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Abstract

Significance: Malignant skin tumors, which include melanoma and nonmelanoma skin cancers,
are the most prevalent type of malignant tumor. Gross pathology of pigmented skin lesions (PSL)
remains manual, time-consuming, and heavily dependent on the expertise of the medical person-
nel. Hyperspectral imaging (HSI) can assist in the detection of tumors and evaluate the status of
tumor margins by their spectral signatures.

Aim: Tumor segmentation of medical HSI data is a research field. The goal of this study is to
propose a framework for HSI-based tumor segmentation of PSL.

Approach: An HSI dataset of 28 PSL was prepared. Two frameworks for data preprocessing
and tumor segmentation were proposed. Models based on machine learning and deep learning
were used at the core of each framework.

Results: Cross-validation performance showed that pixel-wise processing achieves higher seg-
mentation performance, in terms of the Jaccard coefficient. Simultaneous use of spatio-spectral
features produced more comprehensive tumor masks. A three-dimensional Xception-based net-
work achieved performance similar to state-of-the-art networks while allowing for more detailed
detection of the tumor border.

Conclusions: Good performance was achieved for melanocytic lesions, but margins were dif-
ficult to detect in some cases of basal cell carcinoma. The frameworks proposed in this study
could be further improved for robustness against different pathologies and detailed delineation of
tissue margins to facilitate computer-assisted diagnosis during gross pathology.
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1 Introduction

In Japan, incidence and mortality rates of skin cancer have increased in the past decades, despite
adjustments for an aging population.' At the same time, the American Cancer Society estimates
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that malignant skin tumors comprise the majority of all cancers in the United States.” Early
diagnosis is key for the effective treatment of skin tumors. Dermoscopy and histology remain
the golden standards for clinical detection and diagnosis, respectively. However, the intermediate
stage of gross pathology hinders the digital flow. Gross pathology is a visual assessment stage
that includes the manual preparation of ex-vivo tissue for histology. Despite advances in medical
technology, gross pathology lacks digitization, automation, and standardization. At the same
time, it is time-consuming and dependent on the skill of the pathologist. However, pigmented
skin lesions (PSL), a group of pathologies with a high incidence rate, are rich in color infor-
mation. Hyperspectral imaging (HSI) is a noninvasive imaging technique that can capture spec-
tral signatures of a tissue sample, capable of discriminating malignancies.® A noninvasive,
nonionizing optical biopsy based on HSI could speed up diagnosis, reduce the number of
re-excisions, enable telepathology, and increase treatment effectiveness.

Hyperspectral Imaging (HSI) is an imaging technique developed for remote sensing appli-
cations, which is currently an emerging modality in medical imaging.*> Through the use of
narrow-band filters, HSI can capture the reflectance spectrum of a target tissue in detail, in the
form of spectral signatures. These signatures function as a fingerprint of the substances that
comprise the tissue, due to the relationship between reflectance and absorbance. Total absorb-
ance is the sum of the absorbance of individual skin chromophores, guided by the Beer—Lambert
law. Therefore, HSI can capture color information with more detail compared to standard RGB
cameras, which suffer from metamerism phenomena. The shape of spectral signatures can be
related to concentrations of chromophores. The main chromophores of the skin, melanin (M),
hemoglobin (HbO,), and deoxyhemoblobin (Hb) show increased concentrations in tumor
growths, as a result of vascularization and deep melanin structures. Consequently, spectral
signatures of tissue areas with tumor growths are expected to differ from healthy tissue.

The end goal of histopathology is to determine the existence or absence of malignancy and to
evaluate the status of tissue margins. Knowledge of the tumor margins at an earlier stage, either
during clinical examination, during surgery, or during gross pathology, can greatly enhance treat-
ment outcomes. Optical margin detection can be interpreted as a segmentation problem of recov-
ering healthy and tumor segments on the tissue surface. Segmentation is a recent research trend
for HSI data in the medical field with limited applications as of yet.® Pardo et al.” segmented
melanoma and nevus areas on lesions using kernel density estimation with maximum a poste-
riori estimation with good sensitivity. However, these segments were used for classification
purposes and thus were not evaluated for margin detection. Leon et al.® proposed K-means
clustering and spectral angle mapper (SAM) similarity for the segmentation of in-situ PSL.
However, the validation and testing dataset contained mostly melanocytic lesions, and perfor-
mance was not validated against histology margins. Deep learning-based segmentation has been
applied for HSI of the retina,” liver,'” head, and neck'! or tongue gross tissue'? using a Dense
fully-convolutional neural network with U-Net'? backbone. More work has been done in
histology HSI data, either with convolutional U-Net,'* patch-based multiple instance learning
(MIL)" or linear discriminant analysis (LDA).'® Regarding nonmedical applications, networks
that use Xception block!” or a three-dimensional convolutional neural network (3D CNN)'®!1
show good performance in the segmentation of remote sensing HSI data.

The structure of HSI data cubes complicates the application of deep learning models for
segmentation. Common models in artificial intelligence are prepared and optimized for RGB
natural images, not HSI or medical images. In many cases, dimension reduction of an HSI to
three channels is applied, before feeding the dataset to a pretrained network.'®?%?! However,
such a process can discard notable spectral features. On the other hand, if a network that pre-
serves the HSI’s spatio-spectral structure is designed and trained from scratch, a large number of
hyperparameters need to be learned, resulting in an illposed problem for limited data samples.
Alternatively, segmentation of HSI is commonly trivialized in the classification of individual
spectral signatures, discarding the spatial structure. This process ignores spatial correlations
in tissue and contradicts the purpose of acquiring two-dimensional (2D) HSI data in the first
place. Additionally, evaluation is commonly performed in terms of specificity and/or sensitivity,
which is not appropriate for segmentation tasks.”> A high number of correctly classified pixels of
healthy tissue along with a small number of tumor pixels can skew evaluation metrics. Despite
the variety of proposed methodologies for HSI data, spectral signatures of gross tissue have
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inherent properties that differ from HSI in remote sensing, food technology, or other data spaces.
Therefore, the appropriateness of common HSI methodologies needs to be adapted for skin
applications and verified accordingly.

