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Abstract

Significance: The diagnosis and treatment of prostate cancer (PCa) are limited by a lack of
intraoperative information to accurately target tumors with needles for biopsy and brachyther-
apy. An innovative image-guidance technique using optical devices could improve the diagnostic
yield of biopsy and efficacy of radiotherapy.

Aim: To evaluate the performance of multimodal PCa detection using biomolecular features
from in-situ Raman spectroscopy (RS) combined with image-based (radiomics) features from
multiparametric magnetic resonance images (mpMRI).

Approach: In a prospective pilot clinical study, 18 patients were recruited and underwent high-
dose-rate brachytherapy. Multimodality image fusion (preoperative mpMRI with intraoperative
transrectal ultrasound) combined with electromagnetic tracking was used to navigate an RS nee-
dle in the prostate prior to brachytherapy. This resulting dataset consisted of Raman spectra and
co-located radiomics features from mpMRI. Feature selection was performed with the constraint
that no more than 10 features were retained overall from a combination of inelastic scattering
spectra and radiomics. These features were used to train support vector machine classifiers for
PCa detection based on leave-one-patient-out cross-validation.

Results: RS along with biopsy samples were acquired from 47 sites along the insertion trajectory
of the fiber-optics needle: 26 were confirmed as benign or grade group ¼ 1, and 21 as grade
group >1, according to histopathological reports. The combination of the fingerprint region of
the RS and radiomics showed an accuracy of 83% (sensitivity ¼ 81% and a specificity ¼ 85%),
outperforming by more than 9% models trained with either spectroscopic or mpMRI data
alone. An optimal number of features was identified between 6 and 8 features, which have good
potential for discriminating grade group ≥1∕grade group <1 (accuracy ¼ 87%) or grade group
>1∕grade group ≤1 (accuracy ¼ 91%).

Conclusions: In-situ Raman spectroscopy combined with mpMRI radiomics features can lead
to highly accurate PCa detection for improved in-vivo targeting of biopsy sample collection and
radiotherapy seed placement.
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1 Introduction

Transperineal biopsy and high-dose-rate (HDR) brachytherapy are two needle-based procedures
for diagnosing and treating prostate cancer (PCa), respectively. HDR brachytherapy allows the
delivery of a considerable dose of radiation to the tumor site using temporary implants while
reducing the surrounding tissue involvement.1,2 Although using transrectal ultrasound (TRUS)-
guided biopsy is the standard of care, it can have up to 30% false-negative rates and does not
allow in situ characterization.3,4 It is clear that the efficiency of both techniques relies signifi-
cantly on accurate localization of the tumor and needle.

Image-guidance is one of the strategies to support these localized procedures, using TRUS,
which provides real-time anatomical information of the prostate and neighbor structures. It, there-
fore, provides navigation support for biopsies or brachytherapy catheter implantation, but since not
all lesions are hypoechoic, it does not provide information on tumor location.5,6 On the other hand,
magnetic resonance imaging (MRI), more specifically multiparametric MRI (mpMRI) sequences
based on diffusion, offer higher sensitivity, allowing the visualization of certain lesions. Currently,
mpMRI is used by physicians to report tumors (PIRADSv2.15,7) and plan interventions, but it also
allows the extraction of quantitative features (radiomics), which could be used as biomarkers.2,8,9

However, MRI presents certain limitations to guide interventions due to longer acquisition time,
limited compatibility with surgical instruments, and cost.1,10 Multimodal image registration is cur-
rently studied and used to take advantage of complementary information of TRUS and MRI to
assist HDR brachytherapy and other tumor-targeted prostate interventions.10–13

This approach, combined with electromagnetic (EM) tracking, helps provide navigation
capabilities for targeting tumors.14–16 However, neither of these modalities allows in-situ,
real-time tissue characterization, which could significantly impact the diagnosis and treatment
efficacy, reducing false-negative rates and boosting personalized treatments for more than
1.4 million PCa new cases diagnosed every year worldwide.17–20

