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Abstract

Significance: Speckle noise is an inherent limitation of optical coherence tomography (OCT)
images that makes clinical interpretation challenging. The recent emergence of deep learning
could offer a reliable method to reduce noise in OCT images.

Aim: We sought to investigate the use of deep features (VGG) to limit the effect of blurriness and
increase perceptual sharpness and to evaluate its impact on the performance of OCT image
denoising (DnCNN).

Approach: Fifty-one macula-centered OCT pairs were used in training of the network. Another
set of 20 OCT pair was used for testing. The DnCNN model was cascaded with a VGG network
that acted as a perceptual loss function instead of the traditional losses of L, and L,. The VGG
network remains fixed during the training process. We focused on the individual layers of the
VGG-16 network to decipher the contribution of each distinctive layer as a loss function to
produce denoised OCT images that were perceptually sharp and that preserved the faint features
(retinal layer boundaries) essential for interpretation. The peak signal-to-noise ratio (PSNR),
edge-preserving index, and no-reference image sharpness/blurriness [perceptual sharpness index
(PSI), just noticeable blur (JNB), and spectral and spatial sharpness measure (S3)] metrics were
used to compare deep feature losses with the traditional losses.

Results: The deep feature loss produced images with high perceptual sharpness measures at the
cost of less smoothness (PSNR) in OCT images. The deep feature loss outperformed the tradi-
tional losses (L; and L,) for all of the evaluation metrics except for PSNR. The PSI, S3, and INB
estimates of deep feature loss performance were 0.31, 0.30, and 16.53, respectively. For L1 and
L2 losses performance, the PSI, S5, and JNB were 0.21 and 0.21, 0.17 and 0.16, and 14.46 and
14.34, respectively.

Conclusions: We demonstrate the potential of deep feature loss in denoising OCT images. Our
preliminary findings suggest research directions for further investigation.
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1 Introduction

Optical coherence tomography (OCT) is an imaging modality that allows for the noninvasive
assessment and identification of the internal structures of the retina. The OCT image quality can
often be degraded by speckle noise, which is inherent to this imaging technique. The properties
of OCT backscattering signal and the associated speckle behavior have been studied in detail
in Refs. 1 and 2. From a visual inspection perspective, the presence of speckle noise obscures
subtle but important morphological details and thus is detrimental in clinical diagnosis. Speckle
noise also negatively affects the automatic analysis methods intended for objective and accurate
quantification of the images.

The goal of denoising methods is to reduce the grainy appearance in homogeneous areas,
while preserving the image content, particularly boundaries that represent the transition between
retinal layers. These retinal layer boundaries are the most commonly used clinical information
to extract thickness data® and make subsequent clinical decisions. These data are commonly
extracted using automatic segmentation methods.

According to the number of frames collected in the same retinal location during a single
acquisition, OCT image denoising methods that are available in the literature can be categorized
under single frame denoising*!! and multiple-frame denoising.'>'* Among the single frame
approaches, block matching and 3D filtering!' and complex wavelet-based K-SVD'? methods
have demonstrated promising performance; however, they can introduce artifacts by operating
in the wavelet domain. Among the multiple-frame denoising methods, multiscale sparsity-based
tomographic denoising'® has shown a superior performance compared with single-frame and
other multiple-frame approaches.

While these methods have demonstrated an improved performance, they provide inadequate
noise reduction under high levels of speckle noise, resulting in a significant loss of subtle image
features.'®!"13 In addition, these methods require the careful selection of numerous parameters
of the learning algorithm, which is also not adaptive to various levels of noise. The development
of more advanced denoising methods to provide minimum loss of details, while also minimizing
the requirement for handpicked parameters, is a challenging task of OCT image denoising.

In recent years, deep learning methods, including convolutional neural networks (CNNs),
have been applied to OCT image denoising; these include DeSpecNet,'” cGAN,'® SDSR-
OCT," and perceptually sensitive OCT denoising.'® These deep learning methods show good
performance; however, it is worth noting that the results for the proposed deep learning methods
are generally reported using the peak signal-to-noise ratio (PSNR) metric as well as visual
inspection of the OCT images. Other metrics such as edge preservation or contrast are not always
reported in these studies, despite their importance to obtaining a comprehensive understanding of
the method’s performance.