Most studies focus on skin pathology use only melanoma versus nevus datasets, even though
PSL includes a variety of pathologies. Previous studies used histology slides with longitudinal
sections as ground truth labels. However, this is not a viable option for large-scale data collection
and periodic upgrades in the segmentation model. Histology slides are prepared from cross-
sections in standard clinical practice. Such an approach can achieve excellent training under
experimental conditions but is not feasible for clinical applications. Specifically for HSI data,
the large vector size (several hundreds of points for each spectral signature) complicates and
hinders common models. Moreover, hospitals and clinics are usually not updated with high-
performing computer systems. Therefore, a framework with balance performance and memory
requirements are necessary.

These works investigate the problem of tumor margin detection on PSL during gross path-
ology using HSI data. The goal is to propose a framework for margin detection, which has good
enough performance to facilitate computer-assisted diagnosis. This is the first work according to
our knowledge to investigate this problem for ex-vivo gross PSL tissue samples. Performance
was evaluated with emphasis on the two-dimensional structure of the predicted tumor segments
and investigation of the parameters that affect model decision.

2 Materials and Methods

2.1 HSI Acquisition System

A custom acquisition system was designed, with a 2D spectroradiometer at its core. The system
was developed and calibrated specifically for applications in skin gross pathology.”® An HSI
camera (SR-5000, TOPCON Corporation, Japan; 1.4 Mpixel CCD image sensor, lens 32 mm,
1376 x 1024 pixel, 380 to 780 nm) was positioned above the capture base, and an LED source
(SERIC Solax-iO LE-9NDS5, SERIC, Japan) was arranged at 45 deg from the capture base. Two
polarizers (TS High Contrast Plastic Polarizing Plate, Edmund Optics, Japan) were positioned in
front of the lens and the light source, in a Crossed Nicols configuration. The system was enclosed
in a dark box. The HSI data cube had spectral range (420, 750) nm with step 1 nm, in accordance
with the range limits of the polarizers. The spatial dimensions varied per target sample, thus the
largest data cube had dimensions 500 X 800 X 311, corresponding to an 8 cm long tissue sample.
The HSI system was integrated into the medical practice and operated by pathology experts
(TT and MH). The operator could choose an appropriate region of interest to be imaged and
the capture duration was adjusted accordingly. Data capture and postprocessing lasted 2 to 3 min.
Additionally, a white reference surface (X-Rite ColorChecker White Balance sheet) and dark
signal (lights off state) were imaged with the same system after the capture of the tissue.
This resulted in three HSI data cubes per sample, the tissue image /,, the white image [,,, and
the dark image /. A black porous material was used as the capture surface, to avoid leaks and
contamination of the camera system.

2.2 Experimental Dataset

An original HSI dataset was prepared using the custom acquisition system. The experiments in
this study were approved by the Ethical Committee of Saitama Medical University (977). All
participants gave informed consent for the scientific use of their data. Pigmented skin lesions
(PSL) were selected as target pathologies for this study. Lesions that fit the conditions were
imaged immediately after surgical excision, before any kind of processing. Tissue samples were
imaged with the surface facing up on the capture board. While this process constitutes ex-vivo
imaging, the fast acquisition (<30 min after surgery) is analogous to in-vivo imaging. Each
sample was formalin-fixed and cross-sectioned two days later. The cross-sections were captured
both with the HSI system and conventional RGB cameras. The sectioning direction and position-
ing of cross samples were recorded on the RGB image. Afterward, samples were pressed into
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Table 1 Breakdown of skin tumors included in the dataset.

Diagnosis Number of samples Tumor type
Basal cell carcinoma (BCC) 12 Malignant
Malignant melanoma (MM) 1 Malignant
Mucinous carcinoma 1 Malignant
Bowen’s disease 2 Precancer
Melanocytic Nevus 9 Benign
Blue Nevus 1 Benign
Dermatofibroma 1 Benign
Melanophage aggregate 1 Benign

paraffin blocks, shaved, and converted into tissue slides, for histopathological evaluation. Next,
histological margins were traced on the images of sectioned tissue by expert pathologists (TI and
MH). These margins were then traced on the HSI of the raw tissue surface. This resulted in 2D
masks of tumor margin that coincided with the spatial dimensions of the HSI. Additionally, a full
diagnosis was provided, including disease name and malignancy status (malignant or benign).

The data collection process resulted in the HSI of 32 tissue samples of PSL. Four of the
samples were not used for the following reasons. The sample of Paget’s disease had a very
different structure compared to the rest of the PSL. Two samples of melanocytic nevus were
discarded due to heavy staining with blue dye. A basal cell carcinoma (BCC) sample was
discarded due to difficulty in creating the label mask. This resulted in 28 tissue samples from
21 patients. An HSI data cube, a tumor segment mask, disease name, and malignancy status
were recovered for each sample. Table 1 shows a detailed breakdown of the dataset. A total of
384,014 spectral signatures were collected for validation, 33% of which were within the tumor
margin detected by histology. Another set of 283,206 spectral signatures was collected in the
same manner and used for testing. Melanocytic Nevus is closely associated with Malignant
Melanoma in terms of structure. These tumors differ from cancer tumors like BCC, due to the
absence of keratin in the epithelial layer. Nonetheless, both types of tumor can potentially evolve
into malignancy.