Raman spectroscopy (RS), on the other hand, characterizes microscopic information of pros-
tate tissue, providing real-time molecular signatures and taking advantage of the tissue’s highly
sensitive and specific optical properties.18,21–24 Based on inelastic light scattering, RS has been
used for years for ex-vivo sample characterization, producing spectra with molecular vibrational
states information, showing great potential for detecting several diseases.25–28 Furthermore, with
the development of optical fiber RS probes, this technique is moving to clinical applications29;
different optical probe designs have been used for in-vivo tissue characterization (in human and
animal models) for targeting skin cancer in open surgeries,30 minimally invasive diagnosis of
lung cancers,31 bladder cancer detection using a superficial and nonsuperficial Raman probes,32

observation of skin changes after breast cancer treatment,33 and others.34–37 In prostate appli-
cations, it has been used for ex-vivo characterization and in-vivo margin detection,19,20,23,38,39

but, to the best of our knowledge, so far, not for real-time in-vivo prostate tumor burden con-
firmation, which can provide great benefit for clinical procedures.

As previously described, mpMRI has remarkable tumor-related information on a larger scale,
especially for diffusion-weighted sequences, where radiomics can extract this information
quantitatively.8,13,40 There is a wide variety of standardized radiomics features primarily classi-
fied as intensity-, texture-, or shape-based. Shape-based are especially useful when lesions are
segmented; the other two classes have been studied, identifying potential on some first order and
some gray-level-correlation-matrix (GLCM) features.41,42

Multimodal and multiscale characterization is advantageous for tissue characterization pur-
poses given the complementary information it provides, as single modalities may not capture all
critical elements of the interrogated sample.24,38,43,44

This pilot clinical study aims to evaluate the feasibility of a multimodal and multiscale char-
acterization approach for in-vivo PCa classification during clinical procedures. We combined
real-time mesoscopic characterization provided by RS and macroscopic characterization from
preoperative mpMRI, co-localized with multimodal image registration and EM tracking, as input

Grajales et al.: Image-guided Raman spectroscopy navigation system. . .

Journal of Biomedical Optics 095004-2 September 2022 • Vol. 27(9)



for a support vector machine (SVM), for assessing the classification potential of such charac-
terization. This paper is the second part of a joint work carried out in the framework of the same
pilot clinical study; part 145 presents details of the optical system, results of ex-vivo experiments,
and their comparison with in-vivo results.

2 Materials and Methods

2.1 Clinical Data and Equipment

This pilot clinical study was conducted between September 2020 and August 2021, with 18
patients with histological diagnosis of PCa, enrolled on a prospective clinical trial approved
by the Research Ethics Board (NCT03378856).

Planning mpMRI (3D T2-weighted FSE, b2000 DWI, þ∕ − DCE) were obtained on a 1.5T
Siemens Aera Magnetom (Siemens Healthineers, Erlangen, Germany) using surface coils.
Voxels on acquired T2 images were 1 × 1 × 1 mm3, b2000 images (diffusion-weighted images
b-value of 2000 s∕mm2) consisted of 2.6 × 2.6 × 5 mm3 voxels, and voxels on calculated ADC
maps were 1.8 × 1.8 × 4 mm3. Positron emission tomography/computed tomography (targeting
prostate-specific membrane antigen: PSMA-PET/CT, 18F-DFCPyL)22 images were also
acquired in a subset. For intraoperative imaging, a bk3000 ultrasound system was used with
a BK endocavity biplane transducer (BK Ultrasound, Herlev, Denmark). Brachytherapy proce-
dures were assisted by a prototype interventional system (Invivo/UroNav, Philips Disease
Management Solutions, Gainesville) in the early phase of clinical deployment.

We used a custom system consisting of navigation and optical components (Fig. 1). The
optical component contains a dual source (671 and 785 nm, Semrock, New York), a spectrometer
(EmVision LLC, Fl), and the custom EM tracked optical probe (EmVision LLC, Fl), designed
to perform in-situ, minimally invasive characterization.45 The use of this subsystem, controlled
by customized MATLAB R2017b (Mathworks, Massachusetts) software, allows one to stimu-
late the tissue and detect energetical shifts due to inelastic scattering from light–tissue inter-
actions, which is correlated to molecular vibration modes.19

The navigation component is connected to the ultrasound system and uses MRI-TRUS fusion
to project structures segmented on MRI over the real-time TRUS images. It is also connected
to the EM tracking platform (Aurora NDI, Waterloo, Canada) consisting of a control unit, an
EM field generator placed over the patient’s pelvic region, and three six-degrees-of-freedom
EM sensors: the first one placed on the template as a fix reference, the second fixed to the

