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Abstract

Significance: Visualizing high-resolution hemodynamics in cerebral tissue over a large field
of view (FOV), provides important information in studying disease states affecting the brain.
Current state-of-the-art optical blood flow imaging techniques either lack spatial resolution or
are too slow to provide high temporal resolution reconstruction of flow map over a large FOV.

Aim: We present a high spatial resolution computational optical imaging technique based on
principles of laser speckle contrast imaging (LSCI) for reconstructing the blood flow maps in
complex tissue over a large FOV provided that the three-dimensional (3D) vascular structure is
known or assumed.

Approach: Our proposed method uses a perturbation Monte Carlo simulation of the high-
resolution 3D geometry for both accurately deriving the speckle contrast forward model and
calculating the Jacobian matrix used in our reconstruction algorithm to achieve high resolution.
Given the convex nature of our highly nonlinear problem, we implemented a mini-batch gradient
descent with an adaptive learning rate optimization method to iteratively reconstruct the blood
flow map. Specifically, we implemented advanced optimization techniques combined with effi-
cient parallelization and vectorization of the forward and derivative calculations to make recon-
struction of the blood flow map feasible with reconstruction times on the order of tens of
minutes.

Results: We tested our reconstruction algorithm through simulation of both a flow phantom
model as well as an anatomically correct murine cerebral tissue and vasculature captured via
two-photon microscopy. Additionally, we performed a noise study, examining the robustness
of our inverse model in presence of 0.1% and 1% additive noise. In all cases, the blood flow
reconstruction error was <2% for most of the vasculature, except for the peripheral vasculature
which suffered from insufficient photon sampling. Descending vasculature and deeper structures
showed slightly higher sensitivity to noise compared with vasculature with a horizontal orien-
tation at the more superficial layers. Our results show high-resolution reconstruction of the blood
flow map in tissue down to 500 μm and beyond.

Conclusions: We have demonstrated a high-resolution computational imaging technique for
visualizing blood flow map in complex tissue over a large FOV. Once a high-resolution structural
image is captured, our reconstruction algorithm only requires a few LSCI images captured
through a camera to reconstruct the blood flow map computationally at a high resolution. We
note that the combination of high temporal and spatial resolution of our reconstruction algorithm
makes the solution well-suited for applications involving fast monitoring of flow dynamics over
a large FOV, such as in functional neural imaging.
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1 Introduction

The ability to visualize longitudinal hemodynamics is essential in understanding the biological
function and physiological progression in diseases affecting the brain such as stroke and
Alzheimer’s and other neurodegenerative disorders.1 Optical imaging methods have had a sig-
nificant impact in the field of neuroimaging and have been widely used to study the functional,
cellular, and vascular physiology of the brain during disease states, particularly in animal
models.2,3 These optical imaging modalities can be broadly generalized into two categories:
macroscopic and microscopic.4

Optical imaging methods based on dynamic light scattering (DLS), such as laser speckle con-
trast imaging (LSCI),5 laser Doppler imaging,6 and diffuse correlation spectroscopy (DCS),7,8

provide blood flow maps over a large field of view (FOV) with resolution in the hundreds of
microns to millimeters (macroscopic regime). LSCI’s advantage lies in its ability to rapidly image
blood flow over a large FOV with the high spatiotemporal resolution, requiring relatively simple
and cost-effective instrumentation. However, under traditional widefield illumination, its scope
has been limited to providing volume integrated, two-dimensional maps of blood flow.

DCS, on the other hand, uses complex instrumentation of point source illumination and
detection combined with photon diffusion models to sample deep in tissue. It uses a model-based
computational tomography in the diffusion regime, assuming homogeneous structures with vas-
cular volume fraction (VF), to derive a topographical blood flow index (BFI)9 with resolution
limited to hundreds of microns. Additionally, DCS suffers from low signal-to-noise ratio (SNR)
and low dynamic range since intensity autocorrelation ðg2ðtÞÞ must be computed by measuring
each speckle independently using a single or few-mode fiber.10 To increase the SNR, a large
number of detectors (fibers) must be utilized at a given spot, making it either too complex or
not feasible for practical DCS applications.

Most recently, LSCI has been extended to a model-based tomographic imaging paradigm
using principles of speckle contrast imaging and photon diffusion.10–12 Similar to DCS, point-
source illumination is used for model-based three-dimensional (3D) reconstruction. In speckle
contrast optical tomography (SCOT) a high-density camera array replaces the complex detection
instrumentation required in DCS, simplifying the instrumentation while improving the SNR.
However, in both DCS and SCOT resolution is limited to hundreds of microns. Additionally,
both these methods assume first-order approximations in the photon diffusion model as well as
homogeneity assumptions in the tissue to solve the 3D reconstruction inverse problem analyti-
cally. In SCOT, additional assumptions must be made relating the observed speckle contrast to
the underlying intensity fluctuations.10 We have shown previously that these assumptions lead to
large errors in deriving decorrelations times used to estimate BFI in the subdiffusion regime, thus
limiting the resolution and resulting in either under or overestimation of the vascular blood flow
in a complex tissue.13

In the macroscopic regime, other noncoherent optical imaging modalities such as spatial
frequency domain spectroscopy (SFDI)14,15 have recently been proposed, which have been
shown to be capable of real-time imaging of optical properties of turbid media such as in the
brain tissue. Zhao et al.14 presented a fast, real-time, noncontact, and label-free method for mon-
itoring hemodynamics in a rat brain cortex over a large FOV based on principles of halftone
SFDI. Although the latest advances in SFDI use simple instrumentation and achieve real-time
imaging over a large FOV, their resolution is limited, and flow field maps lack 3D specificity.