2.3 Data Preprocessing

HSI data cubes were preprocessed individually as follows. Normalized reflectance r(4) for
a tissue sample was recovered from each pixel as in

It(’” - Ib(ﬂ)

"L @10y

ey

where I,(4), I,,(1), and I, (1) refer to pixel intensities from the target, white reference and dark
signal HSI, respectively. To investigate the effect of denoising, preprocessing was followed by
denoising with the nonlocal meets global (NGMeet) algorithm.”* NGMeet is an iterative algo-
rithm that reconstructs a denoised HSI using both spatial nonlocal similarity and spectral low-
rank approximation. Additionally, a mask for the foreground (pixels that correspond to tissue)
was created using iterative clustering and morphological operators. Background pixels were set
to a flat zero spectrum. For applications per pixel, only the pixels belonging to the foreground
mask were used. This resulted in N X 311 matrices, where N refers to the number of foreground
pixels. Only spectral signatures of the foreground were analyzed because pixel-wise calculations
were sensitive to the structure of the background material. For applications per patch, each data
cube was split in 32 X 32 X 311 patches. Patches that contained no tissue pixels, as well as
patches that contained large portions of skin dyes, were discarded. Only the remaining HSI cubes
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were used for experiments. Augmentation is commonly used as standard practice to improve the
training of deep learning models with medical data.”> Simple operations such as affine transform
are both an obvious choice, as well as easy to implement.?® Therefore, the patch dataset was
augmented fourfold by vertical, horizontal, and mutual flipping of each channel of the data cube
and the labels. Additionally, an algorithm for stitching square patches together was prepared.
Thus, after further processing, the resulting square patches could be stitched to recreate the origi-
nal spatial dimensions of the tissue HSIL

2.4 Use Case Scenarios

Two frameworks were proposed, one for single-pixel processing using machine learning and one
for patch-wise processing using deep learning. The reason for the two frameworks is that they are
expected to be used in different scenarios. A single-pixel framework can be used when a small
number of images/large number of spectral signatures is available and fast system development
is required. It can also be used for the initial stages of system development for exploratory analy-
sis. Moreover, a model based on well-defined feature extractors is more easily interpretable and
the decision process can be associated with pathophysiological characteristics. On the other
hand, previous experiments showed that there is a benefit in using the joint spatio-spectral infor-
mation of HSI data cubes. Moreover, deep learning classifiers that perform abstract feature
extraction have shown exceptional results in applications in medicine. For this reason, the second
framework has deep learning at its core. Due to the large size of HSI data cubes and to fit
memory and time constraints, a patch-based approach is suggested. This framework is suitable
for cases where a large dataset with accurate labels is available. The two frameworks are pre-
sented in Fig. 1. The available models are presented in Fig. 2. Each framework is described in
detail in the following subsections.

Per pixel Per patch
framework HSI framework HSI
measurements measurements
(a) (b)

Normalization Normalization

Background
removal

Background
removal

Extraction of
foreground

| |

Reshape into
2D matrix

l l

Reshape into

Denoising

Split to patches

Feature extraction

4D matrix
Model decision Model decision

| |

Reshape into 2D
mask

Patch stitching

Fig. 1 The proposed frameworks for skin tumor segmentation. (a) The pixel-wise framework and
(b) patch-based framework have different models at their core. Processes in blocks with vivid blue
color are the same for both frameworks.
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Fig. 2 The models that were implemented in this study. Both machine learning and deep learning
models are used, each with the respective framework.

2.5 Pixel-wise Framework

The pixel-wise framework in Fig. 1 receives as input the HSI data cube. Pixel-wise normalization
is applied and the foreground signatures are extracted based on the foreground mask, after back-
ground removal. The signatures from multiple HSI data cubes are reshaped into a 2D matrix,
where each row represents the foreground pixels and columns represent the spectral dimension.
Nontissue pixels were ignored because their inclusion affects model training. Then, feature
extraction is performed. Although there is a wide variety of feature extractors, a simple approach
was assessed. Two sets of features were prepared (a) reflectance signatures and (b) abundance
maps.”’ The former refers to the spectral signatures after normalization. Abundance maps were
calculated using eight endmembers from a basal cell carcinoma sample. This sample was selected
because it contained a variety of colors, textures, and underlying structures. In essence, endmem-
bers represent “pure pixels” or individual substances in the spectral profile of an image target.
Endmembers were calculated by the N-Findr algorithm and eight abundance maps were pro-
duced, respectively.”® The endmembers are shown in Fig. 3. The signature vector was 311-point
long, whereas the abundance vector was eight-point long. Then, the feature vectors are fed into a
support vector machine (SVM) classifier. This resulted in two schemes: Signature + SVM and
Abundance + SVM. On datasets where the two classes have a small amount of overlap and are a
bit unbalanced, like this skin HSI dataset, SVM tends to perform well. The SVM model produces
a prediction of tumor or normal tissue. The predicted values are reshaped back to the original
spatial dimensions of the input images. For comparative purposes, an unsupervised method based
on image processing is also implemented. For Kmeans + SAM, the HSI signatures were grouped
into seven clusters with Kmeans clustering and then grouped based on SAM similarity.® Six
signatures (three of normal tissue and three of PSL tissue) were used as references for SAM
calculation, as shown in Fig. 4. MATLAB® 2020b (The MathWorks Inc., Natick, Massachusetts)
was used for implementation and experimentation.

2.6 Patch-based Framework

For the patch-based framework in Fig. 1, the initial stages of data handling are the same as
before. However, in this case, the normalized HSI data cube is split into 32 X 32 X 311 patches.

Journal of Biomedical Optics 106007-6 October 2022 « Vol. 27(10)



Aloupogianni et al.: Hyperspectral imaging for tumor segmentation on pigmented skin lesions

Endmember1

06 0.5 0.35 0.45
03 0.4
=0 —~04 - -
3 3 3 025 5 0%
© 04 © © o
s S s s & s
® ® Q 02 3
o o o o
< 03 o o c 0.25
8 8 L5 ]
[53 © 0.2 [53 153
D4, Ko} Ko} o 02
o= 0. = = =
j5} Q @ 0.1 5]
o 4 o1 4 o 0.15
0.1
0.05 01
0 0 0 0.05
400 500 600 700 800 400 500 600 700 800 400 500 600 700 800 400 500 600 700 800
Wavelengths (nm) Wavelengths (nm) Wavelengths (nm) Wavelengths (nm)
06 Endmember5 06 Endmemberé 015 Endmember7 06 Endmember8
05 0.5 0.5
3 3 3 3
S04 S04 KA So4
@ Q @Q @
o o o o
c 03 < 03 < 01 c 03
8 g 8 8
|53 153 o 153
D92 292 2 D92
|7} Q [5) O
o o o o
0.1 0.1 0.1
0 - . - 0 - - - 0.05 - . - 0 - - -
400 500 600 700 800 400 500 600 700 800 400 500 600 700 800 400 500 600 700 800
Wavelengths (nm) Wavelengths (nm) Wavelengths (nm) Wavelengths (nm)
Fig. 3 The database of end members used for the calculation of abundance maps.
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Fig. 4 The database of reference signatures used for SAM calculation.