Fig. 1 Clinical setup: (a) ultrasound system; (b) near-infrared laser and spectrometer; (c) EM
tracking system; (d) EM field generator; (e) 3D Slicer navigation system; (f) closeup of the RS
probe fiber bundle next to cannula; (g) Raman excitation fiber; (h) Raman detection fibers;
(i) EM sensor; and (k) schematic illustration of optical setup.20,45
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TRUS-probe holder to track the field of view of the current 2D image, and the third one, small
enough to be integrated to the custom optical probe lumen, to reconstruct the probe while nav-
igating to pre-identified targets. A 3D Slicer module was created for visualization and control
of the subsystems.46 More details on the system could be found in previous works.20,47

2.2 Workflow and Data Acquisition

HDR brachytherapy procedures include the following steps: (i) importing the preoperative
images and predetermined contours into the interventional system, (ii) performing a 3D recon-
struction from 2D TRUS image and segmenting the prostate, (iii) registering images and propa-
gating the MRI contours to TRUS, (iv) inserting and reconstructing the catheters, and calculating
the dose plan, and finally, (v) delivering the dose. All these steps were performed with the patient
under general anesthesia and in lithotomy position. Details of the intervention (brachytherapy
workflow), image registration, and EM tracking can be found in Ref. 48.

The optical acquisitions were performed during HDR brachytherapy procedures after the
elastic image registration (defined below); once the optical measurements were completed, the
brachytherapy procedure resumed. The general diagram of the connections and the flow diagram
can be seen in Fig. 2.

Gross tumor volumes (GTV) were segmented on T2 MRI, based on mpMRI and PSMA-
PET images; prostate and urethra were segmented in preoperative images (using Eclipse, Varian
Medical Systems, Palo Alto) and intraoperative images (using the interventional system).
Additionally, T2 images and contours were elastically registered to the intraoperative TRUS, using
a surface-based algorithm integrated into the prototype interventional system; for this process, the
prostate contours (from MRI and TRUS) were automatically centered, then manually aligned
following the urethra angle, and then automatically deformed looking for an optimal surface cor-
respondence. TRUS images and propagated contours were exported to our custom navigation
system, enabling visualization of deformed structures (e.g., GTV) projected over real-time TRUS.

Targets (e.g., GTV center of mass, healthy tissue far from the GTV) were pre-identified based
on the preoperative MRI, and the optical probe was navigated to them supported by a coaxial
needle (cannula). Once at the site of interest, the dual optical source stimulated the tissue, and the
spectrometer captured the response signal (from 50 to 100 RS spectra per site). The coordinates
of the inspected sites in the TRUS reference system were recorded, and a confirmation biopsy
was taken at the same location.

Biopsy cores were fixed and processed according to standard histopathologic procedures
observed by an expert to identify patterns on the stained sample slides.49 According to the pre-
dominant and secondary patterns, a report was generated presenting the Gleason score (GS), the

Fig. 2 Flowchart and connections diagram of the systems involved in the intervention. The larger
boxes divide the pre-, intra-, and post-operative phases of the procedure. The left column in the
intraoperative section contains the equipment and activities inherent to brachytherapy. The right
column contains the steps and systems added to the interventions to carry out the present study.
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grade group according to the International Society of Urological Pathology (ISUP GG), and the
high-grade tumor percentage (HG) for each biopsy core.50 For instance, a slide presenting tumor
tissue, consisting of 80% pattern 4 and 20% pattern 3, will be reported as GS: 4þ 3 ¼ 7, ISUP
GG: 3∕5, and HG:80%.51 Due to the impact over treatment planning, classification algorithms
for PCa are usually trained for detecting tumors with ISUP GG > 1, so initially, we set our
“ISUP GG > 1” prediction task by labeling the observations with ISUP GG ≤ 1 (including
ISUP GG ¼ 1 and benign tissue) as false and sites with ISUP GG > 1 as true.1,41,52

The RS signal processing consisted of averaging all the spectra from one site, removing
autofluorescence and cosmic rays, standard normal variate normalization, and finally assigning
each pixel of the spectrometer to a Raman shift (Fig. 3).45 We obtained a single spectrum per site
at the end of this process. This was applied for the fingerprint (FP) and the high wavenumber
(HW) region of the RS, according to the source used to stimulate the tissue. For this study, every
single Raman shift on the spectrum was a feature for the next steps.47

To extract MRI-based features (Rad), the PyRadiomics platform was used,42 which offers up
to 120 features from different categories; based on literature, we selected 8 first order and 8
GLCM features (Table 1) to be calculated on T2, ADC, and b2000 mpMRI.8,40,41,52 Using the
transformation matrix employed to register MRI and TRUS, we applied the inverse process to
find the corresponding coordinates on the mpMRI for each inspected site. We calculated the
radiomics features in a 5-mm radius spherical volume at each position.