On the other hand, in the microscopic domain, imaging modalities such as multiphoton
microscopy (2/3PM)16 and to some extent optical coherence tomography (OCT)17 have enabled
imaging down to a single neuron or capillary level with resolutions in a few microns. In the case
of two-photon microscopy (2PM), high-resolution structural and functional images can be
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achieved with the ability to quantitatively measure blood flow down to a single capillary level.
However, this imaging modality is often very slow, and its FOV is limited to only a few
millimeters in each imaging session.

OCTenables imaging a larger FOV relative to 2PM, while keeping the resolution down in the
few microns range.17–19 However, unlike 2PM, OCT does not provide the ability to quantitatively
measure blood flow in capillary beds.17 Traditional Doppler OCT or OCT angiography methods
have less sensitivity to vasculature in the transverse plane where capillary networks are mostly
observed.4 Various techniques have been proposed to enable capillary velocimetry in OCT.4,18,20

However, these methods are limited in their dynamic range and do not allow for accurate con-
current measurement of blood flow in both capillary bed and arterial vasculature. Additionally,
single-photon scattering is assumed in the derivation of the analytical models, which break down
in the presence of multiple scattering photons in complex cerebral tissue.20

In this paper, we propose an innovative computational method for high-resolution tomo-
graphic reconstruction of blood flow maps in complex cerebral tissue down to capillary levels,
using principles of speckle contrast imaging and perturbation Monte Carlo (PMC).21–23 It is
important to note that our reconstruction algorithm requires the 3D geometry to be known
or assumed to achieve the stated high-resolution reconstruction of blood flow. However, once
the structure is imaged at a high resolution, the same geometry can be utilized to reconstruct
blood flow maps over a large FOV rapidly while maintaining a high resolution down to the
capillary level. This makes our proposed method particularly well suited for imaging blood flow
over large fields of view.

Our proposed method utilizes simple instrumentation of point source illumination and cam-
era array detection, similar to SCOT, to reconstruct 3D blood flow maps for a structural prior.
However, unlike SCOT, in our reconstruction, we do not make any approximations or assump-
tions with respect to the particle flow dynamics or tissue homogeneity. Instead, we use pertur-
bation of the simulated photon trajectories directly through the intact geometry to achieve high-
resolution reconstruction of blood flow maps, noninvasively.

We previously showed the effect of vascular structure and homogeneity assumptions on
blood flow estimates.13 Briefly, our results showed that randomizing vascular structure and
defining a blood volume measure, rather than accounting for intact vascular structure, can lead
up to 60% errors in electric field decorrelation times, even when considering measures relative to
baseline. This leads to erroneous blood flow estimates, particularly in the subdiffuse regime,
when comparing the blood flow in the vessel and the parenchyma regions.

Because Monte Carlo (MC) simulations solve the radiative transport equation (RTE) directly,
in many studies, it is considered the gold standard for modeling photon migration in biological
tissues.24,25 Nonetheless, MC was not deemed practical for providing the forward solutions due
to its high computational overhead when simulating large volumes and limitations in modeling
complex tissue structures. These limitations have been alleviated by implementation of high-
resolution voxelized geometries26 and mesh-based MC methods,27,28 as well as efficient
PMC methods to speed up the forward computation.23,29,30 Additionally, the wide availability
of fast processors, such as graphical processing units (GPU) and super computers, has enabled
the massive parallelization of the forward computation, thus reducing the processing time by
several orders of magnitude. Recently, these innovations have led to an increased interest in
using MC methods in a variety of fields for simulating the RTE forward model in lieu of the
simplified analytical models.21,30,31

Our proposed 3D reconstruction framework is based on 3D DLS-MC,32 where the forward
model and calculations of the Jacobian matrix are efficiently implemented in numerical MC
perturbations. In DLS-MC, the aim is to efficiently evaluate the effect of a small change in the
flow perturbation on the observed speckle contrast. This is achieved by reusing the trajectories of
photons from an unperturbed simulation such that the trajectories do not need to be regenerated
for each perturbation, resulting in reduced processing times.23,32,33

Given a structural prior, we present a novel, robust nonlinear optimization method for high-
resolution reconstruction of blood flow map in complex cerebral tissue. We were able to over-
come the low sensitivity of speckle contrast values to deeper vasculature by advanced optimi-
zation algorithms, enabling accurate reconstruction of the capillary flow down to 500-μm depth
and beyond.
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2 Theory and Methods

2.1 PMC-Based Forward Model

The underlying principle in LSCI is the relationship between the second moment of the electric
field autocorrelation ðg1ðtÞÞ, when a coherent laser beam is an incident upon turbid tissue sur-
face, and the observed speckle contrast (K) from the time-integrated back-scattered field, cap-
tured through a camera. Equation (1) formulates this relationship, where K is calculated
experimentally as spatial variance σs to the mean intensity hIi of a sliding 7 × 7 window swept
across the image captured via a camera, for a given camera exposure time T. β is an instrumen-
tation parameter and accounts for the mismatch between the detector and speckle spot size

EQ-TARGET;temp:intralink-;e001;116;609K2 ¼ σ2s
hIi2 ¼

1

T

Z
T

0

βjg1ðtÞj2
�
1 −

t
T

�
dt: (1)

We previously presented the details of our forward model platform, which is built on the
theory of DLS-MC and aims to calculate the right-hand side of Eq. (1) accurately.32 In summary,
when a plane wave electric field is incident on the surface of a medium, the resulting backscat-
tered electric field at each detector has a phase shift that is the superposition of the momentum
transfer contribution from each detected photon that underwent dynamic scattering due to inter-
action with moving red blood cells (RBCs) in vessels.32 The electric field autocorrelation func-
tion ðg1ðtÞÞ can then be calculated according to Eq. (2) if the photon scattering position and
vascular flow fields are known