To date, research has focused on the definition of new architectures that can be applied to
OCT image denoising. Most of the proposed architectures use loss functions that aim to min-
imize the pixelwise differences between the “predicted” output image and the ground truth “aver-
aged” OCT image. Although high PSNRs are reported, which is indicative of good performance,
using pixelwise loss for training can result in aggressive denoising, or smoothing, which can
compromise important features such as crispness of retinal layer boundaries and textures/features
that are critical for medical diagnostics. It is reasonable to assume that OCT images reside on a
nonlinear image manifold, where the pixelwise similarity does not reflect the true intrinsic sim-
ilarity between images but just their “brute-force” Euclidean distances. For example, two iden-
tical images shifted by only one pixel may be very different as measured by pixelwise distances,
despite being perceptually similar. Therefore, some features that are critical for diagnosis might
be lost during the denoising process.

Neural networks progressively compare the predicted output of the network with the “ground
truth” using a loss function, which is an effective driver of the network’s learning. For instance,
Qiu et al.'® proposed a method that utilized SSIM and MSE in their denoising network as per-
ceptual losses. They demonstrated that their approach can outperform other related denoising
methods to preserve the structural details of the retinal layers and improve the perceptual metrics.
In contrast, Zhang et al.'” showed that the classic per-pixel measures that are commonly used for
regression problems, such as the Euclidean distance, are not suitable for assessing the perceptual
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similarity between images. For example, they showed that blurring causes large perceptual but
small L, changes. They also revealed that PSNR and SSIM are simple, shallow functions and
fail to account for many complexities of human perception. They demonstrated that the internal
activations of deep networks, trained for high-level classification tasks, correspond better to
human perceptual judgments. The authors introduced the learned perceptual image patch sim-
ilarity (LPIPS) metric as a similarity measure, demonstrating that LPIPS provides a closer dis-
tance between the original image patch and a sharp but distorted patch than between the original
and a more similar (under L,) but blurry patch.

Several earlier studies’>’ employed the features extracted from pretrained deep networks for
various computer vision tasks such as style transfer’' and deep feature visualization.>’ It was
observed that the features extracted from trained deep networks are descriptive of the contents
of images. This culminated in the paper by Zhang et al.,'”” who defined a metric to reflect the
contextual similarity between images and to investigate how that similarity is aligned with the
perceptual similarity between images. The common message from this collective research is that
features extracted from pretrained deep convolutional networks, even across architectures
(Squeezenet,”® AlexNet,” and VGG™) provide an emergent embedding, which agrees remarkably
well with the complexities of human perception of image similarities, much better than the widely
used traditional perceptual metrics such as PSNR and SSIM. However, the ability for deep features
to act as a “perceptual loss” to drive the training of an OCT denoising network and how this com-
pares with the traditional losses such as L, and L are yet to be explored. Employing deep features
as an advanced perceptual metric, compared with traditional perceptual metrics such as PSNR and
SSIM, sets our work apart from the perceptually sensitive OCT denoising work by Qiu et al.'®

To summarize the contributions of this paper, we first bring attention to the importance of the
loss function used to train DnCNN for OCT image denoising. Despite the well-known limita-
tions of pixelwise losses such as L, and L, these losses are still widely used in training feedfor-
ward networks such as DnCNN. Second, we investigate the use of deep VGG features as loss
functions for training the DnCNN network as well as the contribution of individual convolutional
layers in the VGG pretrained network in addition to the combination of layers. We hypothesize
that not all levels of feature abstraction are equally useful for OCT denoising. Looking at the
whole VGG16 network and giving equal weights to all layers is conceptually just “averaging
out” each layer’s performance into a single conglomerate. Third, we perform our experiments on
OCT images to demonstrate the effectiveness of deep feature loss in comparison with traditional
pixelwise losses. In addition, in this study, we emphasized the importance of considering metrics
beyond the commonly used PSNR to capture the complete behavior of the denoising network.

2 Methodology

In this paper, we evaluate the use of deep features learned through the VGG network as a loss
function to train DnCNN,*!' a well-known denoising network, for the purpose of OCT image
denoising. To achieve this, the DnCNN model is cascaded with a VGG network that acts
as a perceptual loss function. The VGG network is pretrained on ImageNet and remains fixed
during the training process.

We view the OCT denoising problem as a classical image transformation task in which inputs
are mapped from a noisy OCT image space to the averaged OCT image space. In our approach,
DnCNN provides a mapping function from noisy to denoised image spaces, while the VGG-
based deep feature loss guides the learning process so that image content is best preserved during
the transformation.

2.1 Noise Reduction Model

Let x € RV denote a noisy OCT image and y € RMV denote the corresponding averaged
“speckle-free” OCT image. The goal of the denoising network is to learn a transformation 7
that maps the noisy image x to the averaged image y:

T:x-y. 9]
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During the training phase, the network updated itself so that, after the transformation 7', the
denoised image (output prediction) was as close as possible to the averaged OCT image (ground
truth, speckle-free image).