Deep models need a lot of memory to work, and HSI data only exacerbate this problem.
By splitting data into patches, implementation in reasonable memory levels can be achieved.
The patches are reshaped into a 4D matrix of batches, where the dimensions represent (batch
number, height, width, and spectrum). The data are fed to a deep-learning model that performs
both abstract feature extraction and segmentation. The model produces segmentation results for
each patch. The predictions are stitched back together to form the original images.

A deep learning model based on 3D convolutions is proposed. 3D Convolution has been used
in other segmentation problems in medicine such as MRI diagnosis. The advantage of 3D con-
volution compared to 2D convolution is the direction of the kernel, which can move along the
spectral direction with independent steps. Thus, the kernel for convolution can have different
values in the spatial directions and the spectral direction. This way, the information in the
spectral direction is preserved and processed individually. The 3D Xception model is based
on Xception architecture? with 3D Convolutions instead of 2D. Other deep models, such as
Inception need a lot of data to be trained effectively, but Xception can reduce the parameters
of the model. Xception architecture outperforms other state-of-the-art (SOTA) segmentation
models in problems with natural images. Its feature is that it uses depthwise convolutions instead
of common convolutions. Depthwise convolution is performed in two stages to decouple the
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Fig. 5 The architecture of the proposed 3D Xception network.
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Kernel: (3,3,50)  Kernel: (33,50)  Kernel: (3,3,50) Kernel: (3,3,20) Kernel: (3,3,20)

Encoder network Decoder network

Fig. 6 The architecture of the 3D CNN network.

process. The structure of the proposed 3D Xception is shown in Fig. 5. It preserves the 3D
structure in the entire part of the decoder, which enables independent adjustment of the kernel
size for convolutions in the spatial and spectral dimensions. A too short kernel size in the spectral
dimension could be insufficient to detect patterns in the spectral signatures. At the same time, a
too wide size could obscure such patterns. The spectral dimension is dropped at the bottleneck
layer. Two different approaches to dropping the 3D at the bottleneck layer were proposed: apply-
ing (a) the max function at the spectral dimension or (b) the mean function at the spectral dimen-
sion. Dropout layers with a 40% rate were introduced at the end of each Xception block. An
additional convolutional neural network based on 3D convolutions (3D CNN) was designed for
baseline comparison. The model was structured with a U-Net backbone as shown in Fig. 6,
which is commonly used in the medical field for segmentation problems.'?

The proposed models were compared with various SOTA models. Visual Geometry Group
(VGG) and Inception networks showed poor performance in initial experiments, so only the
residual network (Resnet) architecture was considered moving forward. A precompiled Resnet34
model’*?! was used in two different configurations, as shown in Fig. 7. The first configuration
is pretrained Resnet. Because Resnet is designed to accept three-channel inputs, an additional
convolutional layer is added before the input layer to reduce the 311 spectral channels into 3.
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Output
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Fig. 7 The architecture of the two Resnet-based networks.

Only the input convolution weights are trained, whereas the rest of the parameters are frozen to
weights trained on the ImageNet dataset. Alternatively, a second configuration is prepared,
referred to as custom Resnet. The input dimensions can be passed as a parameter to the model’s
input layer, the spectral dimension is reduced with 2D convolutions, and weight training for all
layers is performed from scratch. The models were built and tested in an Anaconda (Anaconda,
Inc., Austin, Texas) environment, using Python 3.9, Tensorflow 2.7, and a system with NVIDIA
RTX6000 GPU.

2.7 Training and Evaluation

Three different data splits were used for experimentation, according to the flowchart in Fig. 8.
The input dataset was split into validation and testing datasets. Validation data were split in two
different ways. The first data split (data split 1) consisted of 16 training samples and 3 testing
samples as described in Table 2. Data split 1 was used for the initial system building and model
optimization. Validation data were separated into folds, with each fold consisting of the data

Validation data Testing data

Data split 3
Data split 1 Data split 2
Optimization Model builiding LOOCYV training
Model LOOCYV testing Model training > Model testing

Fig. 8 The flowchart of system building, optimization, cross validation, and testing.
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Table 2 Data splits.

Split Usage Tissue Pathologies

1 Training Mucinous carcinoma x1, Bowen'’s disease x1, BCC x6,
Melanocytic Nevus x6, Malignant melanoma x1, Dermatofibroma x1

1 Testing Melanophage aggregate x1, BCC x1, Melanocytic Nevus x1

2 Training All except one from Mucinous carcinoma x1, Bowen’s disease x1,
BCC x7, Melanocytic Nevus x7, Malignant melanoma x1,
Dermatofibroma x1, Melanophage aggregate x1

2 Testing The unused sample from above

3 Testing BCC x5, Bowen’s disease x1,

Melanocytic Nevus x2, Blue Nevus x1

derived from a single tissue sample. This structured dataset, data split 2, was used for leave-one-
out cross-validation (LOOCV) with 19 folds in total. The training was performed on eighteen
folds and performance was evaluated on the last. The training/testing process was repeated until
each fold was used for testing once. Average performance was derived from each iteration’s test
performance. Finally, the testing data and data split 3 were used for final testing and visual
confirmation of the produced segmentation results.