EQ-TARGET;temp:intralink-;e002;116;466g1ðtÞ ¼ hEð0ÞE�ðtÞi ¼
Z

∞

−∞
PðYÞ expð−2jk0YtÞdY; (2)

where t is the decorrelation lag time, PðYÞ is the normalized length-dependent absorption weight
for the detected photon, k0 is the wavenumber, and Y is the dimensionless momentum transfer
for each detected photon that underwent dynamic scattering (i.e., scattered inside a vessel at least
once on its trajectory). The value of Y can be calculated according to the following equation:

EQ-TARGET;temp:intralink-;e003;116;375Y ¼
XN
n¼0

ððk̂f;n − k̂i;nÞ · VnÞ; (3)

where k̂f;n and k̂i;n are the photon’s n’th scattering and incident unit vectors, respectively, and Vn

is the velocity vector of the corresponding scattering location inside the vessel.13 The sum is over
all scattering locations for a single detected photon. The contribution of scattering in nonvascular
regions to the momentum transfer Y is negligible, and thus Vn is set to zero in the extravascular
regions. We note that Eq. (3) captures only the ordered motion of RBCs in a vessel; however, it
does not make any assumptions in terms of a number of scattering or degree of correlation.

In analytical solutions to Eq. (1), a form of g1ðtÞ is assumed based on the dynamics of the
particle flow by relating K to the electric field decorrelation times and inferring a blood flow
measurement. Bandyopadhyay et al.34 formulated this relationship for different kinds of motion.
In a complex tissue such as in the brain, where a single assumption in terms of particle dynamics
is not valid, such simplifications can significantly limit the accuracy and resolution of the esti-
mated blood flow measure. Our DLS-MC forward foregoes making any assumptions with
respect to the tissue structure or the type of scattering and thus enables us to calculate the
observed K values based on an accurate tissue model and flow structure.

2.2 Inverse Problem Formulation

For a set of illumination point sources (Ns) and detectors (Nd), the reconstruction algorithm can
be formulated as a least-square minimization that seeks to reconstruct the blood flow map in
tissue by minimizing the error between the observed speckle contrast through a camera and the
estimated speckle contrast derived through our DLS-MC forward
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EQ-TARGET;temp:intralink-;e004;116;735V̂ ¼ arg min
vn

X
Ns

X
Nd

����Kmeasured −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

Z
T

0

βjg1ðtÞj2
�
1 −

t
T

�
dt

s ����
2

þ γRðV̂Þ: (4)

In this formulation Ns is the number of geometry-dependent point source illuminations spots
scanned across the geometry surface, and Nd is the number of detectors resembling a camera

detector array. V̂ ¼ ½v̂1; v̂2; v̂3; : : : ; v̂N �T , where vi is the estimated blood flow in vessel strand i.
We note that a strand object is any continuous vessel segment between two bifurcation points
derived through vectorization of the geometry as further discussed in Sec. 2.5. K is the measured
or simulated speckle contrast values based on ground truth vascular flows. In calculating the
momentum transfer in Eq. (3), all unit vector directions of photon scattering, and vascular center-

lines are known, and the inversion reconstructs the scalar component of ~Vn, namely the blood
flow in the corresponding strand.

In Eq. (4), the data fidelity term k:k2 represents an l2 norm. The regularization term, ðRðV̂ÞÞ
imposes a prior on the reconstructed vascular flow with tunable regularization parameter γ to
avoid overfitting due to the high degree of nonlinearity of our model and to reduce noise artifact
subject to positivity constraint. As further discussed in Sec. 2.3, a one-dimensional total variation

(TV1D) regularization RðV̂Þ ¼ kV̂kTV1D was implemented, as it provides sufficient regulariza-
tion while balancing speed and memory overhead.

2.3 Derivation of the Jacobian Matrix

The first step in solving the minimization problem presented above is to compute derivatives
with respect to the vascular flow profiles. While the data misfit term in Eq. (4) ðk:k2Þ is differ-
entiable, the regularization term may be smooth but not differentiable depending on the type of
prior. In such cases, iterative proximal stochastic gradient methods present lower complexity in
terms of memory requirement and computational overhead when compared with alternating
direction method of multipliers (ADMM) or second-order Newton’s method35 while achieving
a fast convergence rate. Herein, we present the analytical expression for the PMC-based deriva-
tive of the data misfit term and discuss the choice of regularization function and the proximal
operator for computing the Jacobian matrix.

Starting from the complex-valued expression of g1ðtÞ from Eq. (2), the absolute value of the
second moment jg1ðtÞj2 can be rewritten as

EQ-TARGET;temp:intralink-;e005;116;333jg1ðtÞj2 ¼
����XN−1

n¼0

Pne−j2k0Ynt

����
2

¼
XN−1

n¼0

P2
n þ

XN−2

n¼0

XN−1

m¼nþ1

2PnPm cosð2k0ðYn − YmÞtÞ: (5)

In this expression, the sum is over all the photons detected by a single camera pixel (detector),
Pn and Pm are the normalized length dependent photon weight for photons n and m. Yn and Ym

are the momentum transfers calculated according to Eq. (3) at a given point in search space for
photons n andm. Using Eq. (5), the derivative of the data misfit with respect to individual strand
vascular flow can then be calculated as follows:

EQ-TARGET;temp:intralink-;e006;116;222

∂kK − K̂k2l2
∂vi

¼
�
K

K̂
− 1

�XN−2

n¼0

XN−1

m¼nþ1

∂K̂nm

∂vi
; (6)

where

EQ-TARGET;temp:intralink-;e007;116;160

∂K̂nm

∂vi
¼ 2ðqn − qmÞ sinðk0TAÞ

ððk0TÞ2A3Þ ðk0TA cosðk0TAÞ − sinðk0TAÞÞ. (7)

In Eq. 7 K̂nm is the speckle contrast estimate accounting for only photons n and m detected by a
given detector, and A is their net momentum transfer contribution Yn − Ym derived from Eq. (3).
qn and qm are the unit dot products of photon scattering and vessel centerline direction at
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location r, if r is in the subspace of strand object i. If photons n or m have not been dynamically
scattered in vessel i, then their corresponding q value will be set to zero.