Speckle noise in OCT images represents a physical phenomenon that is complex to model.
Therefore, it is complicated to learn a mapping function from the noisy OCT image space to the
averaged OCT image space. However, deep learning networks have been shown to be effective at
learning such a complicated transformation function with a modest number of training images.

2.2 DnCNN

The input of the DnCNN network was a noisy image. DnCNN network adopted the residual
learning formulation to train a residual mapping R(x) ~ v, where v is the noise and the residual
formulation is y = x — v. The DnCNN network was developed to model noise from noisy
images. The optimization problem was formed such that the difference between the noisy input
x and the noise v is as close as possible to the clean image y.

The optimization problem is formulated as minimizing loss /, where

%, @

1Q) =D IR(.Q) = (3 = %)
i=1

where 7 is the batch size and Q are trainable parameters in the DnCNN network. In the original
implementation of this work,>' the L, norm is used. The loss function therefore reflects the
averaged Euclidean distance between the clean images and the predicted outputs. The
DnCNN network consists of 17 convolutional layers of three different types as shown in
Fig. 1: (i) Conv+relu for the input layer, (ii) Conv+BN+relu for the second layer to the penul-
timate layer, and (iii) Conv for the output layer. For all layers except the output layer, 64 kernels
of size 3 X 3 are used. To ensure that the spatial dimensions of the inputs and outputs are the
same, in all layers a stride of 1 and “‘same” padding are used. For the output layer, 1 kernel of
size 3 X 3 is used.

2.3 Deep Feature Loss

The original DnCNN network is designed to use the Euclidean pixelwise loss. Therefore, while
the DnCNN network is learning a transformation function to map the image from a noisy space
to a denoised image space, the loss function calculates the Euclidean distance between the output
patches and gold standard image patch.'

Two of the most common losses used in feedforward denoising deep networks are L; and L,
pixelwise losses.

L, loss is the sum of the squared difference of pixels of two image patches y; and x;:

] n
Lo(T) = > I17(x) - vilB: )
i=1
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Fig. 1 The overview of the cascaded DnCNN-VGG network.
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L loss is the sum of the absolute difference of pixels of two image patches y; and x;:

1 n
Ly(T) =3 ITx) = will! @

i=1

The perceptual loss is the sum of the squared differences of features extracted from the pre-
trained network:

11

LPerceptual(T) = ;m

Z]WU@M—¢WMH )

where ¢ is the pretrained deep network, » is the batch size, and w, h, and d are the width, height,
and depth of the convolutional layers, respectively.

In our experiments, we employed the VGG-16 network pretrained on ImageNet™” as the deep
feature loss calculator:

n

Luao(T) = g D IVGG(T(x) = VGG, - ©
From now on, we refer to the features extracted by the VGG-16 network as the VGG loss.

The weights of the VGG-16 network were kept unchanged during the training of the DnCNN
network (Fig. 2). The predicted outputs of the DnCNN network were grayscale images. VGG-16
network expects a three channel (RGB) input, so here the input is a gray-scale OCT image repli-
cated three times. The VGG-16 network contains 13 convolutional layers and 3 dense layers.
Motivated by the approach in Ref. 20, the output of the 2nd, 4th, 7th, 10th, and 13th convolu-
tional layers are used as the extracted features from the VGG-16 network.

2.4 Network Architecture

Figure 1 displays an overall view of the cascaded networks of DnCNN and VGG, which we call
DnCNN-VGG. The transformation network (DnCNN) is a feedforward CNN. The last layer
generates one feature map with a single 3 X 3 filter, which was subtracted from the input image
to generate the final output of the denoising DnCNN network.

The denoising network was followed by the deep feature loss calculator. Figure 2 shows the
architectural details of the VGG-16 network consisting of five convolutional layers with 64, 128,
256, and 512 filters, respectively. The predicted outputs of the DnCNN network and their
corresponding averaged OCT image were then passed to the VGG-16 network for feature

o © 2 % 2 2 22 2 9 9 VGG-16 layer definition
¢ 2 S8 e @ g o o d o o
3. 28 == 99 2323 23%
25
80
|22 (a2 |s|s|32] T332 (o322 |88l
zlz|g| (z|z|8| [z|z|z|8| |zlzlz|8] |z|z|zl3| |§]|8|%
= 3|8|<| |8|3[€| |8|8]3|€| |3]8|s|€| |8|8|3[€| |8|8]S
o=
£
[
2 ¢
Y V| A 4 A / A J
A / \ 4 A A / A\ 4
d,relul—2 y drelu2—2 1 o,relud—3 drelud—3 d,relud—3
L feat L feat L feat L feat L feat