2.3 Classification Model Training

Given the low number of patients, which is inherent to a pilot clinical study, we decided to limit
the complexity of the classification model as a strategy to avoid overfitting issues. Thus, we
trained SVM models for binary classification, with a linear kernel and a cost matrix that doubles
the penalty to false negatives (C ¼ ½0; 1; 2; 0�), using MATLAB R2017b. For training and val-
idation, we followed a leave-one-patient-out cross-validation (LOPOCV) scheme (i.e., models
were trained with data from all patients but one, which was used for validation).

In a high-dimensional dataset, especially with a limited number of observations and patients,
feature selection is crucial. To perform this step, we set a maximum number of features to be
selected (max_nf) and applied a three-step selection approach:

i. Amount of variation: the principle is to discard the features that have almost the same value
for all the observations. We calculated the variance for each feature and only retained the
features with varðXÞ > 0.03 for the next selection step.

ii. Correlation with the target: we calculated the correlation coefficients between each feature
and the assigned label (ground truth), then discarded the features with an absolute value of
correlation <10%.

iii. Lasso regression: this method assigns a weight to each feature within an optimization func-
tion and gives a non-zero weight only to features that contribute significantly to establishing
a decision boundary, which means that the number of selected features could be equal to
or less than the maximum number of non-zero coefficients we set (max_nf).

Fig. 3 Sample signal processing. (a) About 50 raw fingerprint acquisitions from one inspected
site and (b) the resulting processed Raman spectrum.
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This three-step process was applied after dividing training/validation sets, i.e., the observa-
tions of the patient left out were not considered during the feature selection. As a result, the
number of features selected for each fold may vary slightly, so the value reported in the results
is the average of all folds.

We describe below three sets of experiments focused on the classification potential of col-
lected features (RS and Rad) to train the predictive model.

2.3.1 Feature combination experiment

We trained different models using independent sets of features (FP, HW, or Rad), as well as the
different combinations between them (FPþ HW, FPþ Rad, FPþ HWþ Rad, and HWþ Rad).
For this experiment, we arbitrarily set amax_nf ¼ 10, trying to limit the number of features, close
to 50% of the number of patients. Using the posterior probability for each measurement used
for validation, we plotted the receiver operating characteristic (ROC) curve for each model to
describe the general performance comparing the area under the curve (AUC). We then calculated
the accuracy, sensitivity, and specificity to evaluate the performance at the optimal threshold.

2.3.2 Number of features experiment

Using the combination of features demonstrating the best performance in the previous experi-
ment (Sec. 2.3.1), we trained a model increasing the max_nf value for the selection process
(from 2 to 18) to find the optimal number of features for the classification task. Then, we iden-
tified the features that, among the 18 iterations of the LOPOCV, were selected more than 10
times (most frequently selected features).

Table 1 Radiomics features extracted from the three mpMRI sequen-
ces, and their identifiers.

Group Name

Identifier

T2 ADC b2000

First order Energy r1 r17 r33

Total energy r2 r18 r34

Entropy r3 r19 r35

Mean r4 r20 r36

Median r5 r21 r37

Standard deviation r6 r22 r38

Mean absolute deviation r7 r23 r39

Uniformity r8 r24 r40

GLCM Auto correlation r9 r25 r41

Cluster shade r10 r26 r42

Contrast r11 r27 r43

Correlation r12 r28 r44

Id (inverse difference) r13 r29 r45

Difference entropy r14 r30 r46

Joint entropy r15 r31 r47

Joint energy r16 r32 r48
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2.3.3 Prediction task experiment

The experiments presented in Secs. 2.3.1 and 2.3.2 were focused on ISUP GG > 1 prediction
using the labels we described in Sec. 2.2. For this experiment, we applied different criteria to the
histopathological results (the limit for class selection) to assign labels for two other prediction
tasks. For the first one, we labeled the observations with ISUP GG ≥ 1 as true and benign tissue
as false (ISUP GG ≥ 1 prediction). For the second one, “high grade” prediction, we used the
same labels from the previous one but excluded the observations with an HG < 20%. We used
the most frequently selected features identified in the previous experiment (Sec. 2.3.2) to train
the models, with no other feature selection.