A proximal operator can be used in computing the derivative for Eq. (4) when the regulari-
zation function (R) is not differentiable. In our tissue vectorization step, all strand objects are
sorted according to their radii size. We note that V ∈ R3 → R is the projection of strand objects
in 3D space onto neighboring strands of similar radii and flow in vector form. In this paper, we
have chosen TV1D as the penalty function since it has an efficient proximal operator and pro-
vides reasonable regularization.36,37 The following proximal operator is applied after the gradient
step to address the illconditioning of our highly nonlinear problem

EQ-TARGET;temp:intralink-;e008;116;627proxγRðV̂Þ ¼ arg min
x

�
1

2
kx − V̂k2l2 þ γkxkTV1D

�
: (8)

Equation (8) is solved iteratively, applying regularization to x, while keeping the solution close to

the updated V̂ derived in the gradient step. Care must be taken in tunning the regularization
parameter (γ) so that large variation in neighboring strand objects is not blurred out while suf-
ficient regularization is applied to noisy reconstructed data.

2.4 Reconstruction Framework

Algorithm 1 illustrates our mini-batch gradient descent optimization method implemented for
PMC-based 3D reconstruction of vascular flow in a complex tissue. One of the challenges in
reconstructing blood flow in deeper vascular regions is that the observed speckle contrast images
have lower sensitivity to variations of blood flow deep in tissue. Photon sampling is highly con-
centrated toward the superficial vascular region.38 This compounds the choice of the learning rate
for optimal convergence and accuracy in the gradient descent step.

In this paper, we have used gradient descent optimization algorithms based on adaptive learn-
ing rate estimates to alleviate the discrepancy in lower sampling frequency of deeper vascular
regions. Adaptive moment estimate (Adam)39 adaptively adjusts the learning rates based on
decaying averages of the first and second moments of gradients, mt and vt.

In addition to the adaptive learning rate optimization algorithm, we have also utilized
Nesterov’s momentum acceleration scheme40 which significantly improves our convergence
rate. Finally, we implemented fast direct methods for calculation of the proximal operator for
TV1D.41 Collectively, these schemes resulted in Oð1∕ ffiffiffi

ε
p Þ convergence rate, where ε is the

desired error tolerance.

2.5 Geometry Vectorization and Simulation Platform

We previously reported on the details of our DLS-MC-based simulation platform used as the
forward model in generating speckle contrast images.13 The same PMC-based model was uti-
lized in calculating the forward model in each iteration of the gradient descent step. The struc-
tural prior, utilized in our reconstruction algorithm was obtained via 2PM imaging42 and was
vectorized using the segmentation-less, automated, vascular vectorization method.26

Briefly, vascular objects were vectorized using 3D, multiscale, linear filtering of unprocessed
image volumes. Vectorized vessel objects contain the volumetric centerline flow field and vessel
radii information at each voxel. This rapid vectorization algorithm allows for the extraction of
strand objects, providing a volumetric vascular connectivity map in addition to statistical infor-
mation, such as VF and vascular morphology. The complete vectorized vascular network is par-
titioned into strand objects, which are defined as the 1D vessel traces between the bifurcation
points and endpoints of the network. However, the large superficial or descending vessels often
have densely spaced bifurcations where smaller branches connect, resulting in many small strand
objects along these larger vessels. Accordingly, we implemented additional smoothing to avoid
very short strand objects in these larger vessels by connecting the largest two strands at each
bifurcation, yielding longer, more continuous “superstrand” objects that, like the strand objects,
also partition the network into 1D traces between bifurcations and endpoints.
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Figure 1 illustrates a sample vectorized geometry used in our reconstruction algorithm with
dimensions 1.134 × 1.064 × 0.726 mm in the x, y, z directions, respectively. Figure 1(a) shows
the transverse projected direction of the vasculature centerline flow fields with x, y, and z direc-
tions color-coded in red, green, and blue, respectively. Figure 1(b) shows the axial projected
vascular structure of the same geometry color-coded based on vessel radii with larger surface
vessels in light green and capillary network in dark purple.

Parallelized DLS-MC simulations were launched on the Stampede2 Skylake compute nodes
on Texas Advanced Computing Center (TACC) using the message passing interface (MPI) pro-
tocol. Photon trajectories and absorption weights were simulated for the four different illumi-
nation points shown in Fig. 1(a). In each simulation, a collimated beam with a diameter of 40 μm
was set to illuminate the geometry at the entrance position shown (yellow circle). We launched a
minimum of 2 × 109 photons in each simulation and for photons reflected through the top sur-
face of the geometry we recorded all entry and exit locations as well as the photon trajectories
through the volume and photon weights.32 Generation of g1ðtÞ and speckle contrast values and
normalized unit Y vectors from Eq. (3) (a scalar component of vascular velocity set to 1) for all
the detected photons were implemented in Python and parallelized through MPI in a secondary
postprocessing step.13 These simulations took approximately between 30 and 155 s on 200 cores
of Stampede2 Skylake compute nodes on TACC for the geometries presented in this paper.

Algorithm 1 3D PMC-based blood flow tomography.