Fig. 2 VGG-16 network used to extract the loss function; this network consists of five main
convolutional blocks. The feature loss is calculated from the feature outputs of relu1-2, relu2-2,

relu3-3, relu4-3, and relu5-3. “n” represents number of filters, and “s” represents strides.
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Fig. 3 Visualization of the feature maps extracted from the high, middle, and lower convolutional
layers in the VGG 16 model. It can be appreciated that the initial layers provide high-level features
closer to the input of the model, while the deeper layers in the VGG model show more abstract
features (low level) of the input image.

extraction. The Euclidean distance between the extracted features of VGG-16 layer(s) formed
the objective loss of the network as indicated by Eq. (6). The deep feature loss is then back-
propagated to the DnCNN network to update the trainable parameters.

The relu-VGG reconstruction loss is computed from all individual layer feature losses, as
follows:

relu — VGG = A (relul — 2) 4 A, (relu2 — 2) + A3(relu3 — 3) + A4(relud — 3) + A5(relu5 — 3),
Q)

where the 1, 4, 43, A4, and A5 are the scalar weighting factors.

We investigate the contribution of each layer in extracting features from the OCT images, and
how these features support the network with the denoising task. Figure 3 provides a visualization
of the feature maps output by the VGG16 network when an OCT image is input to the network.
As we go deeper through the VGG16 network, the number of feature maps increases, while the
size of the feature maps decreases. The high level feature maps capture a lot of fine details in
the image. The deeper layer feature maps contain abstract features that are suitable to perform
classification; however, we generally lose the ability to visually interpret the deeper feature
maps. In this study, we will establish what level of feature abstraction from the VGG16 network
(pixelwise can be considered the zeroth level of abstraction) provides the “best” metric for OCT
noise reduction with the least amount of blurring and the highest edge preservation. We design
VGG loss networks to be a subset of the layers in the full VGG16 model. The model has the
same input layer as the original VGG16 model, but the output would be the output of a certain
convolutional layer. As we go deeper in the VGG16 layers, the number of feature maps (depth or
channels) increases, while the size of the feature maps decreases.

We experimented with two sets of weights for the VGG network.

e Pretrained VGG-16 network weights were trained on ImageNet.*

o Pretrained VGG-16 network weights were further calibrated on a large-scale database of
perceptual judgements. The weights and dataset were introduced by Ref. 20 and can be
publically accessed. For the rest of this paper, we refer to them as LPIPS.

A comparison of the feature distances for a set of 64 OCT image noisy and averaged pairs
is displayed in Fig. 4. It can be seen that the LPIPS and VGG resemble the same trend for
“perceptual similarity” of OCT image patches.

2.5 Trained Networks

For comparison purposes, we trained the following networks:
¢ DnCNN-L, with L, loss;
¢ DnCNN-L; with L; loss;

¢ DnCNN-VGG with VGG feature loss;
e DnCNN-VGG with individual layer VGG feature loss;
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LPIPS distance vs VGG feature distance
7.00E+05
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Fig. 4 Comparison of distance metric calculated by LPIPS versus VGG. The graph illustrates the
LPIPS, the VGG distance calculated from all layers (1 to 5) and the VGG distance calculated from
first three layers (1 to 3). The layers are given equal weights while calculating the feature distance.
The distances were calculated between 64 OCT patch pairs of noisy and averaged images.

e DnCNN-L;-L,-VGG combination of pixelwise losses and VGG loss;
e DnCNN-LPIPS with LPIPS image patch similarity loss.

3 Experiments and Results

3.1 Experimental Dataset

We perform our experiments on a dataset that was originally introduced by Ref. 33. The data
comprise foveal centered OCT retinal scans of 226 children aged between 4 and 12 years with
normal vision in both eyes and no history of ocular pathology. The images were acquired using a
spectral-domain OCT instrument (Copernicus SOCT-HR Optopol Technology SA, Zawiercie,
Poland). The dataset consists of OCT noisy scans at the same retinal location and the correspond-
ing averaged “noise-free” OCT image pairs (Fig. 5)—each measuring 999 x 868 pixels—along
with eight different retinal layer boundaries. The averaged image is acquired by registering and
averaging several B-scans obtained at the “same” retinal position.**

In our experiments, 51 OCT image pairs were randomly selected (noise and corresponding
averaged) to train the DnCNN network. Similarly, a separate set of 20 OCT image pairs was
randomly selected for testing and validation. We divided the images into overlapping
180 x 180 pixels with a stride of 45 pixels. No further data augmentation was performed on
the data. Patches that did not contain any retinal structures were removed from the analysis.