3 Results

3.1 Clinical Data

In total, the dataset consisted of 47 inspected sites, with the corresponding histopathological
report for ground truth, and 4650 features (Table 2). Sample images of two histopathological
slides are presented in Fig. 4.

Elastic registration allowed the projection of the deformed GTV contours on real-time TRUS,
which was used to set up to five sites of interest and for navigation support during the inter-
vention; the inverse process allowed the co-location of the inspected sites on the mpMRI, post-
intervention [Figs. 4(a)–4(b)]. According to the voxel size of mpMRI and the volume defined
for radiomics extraction (blue sphere on Fig. 4), ranges of 428–482, 34–38, and 24–32 voxels
were used from T2, ADC, and b2000, respectively.

3.2 Feature Combination Experiment

Following a dichotomization of the collected data during the brachytherapy procedures
(ISUP GG > 1 criteria), these experiments consisted of 21 ISUP GG > 1 and 26 ISUP GG ≤ 1

samples. The AUC results for the different combinations of features are shown in Table 3,

Table 2 Clinical data.

Number of patients 18

Median age (years) 68 (range: 60–74)

Median inspected sites/patient 2 (range: 2–5)

Total inspected sites 47

Benign 23

GS: 3þ 3 ¼ 6∕ISUP GG: 1∕5 3 (3∕3)a

GS: 3þ 4 ¼ 7∕ISUP GG: 2∕5 10 (3∕10)a

GS: 4þ 3 ¼ 7∕ISUP GG: 3∕5 8

GS: 4þ 4 ¼ 8∕ISUP GG: 4∕5 3

Total number of features 4650

FP (RS) 1801

HW (RS) 2801

Rad 48

Mean added time (min) 18.4 (SD ¼ 4.9)

aNumber of samples with HG < 20%.
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and the ROC curves for the groups of features involved in the model with the best performance
are presented in Fig. 5.

The FPþ Rad model showed the best overall performance, based on AUC, followed closely
by three other combinations: FPþ HW, rad, and FPþ HWþ rad. From these four models, FPþ
Rad and FPþ HWþ Rad yielded a low mean support vectors ratio (number of support vectors
needed to train the model, divided by the total number of observations) compared to the other
two models.

Prediction accuracy, sensitivity, and specificity were calculated at the optimal point on the
ROC curve, which is the closest point to the (0,1) corner of the plot. These metrics also showed
the superior performance of FPþ Rad (Table 3). Regarding the prediction accuracy, FPþ Rad

outperformed all other models but one for more than 9%; FPþ HWþ Rad, which also com-
bined optical and image-based features, was the only model close to this accuracy (only 2%
below) but also 10% below in sensitivity.

Table 3 Classification performance of SVM models (LOPOCV) for discriminating ISUPGG > 1
and ISUPGG ≤ 1.

Features
Number
features AUC

Prediction
accuracy Sensitivity Specificity

SV
rate

FP 8.3 0.74 0.72 0.67 0.77 0.64

HW 8.3 0.55 0.53 0.48 0.58 0.76

Rad 8.4 0.79 0.74 0.76 0.73 0.70

FPþ HW 8.2 0.80 0.70 0.78 0.64 0.62

FPþ Rad 8.3 0.82 0.83 0.81 0.85 0.55

FPþ HWþ Rad 8.2 0.79 0.81 0.71 0.88 0.52

HWþ Rad 8.6 0.58 0.62 0.67 0.58 0.64

Note: SV rate: number of support vectors/total of observations.