Input: Measured or simulated speckle contrast images based on ground truth vascular flow (K ), number of
illumination points Ns and total number of camera array pixels/detectors Ndtotal, Y , and PðY Þ values calculated
from postprocessing of photon trajectories, separated by scattering locations and binned by detector,
maximum number of iteration N iter, regularization parameter γ, adaptive moment estimation parameters
β1; β2; η; ε, and error tolerance etol

Initialization: Vascular flow for the N strand objects initialized to 1 and the corresponding proximal values
and gradients set to 0.

fV̂ 1gNi¼1 ¼ 1; fV̂ prox;0gNi¼1 ¼ 0; fV̂ gradgNi¼1 ¼ 0; t0 ← 1; m̂; v̂ ; c ← 0

1: for k ← 1 to N iter do

2: for j ← 1 to Ns do

3: Ndbatch ← random:sampleðNdtotal;BatchSizeÞ ▹ Distribute through MPI

4: for m ← 1 to Ndbatch do

5: resjm ←

����Kmeasuredjm −
ffiffiffi
1
T

q
∫ T
0 βjg1jm ðtÞj2

�
1 − t

T

����dt
6: fV̂ gradk gNi¼1 ← fV̂ gradk gNi¼1 þ

∂res2jm
∂v i

▹ PMC-Based [Eq. (6) or FD]

7: end for

8: end for

9: ck ← ck−1 þ
P

Ndbatch
jresj2

10: update first and second gradient moment ðm̂k ; v̂ k Þ ▹ Ref. 39

11. fV̂ kgNi¼1 ← fV̂ kgNi¼1 −
ηffiffiffî

v
p

kþε
▹ Adam update

12. fV̂ prox;kgNi¼1 ¼ proxγRðfV̂ kgNi¼1Þ ▹ Regularization

13. t k ← 1
2 ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4t2k−1

q
Þ

14. fV̂ kþ1gNi¼1 ← fV̂ prox;kgNi¼1 þ t k−1−1
t k

ðfV̂ prox;kgNi¼1Þ − fV̂ prox;k−1gNi¼1 ▹ Acceleration [Nesterov]

15. if ck − ck−1 < etol => exit

16. end for

Return: The reconstructed vascular flow in each strand fV̂ kþ1gNi¼1
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Our novel reconstruction algorithm which we have also implemented in Python utilizes the
binned normalized Y and PðYÞ values from the postprocessing step to reconstruct the blood flow
maps in tissue iteratively according to Algorithm 1. The iterative algorithm was optimized to
enable processing on both GPU and multicore processing through MPI for performance com-
parison. The calculation of Jacobian was heavily vectorized for GPU processing through effi-
cient sparse matrix operations.

3 Simulation Results

We evaluated the performance of our reconstruction algorithm numerically through simulation of
reconstructed flow maps for vascular phantom model and actual murine cortex vascular network
captured through 2PM. The ground truth blood flow values were assigned based on radii size
thresholds according to values reported in the literature45 and further discussed in Secs. 3.1 and
3.2. For each geometry, we ran two different sets of DLS-MC simulations to ensure the unique-
ness of photon trajectories used in generating the ground truth images versus the reconstruction
algorithm. The following sections discuss the geometry and demonstrate the robustness and
accuracy of our reconstruction algorithm in the presence of noise even for deeper vasculature
structures.

3.1 Reconstructed Phantom Flow Map

Our vascular network phantom model is depicted in Fig. 2(a). The phantom includes a set of
horizontal and descending vasculature with an overall size of 2 × 2 × 1 mm in the x, y, and z
directions, respectively and 5-μm cubic voxels. The horizontal vasculature was interleaved
within the axial layers and extended down to a depth of 500 μm. The vertical descending vas-
culature was placed normal to the surface of the geometry. They were defined as bifurcations
immediately below the first layer vasculature and were separated by 500 and 200 μm in the x and
y directions, respectively. The ground truth blood flow values were assigned randomly ranging
from 0.3 to 5 mm∕s.4 The optical properties for vascular and extravascular regions were set
based on values we reported previously32 and specified here in Table 1 for completeness. A
100 × 100 array grid with detector size of 20 μm × 20 μm was defined as the detection geom-
etry. Once photon trajectories and absorption weights were simulated in the MC step, binning of
the reflected photons for the large detector grid and computation of g1ðtÞ and speckle contrast

Fig. 1 Sample geometry and illumination scheme used in our reconstruction algorithm. (a) X–Y
projected vascular flow fields of murine cortex vasculature acquired via 2PM microscopy and vec-
torized through our vectorization platform. The vascular centerline directions are color-coded
[ðx; y ; zÞ in (red, green, blue)] and laminar flow profiles evident in larger vessels. (b) Axial profile
of the same vectorized geometry rendered in Blender43,44 color-coded based on vessel radii with
larger surface vasculature in a green and capillary network in dark purple.
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image in the post-processing step took ∼25 s on a total of 200 cores. The camera exposure time
was set to 3 ms in calculating the speckle contrast images.

Figure 2(c) shows a sample speckle contrast image for point source illumination 1. A ground
truth speckle contrast image was generated for each of the illumination spots similar to the source
positions depicted in Fig. 1(a), resulting in four different simulated images. The point sources

Fig. 2 Illustration of the 3D blood flow map reconstruction accuracy through numerical simulation
of vascular phantom. (a) Ground truth vascular flow map. (b) Illustration of the reconstructed vas-
cular flow map after 160 iterations of the reconstruction algorithm. (c) Ground truth speckle con-
trast image for point source illumination 1. Speckle contrast images were generated for each of the
illumination points shown in Fig. 1, resulting in four different ground truth simulated speckle
images. Pixels within 200 μm of the source were excluded to prevent over saturation. Missing
quadrant in the speckle contrast image illustrates the detectors that were excluded in the recon-
struction algorithm under illumination 1 due to saturation. (d) Reconstruction accuracy (% error)
after 160 iterations of the reconstruction algorithm, with mean error bound <2% and the highest
error observed on the peripheral vasculature due to a low number of reflected photons in these
regions.

Table 1 Optical properties of vasculature geometry.