The models in this study were minimally optimized because this is an initial proof of work.
The parameters of each SVM (kernel, box constraint, and kernel scale) were optimized with
Bayesian optimization. Kernel functions were limited to linear and radial base function (RBF)
kernels. Only 10% of available signatures (sampled at equal intervals) were used for training, to
avoid a long training duration of the SVM. For the per-patch framework, data augmentation
resulted in 1780 HSI cubes for the validation dataset. The deep learning models were optimized
using grid search for the following hyperparameters: Optimizer among Adam, RMSProp, learn-
ing rate among 1073, 1074, 10>, 107, exponential decay among none, 10~>, 1079, loss function
among binary cross entropy (BCE), binary cross entropy + Jaccard coefficient loss (BCE + JC).
BCE is the most common loss for segmentation problems. However, in cases where the classes
are unbalanced, model training converges at a good accuracy for the prevalent class, instead of
focusing on both classes. To alleviate this problem, JC loss has been proposed.'”** The losses are
defined using the predicted value PR and the ground truth value GT as follows:

BCE(PR,GT) = —GT - log(PR) — (1 — GT) - log(1 — PR), )
PR N GT

JCL(PR.GT) = 1 = o ©)

BCE + JC(PR, GT) = BCE(PR, GT) + JCL(PR, GT). 4)

Both PR and GT are 2D binary masks of the segmentation result. Two alternative structures were
investigated for the 3D Xception network. The first consisted of four blocks with filters at
[64, 128, 256, 728] and the second of three blocks with filters [64, 128, 256]. While the kernel
size of 3D convolution was kept at three pixels for the spatial dimensions, values [5, 10, 20,
30] nm were investigated for the spectral dimension.

Accuracy, sensitivity, and specificity metrics were used for evaluation. These metrics are
commonly used in classification problems but are lacking when evaluating performance con-
currently in the two spatial dimensions. Accuracy expresses the ratio of correct prediction.
Sensitivity expresses the ratio of positive cases being detected. Specificity expresses the ratio
of a negative prediction being correct. Sensitivity and specificity are commonly compromised
with each other because in a medical setting no positive case should be missed, but high false
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positives induce an unnecessary burden to the patient. Additionally, Jaccard coefficient (JC), also
known as intersection-over-union was used as the main performance metric. JC is more appro-
priate for segmentation tasks because its calculation is unaffected by a small number of true
positives or true negatives. The performance metrics are calculated as:

TP + TN
Accuracy = , ®)]
TP + FP + TN + FN
TP
Sensitivity = ————, (6)
TP + FN
TN
Specificity = ———, 7
pecificity TN + EP (@)
PR N GT TP
JC =N )

" PRUGT TP+FP+FN’

where TP, TN, FP, FN, stand for true positive, true negative, false positive, and false negative
prediction, respectively. PR stands for predicted value and GT for ground truth. All values can be
expressed as percentages. Moreover, the balance between sensitivity and specificity was evalu-
ated with the receiver operator characteristics (ROC) area under the curve (AUC), which is com-
monly used for classification and segmentation models.*® The average and standard deviation of
the evaluation metrics are reported for LOOCV.

3 Results

3.1 System Building

Due to the high-dimensionality of the HSI data space, the validation dataset is visualized using
t-distributed stochastic neighbor embedding (t-SNE). This technique uses a distance metric to
reduce each spectral signature to a 2D or 3D embedding, and it is well suited for high-
dimensional spaces. Two-dimensional embeddings and euclidean distance were used in this case.
The embeddings of the labeled dataset are displayed in Fig. 9. The two-dimensional embedding
shows a great overlap among pathologies, tumor tissue and non-neoplastic tissue. This fact high-
lights the difficulty of the problem of tumor segmentation, which requires a nontrivial solution.

The average signature for each pathology in the validation dataset is presented in Fig. 10.
Average signatures show a clear difference among pathologies, both in curve shape and curve
amplitude. Melanocytic nevus and Melanoma show a straight appearance and a sudden upward
slope around 600 and 650 nm, respectively. Basal cell carcinoma shows a distinct double
valley at 540 and 570 nm, but at a much lower reflectance compared with benign pathologies.
Additionally, Basal cell carcinoma and melanocytic nevus show a much higher standard

Embedding dimension 2

2 “ 60 0 40 20 2 40 0

o o
Embedding dimension 1 Embedding dimension 1

* Healthy * Mucinous carcinoma Bowen'’s disease * Malignant melanoma
Inside Margin Basal cell carcinoma Melanocytic Nevus * Dermatofibroma

Fig. 9 -SNE visualizations of the dataset (a) according to tumor status and (b) according to
PSL type.
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Fig. 10 Average signatures for different pathologies. The error bars represent 20% of the standard
deviation across signatures for each pathology.

deviation compared to other pathologies. However, this fact could be attributed to the large
number of available tissue samples and the signatures for those two categories.

Each model was optimized using the train/test splits of data split 1. The SVM model was
optimized using Bayesian optimization at 200 evaluations. This resulted in observed parameters
44.184 for box constraint and 4.0136 for the kernel scale of the RBF kernel. For Kmeans +
SAM, values proposed in the literature were used. Specifically, signatures were split into seven
clusters and the sum of SAM similarity per pixel in the cluster was used for segmentation.

Four alternative structures were investigated for the 3D Xception network. The balance of
sensitivity and specificity in terms of AUC for the different structures is shown in Fig. 11.
Networks with max function at the bottleneck layer display higher AUC compared with the alter-
native. Initially, four Xception blocks show improved AUC performance compared with three
blocks. The convergence of the training process at 200 epochs is also affected. High loss
performance during training and testing for the four-block network shows that it suffers from
overfitting. The three-block network has lower training and testing loss, as well as smoother con-
vergence. Therefore, a network with three Xception blocks is used in subsequent experiments.