3.2 Network Training

In our experiments, the Adam optimizer’ was used across all networks with a learning rate o =

0.001 and a mini-batch size of 128. During testing, no cropping was applied to the images; the
whole B-scan was input to the trained network. The deep learning framework was implemented

Fig. 5 (a) Original OCT B-scan image and (b) the corresponding averaged OCT B-scan.
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on Tensorflow, and all experiments were conducted on four GPU nodes on the Pawsey super-
computing facility, each node having 2x Intel Xeon Broadwell E5-2680 v4, 14-core CPUs
(28 cores total) @ 2.4 GHz (nominal), 256 GB of RAM, and 4x NVIDIA Tesla P100s (each
card has 16 GB memory). Each network training (over 100 epochs) took about 5 h. Each network
was trained five times, and the model with the highest PSNR was chosen for each network.

To visualize the convergence of the networks, we calculated the VGG loss and L, loss accord-
ing to Egs. (3) and (6) over the 8903 image patches that were used for validation. Since the overall
trend for the losses was from high to low, a small representative window of loss (over 164 steps in
the first epoch) is presented to demonstrate the difference in trend of the two losses. For a network
trained with the VGG loss, the VGG loss and L, loss decreased smoothly together, which sug-
gests that a VGG loss produces results that are correlated with the L, loss results. On the other
hand, for the network trained with the pixelwise loss, the L, loss decreases, while the VGG loss
increases. This suggests that the L, loss is optimizing the network with a different focus than the
VGG loss. The difference between pixelwise losses and deep feature losses will be further dis-
cussed in the next section. Results for these initial training steps are shown in Fig. 6.

3.3 Qualitative Analysis

In this section, we present the visual inspection analysis of the OCT denoised images. Figure 7
shows a visual comparison of the denoised outputs of the trained networks for one OCT B-scan,
while Figs. 8—10 show expanded regions-of-interest (ROIs) color coded to those in Fig. 7.