μa (mm−1) μs (mm−1) g

Capillaries 0.2 65 0.98

Noncapillaries 0.2 90 0.98

Extravascular 0.02 10 0.9
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were separated by 500 μm, covering the four quadrants of the geometry. Additionally, detectors
within 200-μm radius of the point source were excluded in each case to avoid over saturation of
the pixels. Figure 2(c) depicts the detectors that were excluded (missing quadrant) in the recon-
struction algorithm due to saturation, under source illumination 1. The normalized Y and PðYÞ
values were stored in a binary file format for each of the Ndtotal and Ns detector and source pairs
resulting in 33,600 total files available.

In the reconstruction algorithm, all strand object vascular flow values were initialized accord-
ing to Algorithm 1. The mini-batch size was set to randomly sample 1∕8 of the total detectors
(with replacement) in each iteration of the gradient descent. Values of β1, β2, and η in
Algorithm 1 were heuristically set to 0.8, 0.999, and 0.1, respectively. These values provided
the best combination of convergence speed and accuracy across all tested geometries. The
processing of detectors and calculation of the Jacobian matrix was distributed to 200 cores
of Stampede2 Skylake compute nodes on TACC through MPI protocol. The phantom geometry
included a total of 54 strand objects. Each iteration of the reconstruction algorithm took 4.5 s,
with an aggregate reconstruction time of 12 min for all 160 iterations.

To evaluate the performance of our regularization scheme and to assess the robustness of our
reconstruction algorithm in presence of noise, we performed a noise study analysis by perturbing
the ground truth simulated speckle contrast images by 0.1% and 1% additive noise N ð0; NÞ,
where N is the noise level. The additive noise was distributed across the 100 × 100 detector grid
to generate noisy speckle contrast images to be used in the reconstruction algorithm. Figure 3
illustrates the reconstruction error in presence of noise for each of the noise levels.

3.2 Reconstructed Murine Cerebral Flow Map

Figure 4 depicts the robustness and accuracy of our high-resolution 3D reconstruction algorithm
on physiological complex cerebral tissue. A high-resolution vascular network of the murine
cortex was obtained through 2PM imaging42 and vectorized as discussed earlier in Sec. 2.5.
The geometry includes vasculature with radii ranging from 4 μm in the capillary network to
25 μm in the larger superficial and descending vasculature. All vessels with radii <5.5 μm were
specified as a capillary network. In the DLS-MC simulation, the optical properties were assigned
based on values we reported previously32 and specified here in Table 1. The ground truth center-
line blood flow values in each strand object were set according to arterial, capillary, and venous
radius-based velocities presented in the literature.45 These values ranged from 0.3 mm∕s in the
capillary network to 6 mm∕s in larger superficial vasculature for the vascular structures present
in this geometry.

Boas et al.46 presented a closed vascular anatomical network with a pressure-flow circuit
model to derive accurate flow distribution in individual strands. They illustrated that the vascular
flow distributions derived through the circuit model, follow that of the radii-based velocities
validated experimentally.45 Since our vectorized vasculature sets are not closed networks, they

Fig. 3 Analysis of reconstruction accuracy in presence of noise. (a) Reconstruction error subject
to 0.1% additive noise. (b) Reconstruction error subject to 1% additive noise.
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do not allow for tracing and assigning direction in each strand and thus limit our ability to use
the pressure-flow circuit model. As such, we used a radii-based lookup table to set the centerline
velocities according to the values reported in Ref. 45. Additionally, flow directions were ran-
domly assigned in the vectorization step. Given the nature of speckle contrast calculations, this
assumption has minimal impact on the simulated forward model and thus will not affect the
accuracy of our reconstructed results (please refer to the Supplemental Materials for further
illustration).

We note that in our reconstruction algorithm, capillary networks within a 250 × 250 ×
250 μm3 cubic region were assumed to have the same underlying flow. This assumption, while
valid given the density of arterial and venules in the geometry, significantly speeds up the con-
vergence of our reconstruction algorithm by reducing the number of strand objects in the inverse
problem.

All initialization and optimization parameters were set according to Algorithm 1 and the
values reported in the phantom reconstruction section. The regularization parameter γ was set
to 10−3, which was found to provide the best combination of regularization without blurring the
adjacent vascular flows. An 80 × 80 array grid was defined as the camera detector geometry with

Fig. 4 Illustration of the 3D blood flow map reconstruction accuracy through numerical simulation
of murine cerebral tissue, captured via 2PM. (a) Volumetric illustration of the vascular flow values,
assigned in simulating the ground truth speckle contrast images. (b) Reconstructed vascular flow
map on the 200th iteration of the reconstruction algorithm. (c) Reconstruction error [percent error
between (a) and (b)] projected on X–Y plane. (d) Volumetric demonstration of the reconstruction
accuracy (error %) for the same iteration. The results show high fidelity reconstruction of flow in
large and small vasculature of different orientations in an actual complex network. While recon-
struction error in the majority of vasculature is limited to below 3%, deeper vasculature in the
periphery shows higher error bounds due to the circular nature of detector geometry and a small
number of reflected photons in these regions.
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a pixel size of 13 × 13 μm2. Four illumination point sources were simulated in generating the
ground speckle contrast images as described earlier in Sec. 2.5. Detectors within 200 μm of the
source position were excluded in each simulation to avoid over saturating the pixels. The nor-
malized Y and PðYÞ valued for each of the Ndtotal and Ns detector and source pairs resulted in
19,824 total files available. The batch size was set to randomly sample 1∕16 of the total detectors
(with replacement) in each iteration of the gradient descent and the processing of the Jacobians
was distributed through MPI protocol as reported previously. The shown geometry included a
total of 1674 individual strand objects resulting in a 1674 × 1240 Jacobian matrix calculation in
each mini-batch step. Each iteration of the reconstruction algorithm took 9.6 s, with an aggregate
reconstruction time of 32 mins for all 200 iterations.