The influence of kernel size in the spectral dimension on testing performance is shown in
Fig. 12. While JC increases as the kernel size increases, this comes at a cost of precision at
30 nm. After further experimentation, the kernel (3, 3, 10) was used for the first block and

ROC curve ROC curve (zoomed in at top left)
. 1.000
. T 3 blocks+max (AUC = 0.974) //—’—’_‘
0975 3 blocks +mean (AUC = 0.918)
’ —— 4 blocks+max (AUC = 0.958)
0.8 —— 4 blocks+mean (AUC = 0.902) /
0.950
- g
o 4
5 06 © 0925
2 2
a ‘5 0.900
[=N (=%
o 0.4 :
E 5 0875
= =
0.2 e 3 blocks +max (AUC = 0.974) 2650
2™ 3 blocks+mean (AUC = 0.918)
L7 —— 4 blocks+max (AUC = 0.958) 0.825
e —— 4 blocks+mean (AUC = 0.902)
004 *
T T T T T T 0.800 T T
0.0 0.2 0.4 0.6 0.8 1.0 0000 0025 0050 0075 0100 0125 0150 0175 0.200
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Fig. 11 The influence of the structure of the 3D Xception network on the AUC performance.
(a) In-full view, and (b) zoomed-in at the knee of the curve.
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Fig. 12 The influence of kernel size at the spectral dimension in testing JC and precision.

(3, 3, 20) for the last two blocks of the 3D Xception network. Dropout layers with a dropout rate
40% were also applied at the end of each block, to avoid overfitting during training. Furthermore,
the choice of training parameters greatly affects model performance, as expected. Training with
BCE + JC loss converged more smoothly and at a lower value compared to training only with
BCE loss. The combination of RMSProp with BCE + JC loss achieved the best performance for
all deep learning models. The learning rate was optimized at 0.0001 for ResNet, at 0.001 for
3D CNN, and at 0.00001 for 3D Xception.

3.2 Validation Performance

LOOCYV was performed twice with the same model parameters for both the preprocessed and the
denoised data. This way the effectiveness of spatial denoising with the NGMeet algorithm can be
evaluated. Performance metrics without denoising and with denoising are provided in Tables 3
and 4, respectively. Accuracy and specificity metrics paint a misleading picture about the overall
performance of segmentation, due to the high prevalence of the negative class. For this reason,
more emphasis should be given to JC, AUC, and sensitivity metrics. Out of all the metrics,
JC performance is deemed as the most important, due to the balance it provides between false
positives and false negatives. Denoising did not improve and even slightly reduced the perfor-
mance for pixel-wise models. JC performance of preprocessed data without denoising came with
increased sensitivity and slightly increased specificity for Abundance + SVM and Signature +

Table 3 Cross validated performance with LOOCV (without denoising).

Accuracy  Sensitivity  Specificity JC

Method (%) (%) (%) (%) AUC
Kmeans 89.67 51.46 93.70 33.64 0.726
Abundance + SVM 78.05 66.03 79.33 47.89  0.960
Signature + SVM 80.30 64.69 86.26 50.17  0.996
Pretrained Resnet 87.24 68.88 60.62 40.99 0.829
Custom-Resnet 87.59 65.71 63.09 42.68 0.859
3D CNN 78.22 46.25 84.19 33.59 0.845
3D Xception 87.91 61.54 68.70 4212  0.897

Note: Values are reported as an average across all folds. The best result for each
metric per framework is highlighted in bold font.
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Table 4 Cross validated performance with LOOCV (with denoising).

Accuracy  Sensitivity  Specificity JC

Method (%) (%) (%) (%) AUC
Kmeans 89.75 52.49 93.52 34.88 0.730
Abundance + SVM 79.50 52.66 92.03 43.92 0.990
Signature + SVM 79.26 61.17 86.15 47.53 0.991
Pretrained-Resnet 88.81 71.62 66.32 45.87 0.881
Custom-Resnet 87.13 67.59 59.04 43.12 0.850
3D CNN 80.26 48.17 86.58 33.92 0.887
3D Xception 88.28 63.43 68.15 43.03 0.914

Note: Values are reported as an average across all folds. The best result for
each metric per framework is highlighted in bold font.

SVM. On the other hand, spatial denoising improved JC performance for patch-based models.
However, JC performance improved at a cost of specificity.

The fluctuation of JC across folds is presented in Fig. 13. For pixel-wise models, pre-
processed data is used, whereas patch-based models were trained and tested with denoised data.
A tissue sample that was diagnosed as Melanophage aggregate (benign neoplasia), two BCC,
and a melanocytic nevus had the worst prediction in terms of JC. It needs to be emphasized that
the ground truth labels are approximate because they refer to the histological evaluation of spe-
cific cross-sections on the tissue. For the Melanophage Aggregate sample, since the true positive
area is just a small growth of melanocytic cells, it is difficult to detect. SVM models detected
both the true positive and another false positive area on the left. Pretrained-Resnet detected only
the false positive. This false positive area was not evaluated by a cross-section. Therefore, there is
a chance that the false positive was a true positive that remained undetected due to the benignity
of the diagnosis. The BCC test sample at fold 6 has an unusual appearance where the epidermal
layer of the tumor tissue was shed and the deeper cells are prominent. Almost all models missed
its detection apart from pretrained-Resnet, which detected almost the entire tissue sample as
tumorous. For the other BCC sample (fold 9) where models failed, the mapping of histological
ground truth was not successful. The same holds for the Melanocytic Nevus at fold 18. This may
affect the metric calculation and should be assigned lower importance during model evaluation.
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Fig. 13 Performance in terms of Jaccard coefficient per fold.
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The segmented masks at each test sample of 19 folds of the LOOCYV are provided in
Figs. 14 and 15. The preprocessed dataset without denoising was used for Kmeans + SAM,
Abundance + SVM and Signature + SVM. The denoised dataset was used to train the patch-
based models. All pixel-wise models suffered from false positive detection at tissue boundaries.
Patch-based models did not suffer from such a problem. This effect was even more pronounced
for Kmeans + SAM. Moreover, Kmeans + SAM failed to detect any tumor at all in four cases.
Kmeans + SAM suffers from detecting illumination artifacts and areas with high contrast from
the surroundings, instead of detecting tumor growths. This is especially evident in folds 1, 8, 10,
13, 14, and 15. Abundance + SVM detected more homogeneous tumor masks compared to
Signature + SVM. However, it suffered from increased false positives, for example in the cases
of BCC (fold 10) and melanoma (fold 11).