Training of network with VGG loss Training of network with L2 loss
- 2 o VGG e VGG - |2

~~~~~~~~~~~

Batch Number Batch Number

(a) (b)

ﬁﬁﬁﬁﬁﬁﬁﬁﬁ

Fig. 6 (a) With training the network with VGG loss, the L, loss and VGG loss are correlated.
(b) With training the network with pixelwise loss, the L, loss and VGG loss are not correlated.

relu1-2

LPIPS . , Averaged

Fig. 7 First row from left to right are the denoised images from the DNCNN-Conv1-2 (relu1-2),
DnCNN-Conv2-2 (relu2-2), and DnCNN-Conv3-3 (relu3-3) networks. The second row shows the
denoised images from the DnCNN-Conv4-3 (relu4-3), DnCNN-Conv5-3 (relu5-3), and DnCNN-
VGG (VGG-AIl) networks. The third row shows the denoised images from the DnCNN-L, (L,),
DnCNN-L; (L), and DnCNN-VGG-L+-L, (VGG-L;-L,) networks. The fourth row shows the original
noisy OCT image, the denoised OCT by DnCNN-LPIPS (LPIPS), and the averaged OCT image.
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relud-3 VGG_all
(d) (e) (f)

VGG_L1_L2

Original Averaged
) (k) U]

Fig. 8 This ROI corresponds to the highlighted blue rectangle in Fig. 7. These pictures show the
contrast between retinal layers and the blood vessels.

Overall, all networks are capable of reducing the speckle noise in the output images.
However, DnCNN-L;, DnCNN-L,, and DnCNN-VGG-L,-L, blurred the images more than
other networks. This effect can be visually assessed in Figs 8(g), 8(h), and 8(i). It is worth noting
the differences between VGG(all) in Fig. 8(f) and L, /L, in Figs. 8(g) and 8(h), where it can be
seen that VGG is less blurry but a texture is introduced to the image.

In regards to VGG, examining the output of individual layers may provide more insight into
their contribution to performance. The first layer [relul-2 Fig. 8(a)] appears to be the closest to
L, /L, [Figs. 8(g) and 8(h)]. This is perhaps not surprising as it has the least processing effect on
the output of the first network, where L, and L, losses are calculated. Layer 2 (relu2-2) appears
to have a significant role in introducing texture in VGG [Fig. 8(b)] and subsequent layers
[Figs. 8(c)-8(e)]. DnCNN-Conv2-2 introduced artifacts in the form of added textures to the
denoised image, while DnCNN-Conv4-3 and DnCNN-Conv5-3 were seemingly preferable
because of lack of blurriness, especially compared with DnCNN-L; and DnCNN-L,, as can
be seen in the zoomed ROIs in Figs. 8 and 9. As for enhancement of faint features, Fig. 10
shows parts of the ILM layer denoised by different networks. DnCNN-L; and DnCNN-L, over-
smoothed some fine structures, resulting in loss of meaningful structures such as the ILM layer.
On the other hand, as highlighted by the red arrows, the ILM layer is more visible in the VGG-
based networks such as DnCNN-Conv4-3 and DnCNN-Conv5-3.

3.4 Assessment of OCT Image Sharpness

To quantitatively assess the denoising performance of each network, we quantify OCT image
sharpness using two image quality assessment metrics: PSNR and edge preservation index (EPI).
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(@) (b) ()

relugd-3 VGG_all

VGG_L1_L2

(i)

Averaged
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Fig. 9 This ROI corresponds to the highlighted green oval shape in Fig. 7. These pictures magnify
the macular region, the contrast between the background, and the retinal layers. The contrast
between retinal layers is most faded by the DnCNN-L; and DnCNN-L, networks.

Fig. 10 This ROI corresponds to the highlighted red rectangle in Fig. 7. The red arrow points to the
ELM retinal boundary. ELM is faded away by the DnCNN-L; and DnCNN-L, networks, but is more
visible using VGG feature loss networks.

In addition, we quantify the denoised OCT images with no-reference objective image sharpness
metrics since we do not have access to a “true” reference image. These metrics include the per-
ceptual sharpness index (PSI),* just noticeable blur (JNB),?” and spectral and spatial sharpness
measure (S3).® These methods report on a single sharpness value, which is representative
of sharpness around edges, contrast between layers, and overall perceptual sharpness of the
whole image.

3.4.1 Peak signal-to-noise ratio

We employ PSNR as a metric to evaluate the similarity between the denoised OCT image and a
reference averaged image. PSNR is defined as follows:
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I 2
PSNR = 101log,, (%) , (8)

where max (/) represents the maximum pixel intensity value in image I and MSE is the mean-
square-error between the denoised image and the reference image.

3.4.2 Edge preserving index

The EPI, as its name suggests, is intended to reflect the ability of the processing method to
preserve the edge details. We calculate the EPI at each retinal layer boundary as

EPI =) "[1,(i + 1.j) = 14(i. j)I. ©)

i

where I, represents the normalized pixel value at boundary coordinates (i, j), i represents the
i’th row, and j represents the j’th column. The higher EPI values reflect higher accumulative
differences between pixel values around retinal boundaries or higher contrast.

It is worth noting that the EPI metric has certain limitations, while assessing the edge sharp-
ness in OCT images. First, EPI is sensitive to noise. Presence of speckle noise makes it hard to
interpret the high EPI values as either the result of high contrast around the retinal boundaries or
simply a response to fluctuation of intensity around the retinal edges due to noise. Second, EPI
simply measures the change in the intensity, while there is no measure of the reference edge
position or size.

Because of the orientation on the retinal layer boundaries in the OCT images, we are pri-