Figure 4 illustrates the reconstruction error (%) on the 200th iteration of the algorithm. As
shown, our proposed algorithm reconstructs the vascular flow in most of the vasculature with an
error bound <2%. This is especially true for the larger superficial and descending vasculature
where the error is below 0.1%. We observed larger errors in smaller vascular regions on the
periphery where the error could reach as high as 40%. This can be explained given the circular
nature of our detector geometry in the DLS-MC step resulting in very few photons reflected in
this region.

4 Discussion

4.1 Analysis of the Reconstruction Accuracy for the Simulated Geometries

Our simulation results demonstrate the high-fidelity reconstruction of blood flow map in com-
plex tissue with resolution down to individual vessel and capillary strand objects, beyond
500-μm depth. As previously discussed, we observed an error bound below 2% on the recon-
structed flow estimates for both the vascular phantom model and the physiological murine cortex
tissue. In particular, this value was lower for larger superficial vasculature, where the error was
within 0.1%.

In both cases, the reconstruction error in the peripheral vascular strands was significantly
higher than the rest of the geometry. We believe there are two explanations for this. First, we
note that the detection geometry in our DLS-MC step is defined as a circular region, mimicking
the circular aperture of a camera. Given that our geometry is cubic, this limits the number of
detected photons that would have otherwise sampled the vasculature in the periphery and
reflected through the corners. Second, the vascular objects in the periphery reside at the tissue
boundary, where the probability of photons exiting in the plane normal to the boundary is higher,
resulting in fewer reflected photons through the surface in these regions. The combination of
these two phenomena results in a much lower sampling of the peripheral vasculature, which in
turn leads to very small gradients in each iteration of the reconstruction algorithm. While the
error in the peripheral vasculature is expected to decrease with a large number of iterations, we
note that the peripheral vascular regions should perhaps be excluded after reconstruction to
maintain reasonable reconstruction times.

4.2 Noise Analysis

Figure 3 shows the performance of our reconstruction algorithm in the presence of noise. As
demonstrated, the reconstruction error remains low (<6%) across the geometry, as noise levels in
the simulated speckle contrast images are raised. This value is lower (<2%) for superficial hori-
zontal vasculature with higher noise sensitivity observed only in deeper vasculature beyond
300 μm. The descending vasculature shows slightly higher fluctuations in presence of noise
when compared with horizontal vessels. This can be explained in part through our choice of
geometry and detector grid. The discrepancy in the number of detectors sampling the horizontal
vessels, as opposed to the vertical vasculature for this phantom leads to less averaging of noise
for detectors sampling vertical vessels thus resulting in higher susceptibility to noise. Our noise
analysis illustrates the robustness of our regularization scheme in preventing over-fitting of the
data in presence of noise, despite the illposed nature of our simplified phantom. As a next step,
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we will be examining a regularization scheme based on the log-likelihood of the vascular covari-
ance matrix, imposing both vessel size and connectivity as a prior to better represent the physio-
logical structure and to further improve accuracy.

4.3 GPU Processing Optimization

We optimized our calculations to enable efficient GPU processing and compared the reconstruc-
tion performance against our results obtained through distributed multicore processing. To gain
significant speed up on GPU the forward model and calculation of the Jacobian matrix had to be
heavily vectorized.

We note that the calculation of g1ðtÞ can be cast as sparse matrix multiplication of the form
expð−2jk0VTQÞP. In this formulation, VT is the vector of blood flow maps of the size 1 × N,
where N is total number of strand objects in the geometry. QNXM is a sparse matrix where each
entry is the normalized Y values from Eq. (3) for photon m and strand object n. Given that
each photon only samples a few strand objects on its trajectory, each column of the Q matrix
will only include a few nonzero entries. P is a vector of absorption weights and has a sizeM × 1.
We followed the same procedures in converting all derivative calculations to sparse matrix oper-
ations to enable efficient vectorization on GPU. This formulation, in conjunction with efficient
sparse matrix operations in python, allowed for significant speedup of reconstruction when using
GPU for processing. Our results indicate that simulation time for each iteration of the mini-batch
gradient step took ∼3× longer to run on our Nvidia GTX processor when compared with 200
cores of Skylake compute nodes on TACC. However, simulation times could be significantly
larger on GPU when matrix sizes become too large and GPU memory capacity issues are en-
countered. As such, multicore processing is preferred when possible since it is proven to be a fast
and robust method even when considering a large number of strands.

4.4 Analytical versus Finite Difference Calculation of the Jacobian Matrix

In Sec. 2.3, we derived the analytical expression for calculating the derivative of the speckle
contrast at a given detector with respect to blood flow in an individual strand object. The finite
difference (FD) calculation of the derivative with respect to flow in each strand object can be

formulated as ∂Km
∂vi

¼ Kresm ðKmðV̂;v̂iþεÞ−KmðV̂;v̂iÞ
ε , where Km is the forward model according to Eq. (1)

for a given detector m, at a point in search space V̂, with an asymptotically small perturbation ε.
Kresm

is calculated according to line 5 in Algorithm 1. We note that in most inverse problems, the
calculation of derivatives through FD is cost-prohibitive as it requires two forward calculations
for each parameter. We showed in Sec. 4.3 that our PMC-based forward calculation of g1ðtÞ can
be cast as a sparse matrix multiplication resulting in a fast calculation of the forward model.
We can further vectorize the derivative calculations with respect to all flow parameters by imple-
menting a sparse matrix multiplication of the following form:

EQ-TARGET;temp:intralink-;e009;116;255

∂Km

∂V̂
¼ Kresmðexp ð−2jk0ðV̂ þ IεÞTQÞ − exp ð−j2k0V̂QÞÞP

ε
: (9)

In this formulation, I is the identity matrix, ðV̂ þ IεÞT is an N × N matrix, where N is number of
strand objects. Q and P are as described in Sec. 4.3.