Patch-based models provided more compact and dense masks compared to pixel-wise mod-
els. Dense masks are following the biological structure of the tissue. However, they all suffered
from false positives and overestimation of the tumor area. Pretrained-Resnet performed better
in terms of JC compared to custom-Resnet. Pretrained-Resnet was the only model that detected
tumor at the center of the BCC sample at fold 6. However, both it produced much larger tumor
masks compared with custom-Resnet, showing a tendency of high false positives. Additionally,
pretrained-Resnet tended to label an entire patch as only tumor or only non-neoplasia, resulting
in square-shaped segments. This fact is discordant with the shape of tumor borders, which tends

Ground Truth Kmeans+SAM Abundance+SVM Signature+SVM Pretrained-Resnet Custom-Resnet

Fig. 14 LOOCYV segmentation results for folds 1 to 10. From top to bottom: Mucinous Carcinoma,
Melanophage aggregate, BCC, BCC, Bowen’s disease, BCC, Melanocytic Nevus, BCC,
Melanocytic Nevus, BCC.
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Ground Truth

Fig. 15 LOOCV segmentation results for folds 11 to 19. From top to bottom: Melanoma,
Melanocytic Nevus, BCC, Dermatofibroma, Melanocytic Nevus, Melanocytic Nevus, Melanocytic
Nevus, Melanocytic Nevus, Melanocytic Nevus, BCC.

to be circular or wavy. 3D Xception produced more curvy tumor segments, although not as
dense. False positives were more controlled compared to Pretrained-Resnet. However, the
3D Xception model falsely detected a non-neoplastic edge at the melanoma sample, with more
emphasis compared with the Resnet models. This could be attributed to the influence of staining,
which was reduced but not completely eradicated by removing the more heavily stained patches.
3D CNN fails to detect the tumor area and mostly detects tissue pixels against the background.

3.3 Testing Performance

After the validation stage, the models are trained on the entire validation dataset and tested on an
unknown testing dataset, data split 3. Segmentation results for each sample are demonstrated in
Fig. 16. 3D CNN results are not included during testing, because it was falsely detecting skin
instead of the tumor during validation. It should be noted that the test dataset contained one
blue Nevus sample, a pathology that was not present in the validation and training dataset.
Performance fluctuates a lot depending on the pathology of the test sample. Performance is
exceptionally good for melanocytic PSL. The issue of SVM detecting tissue edges as false pos-
itives is still present. In terms of technical evaluation, deep learning models provide clearer tumor
masks for BCC samples compared to SVM models, with fewer false positives in non-neoplastic
areas. However, in terms of medical evaluation, SVM-based pixel-wise masks are more appro-
priate in cases where tumor detection was successful. Although margins are not delineated well
and false positives appear in areas with non-neoplastic tissue, all models apart from Kmeans +
SAM detect the general area of the tumor.
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Fig. 16 Segmentation results for test samples 1 to 9. From top to bottom: BCC, BCC, BCC,
Bowen’s disease, Melanocytic Nevus, BCC, Blue Nevus, Melanocytic Nevus, BCC.

LOOCYV and testing results were examined by two expert pathologists (TT and MH). The
consensus was that the tumor masks were still not sufficient for computer-assisted diagnosis
and further improvements are needed. SVM-based models were deemed as closer to the expected
ground truth, despite the false positives around the tissue border.

4 Discussion

In this study, a new HSI dataset of various PSL was created. The average spectral signatures
for different pathologies in Fig. 10 are in agreement with the observations by Borisova et al.,**
who found that pathologies with high vascularization or high melanin content have distinct
signatures. Considering that tumor growths are associated with larger vascular networks and
increased melanin content in deeper dermal layers, the shape of the recovered signatures is path-
ophysiologically sound. When the number of pathologies becomes nontrivial with the introduc-
tion of more than the dipole of nevus and melanoma, tumor detection and classification become
more difficult. Therefore, simple approaches based on thresholding or clustering are no longer
sufficient.

The experiments in the present study showed that margin detection of skin PSL using HSI
data is feasible. All models managed to detect the general area of the tumor. Pixel-wise clas-
sification suffers from false positives in the non-neoplastic region of the tissue, far from the
tumor area (false detection of edges, shadows). This can be improved with post-processing using
morphological operators. However, an adaptive post-processing scheme is preferred, for small
tumor areas (e.g., the melanophage aggregate sample) to be preserved. NGMeet denoising does
not improve results and even reduces performance. Since decision-making is based on individual
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pixels rather than spatiospectral patterns, spatial denoising is expected not to be of assistance.
The decrease in performance can be attributed to useful spectral components, which were dis-
carded at the SVD reconstruction step of the denoising algorithm. Kmeans + SAM was the only
method that failed to detect a tumor region in more than one case, indicating a high false negative
rate. Additionally, it consistently misclassified shades and borders, in a much higher degree
compared to SVM-based methods. Additionally, Kmeans + SAM detects artifacts and areas
with different illumination distribution, instead of tissue components. SVM-based models were
affected much less by such problems. However, they still suffered from nondense masks and
detection of tissue borders as false positives.

The quantitative results of this study showed similar performance for the different methods.
SVM, a simple model, can provide relatively good results. However, SVM is difficult to scale
and update for a large number of know data and pathologies. The most simple method, based on
Kmeans, failed in detecting a tumor area in some cases, so it is inappropriate. In terms of scal-
ability, standardized implementation and access to decision parameters, more complex methods
such are deep learning methods have potential. Deep learning models use convolutions to extract
spatio-spectral features. They can prepare more comprehensive tumor masks compared to SVM
models, by simultaneously evaluating all dimensions. There is sufficient room for improvement
with deeper networks or larger datasets. Pretrained-Resnet had the best performance in terms of
JC, but returned a lot of single-class predictions per patch, indicated by the straight edges on the
masks. 3D Xception achieved similar performance, and at the same time, it followed the shape of
the tumor more appropriately. The size of the convolution kernel can be adjusted in 3D Xception
network, which is not possible for ResNet with 2D convolutions. Therefore, 3D Xception has
more potential for improvement with detailed optimization of the structure, hyperparameters,
and training process.