marily interested in “horizontal” edges, while generally for layer segmentation there is little
boundary information in the vertical direction. The original methods® that used vertical edges
were adapted here for the horizontal edges.

3.5 Perceptual Sharpness Index

PSI is a blur metric method based on local edge gradients. In the first step of the algorithm, PSI
generates an edge map by applying a vertical and horizontal Sobel filter on the image. In the
second step, the algorithm estimates the edge widths by pixelwise tracing along the edge
gradients. The image is then divided into blocks (e.g., 32 X 32 pixels) to calculate the (local
sharpness estimates) given by

L
local sharpness = ——, (10)
Wps]

where wpg; is the measured edge widths within a block and L is the total number of blocks. Then,
the global sharpness estimation, the PSI, is calculated as the highest y’th percentile average of the
local sharpness values. In our experiments, y = 22 was used.

3.6 Just Noticeable Blur

JNB¥ is the minimum amount of perceived blurriness around an edge at a specific contrast with-
out being noticed. The higher values of JNB indicate a lower amount of blurriness in a given
picture. In the first step, INB detects the edges using the Sobel operator. The image is then divided
into blocks (e.g., 64 X 64 pixels), where each block is labeled as an edge block if the number of
edge pixels is higher than a threshold N (e.g., 2% of the pixels in each block). In step 3, the edge
width is calculated. Finally, the perceived blur distortion within an edge block R, is given as

AY;
DRb = (Z(’,‘ERb ) ’ (11)

where ; is the calculated edge width at pixel “I;” and 3 < wyg < 5 is the JNB width, an exper-
imental parameter chosen based on local contrast around the edge |foreground — background|;
and f = 3.6 is an another experimental hyperparameter.’’ The overall JNB metric is given as

w(e;)

wJNB(ei)
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INB=[—" (12)
(3o, |Dg, P)7

where n is the total number of blocks in the image.

3.7 Spectral and Spatial Sharpness

The S3 measure is a no-reference sharpness measure that yields a local sharpness map in which
greater values correspond to greater perceived sharpness within an image and across different
images. The S; map can also be represented by a single scalar value that denotes the overall
perceived sharpness for a full-sized image by

S3 = max S3(x), (13)

xeX

where x is a block in X and S;(x) denotes the sharpness value in the S3(X) map.
The S; sharpness map is calculated based on the combination of spectral-based sharpness
map S;(x) and spatial-based sharpness map S,(x) given as

S3(X) = $,(X)” x $,(X)'7, (14)

where 0 <y <1 and S;(x) is calculated based on the slope of the magnitude spectrum a of
block x by

1
SI(X):I—W, (15)

where, given block x, to compute a, first the two-dimensional discrete Fourier transform denoted
y(f, ) is computed, where f is the radial frequency and 0 is the orientation. From y(f, 8), next
the total magnitude spectrum is computed across all orientations z(f) = > ,|y(f, )|

The slope of the spectrum of x is then given as

" = arg min||ff~* - z(f)

20 (16)

where L,-norm is taken over all radial frequency f.
S,(x) is calculated based on the total variation proposed in Ref. 40. The total variation of
block x is given as

v(x) =Y |x;—xl. (17)
ij

where x; and x; are eight-neighborhood pixels in x.
S,(x) denotes a measure of perceived sharpness based on total variation of block v(x) as

S, (x) = max v(£), (18)

fex

where £ is a 2 X 2 block of x.

According to Ref. 38, the sigmoid function in S;(x) accounts for the human visual system,
where the images with 0 < a < 1 appear sharp and regions with @ > 1 appear blurred. In the
experiments section, we will present our results based on S3 and a.

3.8 Quantitative Results

To quantify the performance of each network, we calculated the PSNR, PSI, JNB, and S3 for the
20 test images.

The DnCNN-Conv1-2 and DnCNN-Conv5-3 networks produce denoised images with the
highest perceptual sharpness metrics. The VGG-based networks outperform the L; and L,
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Table 1 Quantitative metrics of denoised test images across different networks. For all metrics,
higher values indicate superior performance. The bold and italic numbers represent the best and
second best performances in each column.

Network Loss PSNR PSI JNB S3
DnCNN-L, L, 34.18 0.214 14.46 0.17
DnCNN-L4 Ly 34.33 0.208 14.34 0.16
DnCNN-Conv1-2 VGG layer1 32.43 0.303 18.07 0.41
DnCNN-Conv2-2 VGG layer2 32.1 0.318 16.91 0.27
DnCNN-Conv3-3 VGG layer3 31.08 0.306 16.5 0.38
DnCNN-Conv4-3 VGG layer4 32.09 0.317 17.73 0.30
DnCNN-Conv5-3 VGG layer5 30.63 0.329 17.92 0.32
DnCNN-VGG VGG 32.39 0.291 17.47 0.27
DNnCNN-L;-L,-VGG A Ly + 4 Lo+ 43 VGG 33.56 0.237 13.82 0.20
DnCNN-LPIPS LPIPS 32.36 0.38 13.89 0.26
Averaged — — 0.27 13.41 0.16
1.2
Conv5_3

1 Conv2_2
Conv3_3

VGG_AIl

LPIPS
s VGG_L1_L2
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©
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Fig. 11 The slope parameter a of each trained network and their relative positions on the
perceived sharpness measure spectrum. According to the diagram, the sharpness measure of
the images drops rapidly for 1 <a <3. An OCT image with 0 < a < 1 will appear sharp, while
OCT images with a« > 1 will appear progressively blurred as « increases.
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Fig. 12 (a) An averaged B-scan OCT image with marked retinal layer boundaries and (b) EPI for
test OCT images around retinal layer boundaries.

