional characterizations of the early heart dynamics, in combination with
molecular genetic tools, to enable interesting studies of novel functional cardiac phenotypes in
mammalian embryos.

Granger causality test is a prediction-based statistical method to assess the causal relation
of time-series data and has recently found emerging applications in neuroscience and
neuroimaging.41 In our study, we employed the Granger causality test for statistical evaluations
of the localized causal relation between the dynamics of pressure gradient induced by heart wall
movements and the blood flow. It is worth noting that the results from this statistical test should
be interpreted in the context of the biomechanical model and biological process for understand-
ing the localized pumping dynamics in the tubular embryonic heart. Implementation of this stat-
istical assessment has a potential to resolve a number of controversies in cardiac developmental
biology, as it is currently not clear at what developmental stage and how specific regions of the
heart tube start contributing to the local and overall flow dynamics, and how the functions of
different cardiac regions are integrated in the valveless heart tube. It will also be indispensable
for the analysis of mutants with regional functional cardiac defects, such as the Mlc2a (atrial-
specific myosin light chain 2a) knockout model,43 to understand the localized functional role of
specific proteins in the mammalian cardiac development.

The presented approach can potentially be improved in multiple aspects. In this study,
we employed OCT imaging with a B-scan rate of 100 Hz. Through postacquisition synchro-
nization,20 the entire embryonic heart was reconstructed in 4D with an equivalent 100 Hz
volume rate. This enabled a sufficient resolvability in time to capture the fast cardiac activ-
ities. As the pumping assessment largely relies on temporal features, a higher sampling rate is
expected to strengthen the presented analysis and improve the accuracy. Segmentation of
the endocardial lumen in OCT images was performed manually in this study, which is a
commonly used approach and has been employed to produce the ground truths for devel-
oping automatic algorithms.26,44,45 Recent advancements in automatic segmentation of the
Drosophila cardiac lumen based on convolutional neural networks44,45 could potentially help
to reduce the time required for luminal area measurements in the early mouse heart. The
measured axial resolution of OCT was lower than the theoretical value, which was likely
caused by dispersion. The axial resolution could potentially be improved and optimized
through advanced approaches for k-space recalibration and dispersion compensation.46,47

The presented method in this study can be integrated with a number of manipulation methods
for embryonic heart, such as banding of the heart tube48 as well as optical pacing with either
infrared light49 or optogenetics,50 which will bring advanced knowledge of how cardiac
pumping responds to physical interventions.

The described approach requires certain assumptions for the parameters in the biomechanical
model.27 In particular, the blood viscosity was assumed constant since it is challenging to per-
form spatiotemporal measurements of blood viscosity inside the embryonic heart. As a result,
both the pressure gradient induced by heart wall movements and the resistance to flow were

Table 4 Peak blood flow speed and conduction velocity in different regions
of E9.25 embryonic heart.

Heart region
Averaged peak blood
flow speed (mm/s)

Conduction
velocity35 (mm/s)

Right ventricle 4.9 5.5 to 10

Left ventricle 3.2 5.5 to 10

Outflow tract 5.9 0.2 to 1.0
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qualitatively assessed. Although the effects of these two parameters on the volumetric blood flow
were evaluated integratively, the assumption of constant blood viscosity could bring errors to
the analysis, which will need to be further investigated.

The method focuses on assessing the localized pumping process in the cardiac region with
relatively homogeneous electrophysiological characteristics. This provides detailed delineations
of the pumping dynamics within a region of ∼60 μm in length. From a larger scale, different
regions of the heart work together to achieve the proper blood flows.1,6,51 Thus it is also impor-
tant to access the dynamic coupling between different cardiac regions and to understand how the
tubular heart functions as a whole. The presented approach can potentially be further developed
with more measurement planes and larger distances between the planes for the pumping analysis
covering the entire heart. This could eventually lead to a powerful multiscale biomechanical
characterization tool to study the mammalian tubular embryonic heart.

The newly proposed method has been demonstrated in application to three distinct regions of
the embryonic heart tube, revealing intriguing observations about the causal relation between
localized blood flow and heart wall dynamics. Due to the limited sample size, drawing biological
conclusions on cardiodynamic mechanisms is premature based on this study alone. The biologi-
cal insights revealed from this pilot investigation will be further validated with a larger sample
size in our future work. Nevertheless, this study demonstrated the richness of data provided by
this approach and revealed a great potential for investigating the regional functional relation
between blood flow and heart wall dynamics as well as studying the coupling and interplay
between cardiac regions during early development, which are currently not accessible by other
methods.

The embryonic heart development is continuous and rapid, with molecular, cellular, struc-
tural, and functional changes taking place within hours. To fully understand the pumping dynam-
ics over the early cardiogenesis, 4D imaging of the mouse embryonic heart over development
over the course of hours can be performed and will provide unprecedented information describ-
ing the function and mechanics of the early mammalian heart as it develops and remodels.
Our previous work in long-term imaging of the mouse embryonic neural tube closure indicates
the feasibility of repeated OCT imaging for over 16 h with the current experimental set up.37

Future work will focus on longitudinal imaging and pumping assessment of the mouse embry-
onic heart over E8.5–E9.5, which will be promising to produce exciting insights into the bio-
mechanics of mammalian cardiogenesis.

5 Conclusion

We presented an approach for functional assessment of the localized cardiac pumping dynamics
in the mouse tubular embryonic heart based on combined 4D structural and hemodynamic im-
aging with Doppler OCT. The method allows for characterizing the temporal connection and
causal relation between the volumetric blood flow and the local pressure gradient induced
by heart wall movements in the context of flow resistance within the beating heart tube.
Our results show that this imaging-based approach is useful to analyze how the early mammalian
heart works at specific regions, which can open new opportunities for understanding both normal
and defected cardiac development at early embryonic stages.
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