Although the segmentation problem for PSL using HSI data is a relatively new problem in
literature, relevant studies are mentioned in Table 5. As mentioned before, accuracy and speci-
ficity are not appropriate metrics for an unbalanced dataset, therefore visual confirmation and
JC are more useful for evaluation. The performance in the present study is similar to other
works, however, none is sufficient for clinical application yet. Leon et al.® achieved good JC
performance with Kmeans + SAM, but the results were validated on a single fold and tested
on another. No cross validation was performed. In two out of the 10 test samples, no lesion
region was segmented at all. Additionally, mostly flat, evenly textured samples of melanocytic
lesions were included in the dataset. The dataset lacked the variety in pathologies that were
present in the dataset of this study. The ground truth was not derived from histology but was
produced experimentally with a semiautomatic labeling tool using five in-sifu signatures of
healthy and malignant tissue. Moreover, the dataset of Leon et al.® included additional depth
information in the near infrared (NIR) range, which was not available by our custom acquisition
system. The spectral resolution was 8nm, much lower compared to the 1nm resolution in the
present study. Halicek et al.*> performed segmentation on head and neck samples, including oral
and gland tissue, but no skin tissue. They achieved good results with an Inception CNN with

Table 5 Performance of other models in literature.

Method Accuracy (%) Sensitivity (%) JC (%) AUC

Clustering + SAM® N/A N/A 57.93 (13.53) N/A
In-situ PSL, VIS + NIR range

Inception CNN 92 (9) 92 (8) N/A 0.95
Ex-vivo thyroid, VIS + NIR range

Inception CNN® 81 (11) 81 (15) N/A 0.82

Ex-vivo oral, VIS + NIR range

Note: Metrics are reported as average accompanied by the standard deviation in parenthesis. Row 1 metrics
are validated at a single fold. Rows 2 to 3 show metrics validated with LOOCV.
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adjusted input dimension, similar to the custom-Resnet of the present study. However, a key
difference exists in the training and evaluation process. Histology slides from surface sections
were prepared instead of cross sections. Surface sections are not available in standard pathology
practice, which hinders the applicability and update of such a framework. Moreover, pixels close
to the tumor border were not included in the metric calculation. In this case, as well, the NIR
range was included in the processing. Their HSI acquisition system was capable of 5-nm spectral
resolution. Zunair et al.’® improved the segmentation of tuberculosis from CT scans using 3D
convolutions. Xu et al.!” proposed the use of a logarithmic JC loss for the improvement of
Xception-based segmentation during remote sensing. Both 3D convolutions and JC loss were
used in the present study, with positive effects on performance.

Despite the improvements and additional insights compared to previous works, this study has
considerable limitations. The process of ground truth recovery included multiple approximation
steps. The ground truth masks were drawn manually on images of the cross sections and then
traced to images of the surface view. These two manual steps increase the cases where a spectral
signature and a label are mismatched. Moreover, the tracing itself depends solely on the cross-
section labels. This means that there is a chance of false negatives existing on the label, due to
those areas not being part of the cross-section. Consequently, the ground truth is approximate
and not absolute. This affects both training and evaluation performance. From the perspective of
pathologists, a low false positive rate is more important than high sensitivity. However, overt
focus on low false positives during training can hinder effective training. The dataset contained
a large number of BCC and melanocytic nevus samples, but only one melanoma. The diagnostic
performance of dermatologists on BCC detection is exceptionally high, compared with other
pathologies. However, there is merit in this study, because nondermatologist medical personnel
is commonly asked to evaluate tissue. An HSI-based tumor detection tool could assist nonder-
matologist personnel to an even greater degree. Practical pathology knowledge, e.g., that mela-
noma appears redder compared to nevus due to high hemoglobin content, was not explicitly used
for the models in this study. Optimization of the models in synergy with experienced doctors
could further improve performance. Further investigation into training and model structure is
necessary for the proposed frameworks to be helpful in a clinical setting.

This study proposed two new HSI-based frameworks and the first work to our knowledge,
which focuses on tumor segmentation of PSL. A lot of directions can be followed in terms of
future improvements until implementation in clinical practice is viable. While the SVM model
showed the best performance, SVM has limitations regarding scalability when the available
data number increases. However, pixel-wise segmentation could be improved with a more tar-
geted training dataset and adaptive post-processing. Deep learning models have a large room for
improvement with detailed optimization of the model structure and experimentation with the size
of the convolutional kernels. Alternative metrics, further focused on skin tumor segmentation
could improve training performance and improve generalization. Common loss functions and
evaluation metrics do not accurately describe performance in accordance with the view of medi-
cal experts. Therefore, further work is necessary to generate metrics that are appropriate for the
evaluation of tumor segments. Finally, feature visualization techniques and interpretation of HSI
decision-making using explainable artificial intelligence (XAI) are required before practical
implementation.

5 Conclusions

Tumor segmentation of HSI data is a field in gross pathology. This work proposed two frame-
works, a pixel-wise and a patch-based framework for the segmentation of HSI data from PSL.
Results showed that SVM-based models can achieve good JC performance but produce noisy
tumor masks. Joint inclusion of spatio-spectral information by deep learning models produces
more comprehensive tumor segments. Xception networks with 3D Convolution can achieve per-
formance similar to SOTA models while allowing for further customization in terms of convo-
lution in the spectral direction. Good performance was achieved for melanocytic lesions, but
margins were difficult to detect in some cases of basal cell carcinoma. This study showed that
tumor segmentation of skin PSL using HSI information is feasible, but further investigation is
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needed until it is implemented in clinical practice to facilitate fast and noninvasive delineation
of tumor margins.
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