networks for all of the image sharpness quality metrics but achieve lower PSNR values. This
indicates that L; and L,-loss based networks can lower noise levels at the cost of compromising
image sharpness, resulting in blurry effects and loss of faint features that are essential for diag-
nosis. The summary of the metrics is presented in Table 1.

Figure 11 shows the perceived sharpness measure of each trained network across the slope
parameter « defined in Sec. 3.7. DnCNN-L; and DnCNN-L, have the lowest perceived sharp-
ness measure compared with VGG-based networks, with DnCNN-Conv5-3 exhibiting the high-
est sharpness measure on the slope parameter spectrum.

Figure 12 shows the EPI calculated for the seven retinal layer boundaries. VGG layer 5 con-
sistently exhibits higher (better) EPI compared with other losses over all seven retinal layer boun-
daries. On the other hand, the pixelwise loss networks score the lowest EPI across all retinal
layers. This result is aligned with the no-reference image sharpness measures presented earlier.

4 Discussion

We have investigated the effect of deep feature losses of VGG-16 and LPIPS on the denoising
performance of the DnCNN network for OCT speckle noise reduction. We focused on the indi-
vidual layers of the VGG-16 network to distinguish the contribution of each distinctive layer as a
loss function, with the aim of producing denoised OCT images that are perceptually clear and
preserve the faint features (retinal layer boundaries) essential for diagnosis. Our findings using
real clinical images indicate that the perceptual loss can effectively optimize the network to
denoise the OCT image by preserving the meaningful anatomical structures of the retina
(i.e., layers) and avoiding the blurring and oversmoothing effects produced by networks trained
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with pixelwise loss functions. All of the denoised images of the networks were reviewed and
qualitatively compared against their corresponding averaged OCT image to assess (1) the pres-
ence of deep learning induced image blurriness in the denoised images, (2) the presence of deep
learning induced textures in the denoised images, (3) overall visibility of retinal layer bounda-
ries, and (4) preservation of fine features that are essential for diagnosis. Networks optimized by
L, and L, losses resulted in denoised images with a blurred effect. This visual inspection also
revealed that the second layer in VGG (relu2-2) had a significant role in introducing textures in
denoised OCT images, while the fourth (relu4-3) and fifth (relu5-3) layers in VGG and LPIPS
were better (produced images with crisper retinal boundaries) loss functions compared with L,
and L,. Similarly, the fine features such as the ILM layer boundary were best preserved with the
DnCNN-Conv4-3, DnCNN-Conv5-3, and DnCNN-LPIPS networks. To quantify these findings,
we employed a range of metrics (PSNR, EPI, PSI, JNB, and S3) to assess the quality of the
denoised OCT images. Consistent with our qualitative analysis, perceptual sharpness measures
also showed the highest scores for the DnCNN-LPIPS with the highest PSI (0.38) and DnCNN-
Conv1-2 with the highest JNB (18.07) and S3 (0.416). It is worth mentioning that VGG-based
loss networks did not achieve high PSNRs similar to L; and L.

This study had some limitations. First, we acknowledge that this study dealt with OCT
images obtained from a single OCT instrument. Further training on datasets obtained from differ-
ent cameras is required to ensure that the network will provide a universal solution. Second, the
scope of our experiments was to look into each of the individual layers of the VGG network.
Further research is required to assess individual filters for a selective set of deep features suitable
for OCT denoising and to reduce any potential unwanted contribution from the layers. Third,
expert observers were not included as the scope of our experiments aimed to introduce a non-
conventional set of techniques to perceptually quantify the performance of the denoising net-
works. Further research is required to compare the perceptual sharpness methods with expert
observer scores on the OCT denoised images.

5 Conclusion

OCT images with high levels of speckle noise can be hard to interpret clinically, so the develop-
ment of OCT image denoising methods represents a relevant clinical tool. In this work, we have
demonstrated that there is a trade-off between smoothness and feature sharpness in selecting the
loss function. We demonstrated that indeed some layers (levels of abstraction) of the VGG16
network are more effective than others and more effective than the VGG16 network as a whole
for OCT image denoising. Overall, DnCNN-Conv5-3 consistently scored better in sharpness
scores and less blurring effect in the resulting denoised OCT images. However, earlier convolu-
tional layers (DnCNN-Conv1-2 and DnCNN-Conv3-3) also exhibited high sharpness scores
compared with other networks. As for future work, to further optimize the performance, one
might consider a weighting approach that selects a combination of a number of VGG16 layer
outputs as a loss function for denoising OCT images. We also experimentally showed that assess-
ing performance only using PSNR may not provide a complete assessment of the method, since
feature sharpness is equally important to ensuring that image detail is preserved. The findings of
this study highlight the importance of the careful selection of the loss function and bring atten-
tion to a new set of evaluation metrics for OCT image denoising.
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