According to Eq. (6), the analytical derivative calculation requires an M × ðM − 1Þ matrix
operation, where M is the number of detected photons at a given detector and ranges between
1000 and 4000 depending on the location of the detector. Our results show that the FD method
provides a faster calculation when inverting for a smaller number of parameters, similar to our
simplified phantom model. Additionally, the vectorized formulation of Eq. (9) is better suited for
GPU processing; however, care must be taken not to exceed GPU memory capacity when the
number of strand objects becomes large. Calculation of the derivative with respect to all param-
eters at a single detector point took 0.65 ms using the FD method as compared with 0.72 ms
through the analytical expression for our murine geometry described in Sec. 3.2. However, as the
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number of strand objects in the geometry becomes large, the analytical expression of the deriva-
tive calculation becomes more feasible.

4.5 Limitations and Future Work

Although our proposed method has shown to be effective in reconstructing blood flow maps in
tissue at a high resolution, there are some limitations that require further exploration. One of
the main limitations of our proposed method is that it requires a correct 3D geometry model for
high-resolution reconstruction of blood flow map in a complex tissue. However, the 3D structure
needs to be captured only once and can be reused subsequently in the reconstruction algorithm
for longitudinal studies. As described in Sec. 2, once the 3D structure is imaged at a high
resolution, the experimental setup for capturing the speckle images used in the reconstruction
algorithm, involves scanning the beam across the surface of the geometry and capturing speckle
images, which can be accomplished within a few seconds. This can be particularly helpful in
longitudinal studies of brain tissue hemodynamics. This is because any subsequent imaging
session involves only capturing a few speckle images in the desired time intervals and processing
such images offline to extract high-resolution blood flow maps.

We previously showed that assuming tissue VFs instead of intact complex structure can lead
to large errors in inferring BFI estimates resulting in large resolution and accuracy degradation.13

As such, our reconstruction algorithm proposed in this paper uses the most rigorous and extreme
case that includes all vascular structures for proof of concept. However, we view this as a nec-
essary first step toward 3D blood flow imaging. Once the method has been validated, we will
investigate the accuracy with which the vascular structure needs to be known. Particularly, it has
been shown that vascular anatomy in a certain region of the brain is consistent within a given
species.47–49 As a first step we will explore replacing the smaller vasculature and capillary net-
works with representative statistical vascular models. This optimization, if successful, relaxes the
requirement for high-resolution imaging of the structure and reduces the computational com-
plexity. Therefore, there are some parallels between our methodology and that of diffuse optical
tomography reconstruction methods that require a full anatomical MRI scan.50,51 Acquisition of
the MRI is a significant, time-intensive, and costly constraint. However, it may be possible to use
a more generalized anatomical model in place of a subject-specific MRI scan. Similarly, it may
be possible to use a generalized vascular structure to extract depth-resolved blood flow rather
than a subject-specific vascular structure in the future.

Another limitation is that the time required for reconstruction makes dynamic 3D imaging
currently impractical. However, most 3D inverse problems are not capable of real-time imaging
due to significant time and resource requirements, but they do provide high-resolution results.
In our case, the combination of vascular flow reconstruction accuracy, resolution, and FOV is
well beyond what has been reported in the literature previously. Furthermore, there are many
uses of cerebral blood flow imaging that do not require real-time imaging or measurements over
many time points. Chronic studies that analyze cerebral blood flow changes over long periods of
time typically only require a single image at each measurement. In such applications, the time
required for the reconstruction would be quite reasonable.

Finally, although the simulation times reported here have been optimized for parallel and
distributed computing, as discussed earlier in Sec. 4.3, the reconstruction algorithm can be opti-
mized for processing on GPU. Our analysis showed that reconstruction time was ∼3× longer on
a single GPU as compared with the 200 cores utilized on a distributed computer system. In
subsequent studies, we will explore the effect of vascular structure in conjunction with further
optimization for processing on GPU to significantly reduce the reconstruction times.

5 Conclusion

We have presented a novel computational method for high-resolution imaging of blood flow
maps in complex tissue over a large FOV for a known structural prior. Our simulation results
indicate high fidelity reconstruction of blood flow maps down to capillary level beyond 500-μm
depth if the 3D geometry is known or assumed. The unique property of our proposed method lies
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in its object-based reconstruction capability. Hence the resolution is dictated by the spatial res-
olution of the vascular objects (strands). For the geometries presented, the resolution of the
smallest individual objects (capillary strands) is <10 μm.

A combination of PMC-based acceleration methods in conjunction with advanced optimi-
zation algorithms implemented for large-scale inverse problems, and efficient parallelization and
vectorization, allowed for feasible reconstruction time (on the order of 10s of mins). We note that
in its current state, our proposed reconstruction algorithm is only complimentary to high-
resolution imaging modalities such as OCT or 2/3PM as it allows for high temporal resolution
imaging of hemodynamics over a large FOV. Once a high-resolution structural image is captured,
our reconstruction algorithm only requires a few LSCI images for each illumination source,
captured through a camera, to reconstruct the blood flow map at a given timestamp. We foresee
that our proposed methodology can particularly have a high impact in enabling high-resolution
visualization of hemodynamics during neural functional activation studies.

The recent advances in fast, high-resolution PMC-based optical tomography methods
enabled through hybrid and mesh-based MC simulation platforms,28,52,53 can perhaps pave the
way for fast and noninvasive extraction of the structural geometry needed in our reconstruction
problem only requiring very simple instrumentation.

As a future direction, we will also examine using mesh-based MC models combined with
learning algorithms for more efficient selection of detectors and source patterns to speed up our
reconstruction times significantly.
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