Fig. 4 Sample image registration and co-location results. (a) GTV originally segmented on pre-
operative mpMRI is (b) projected over the real-time TRUS using a surface-based elastic registra-
tion algorithm; the inverse process allows identifying the MRI coordinates corresponding to the
inspected sites. (c) A 3D model of the plan can be rendered. (d) Pathological image samples
of benign prostatic parenchyma and (e) acinar adenocarcinoma GS: 3þ 4 ¼ 7, ISUPGG ¼ 2,
and HG: 40% to 50%.
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3.3 Number of Features Experiment

Using the combination of features with the best overall performance (FPþ Rad) identified in the
previous experiment (Sec. 3.2), we trained models varying max_nf for the feature selection
process. As explained in Sec. 2.3, the selected features for each fold (LOPOCV) could vary
slightly, up to the set limit (max_nf), so the actual number of features reported is the mean
number of features selected for all the folds. According to AUC results and metrics calculated
at the optimal point (Fig. 6), there is an optimal region between 6.1 and 8.3 used features, result-
ing when setting the max_nf at 7 and 10, respectively. Limiting the number of features used to
train the classification model aimed to reduce overfitting given the small datasets and improve
generalization capabilities; but the remarkable drop in specificity observed in the graph for more
than nine features emphasizes the importance of the feature selection process.

Fig. 6 Classification performance of the FPþ Rad model in function of the number of features
selected.

Fig. 5 ROC curve and optimal point for discriminating ISUPGG > 1 and ISUPGG ≤ 1, for models
including feature selection (max_nf ¼ 10). AUC: Area under the curve.

Grajales et al.: Image-guided Raman spectroscopy navigation system. . .

Journal of Biomedical Optics 095004-9 September 2022 • Vol. 27(9)



The features selected on each fold for the model that used on average 8.3 features were not
always the same, so Figs. 7(b)–7(d) shows how many times (# of folds) each feature was
selected. FP Raman spectra were averaged by class for visualization [Fig. 7(a)], and from those
1801 features (Raman shifts), five features were selected more than 10 times (i.e., during the
feature selection applied over each fold): 994, 1007, 1334, 1766, and 1772 cm−1. Similarly,
radiomics features were averaged by class [Fig. 7(c)], and two features were selected more than
10 times: r17 (Energy from ADC) and r46 (DifferenceEntropy from B2000), both selected on all
the folds (18 times). This total of seven most frequently selected features could make a set of
features with great potential for further studies.

It can be observed, as expected, that the valleys in the Raman spectrum were not selected,
except for some features just at the base of a significant peak, which contained information on the

Fig. 7 Average and standard deviation (a) of processed FP Raman spectra and (b) histograms of
selected features for RS; average and standard deviation (c) of mpMRI radiomics and (b) histo-
grams of selected radiomics features. The radiomics features corresponding to each identifier
are given in Table 1.
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width of the peak (e.g., 1108 or 1575 cm−1). As for the radiomics features, it can be seen that,
apart from the two most frequently selected features, only a few were selected at least once (r18,
r20, r39, and r44); according to the selection method, none of the T2 features, GLCM from ADC,
and first order from b2000 contributed to the classification task.

3.4 Prediction Task Experiment

We can observe that the different criteria to set the classes for the prediction tasks resulted in
different numbers of labels and observations (Table 4). The three observations with ISUPGG ¼
1 (Table 2) were HG < 20%, so the last set of labels (high grade) did not include these samples.

The models trained for each prediction task were compared in terms of general performance
(ROC) and the performance at the optima point, and the results are shown in Fig. 8 and Table 4.

4 Discussion

This study evaluated the potential of using macroscopic and mesoscopic tissue characterization
for PCa classification purposes, combining in-vivo RS and radiomics from preoperative
mpMRI, for detection of ISUPGG > 1 assisted by a custom navigation system. As in different
commercial devices for other applications, our navigation system is able to guide the physician

Table 4 Classification performance using the most frequently selected features, based on differ-
ent prediction tasks.

Prediction task ISUPGG > 1 ISUPGG ≥ 1 High grade

Total inspected sites 47 47 41

True class (+1) 21 ISUPGG > 1 24 ISUPGG ≥ 1 18 ISUPGG ≥ 1, HG > 20%

False class (−1) 26 ISUPGG ≤ 1 23 ISUPGG < 1 23 ISUPGG < 1

Accuracy 0.91 0.87 0.88

Sensitivity 0.90 0.83 0.89

Specificity 0.92 0.91 0.87

Fig. 8 ROC curve and optimal point for models trained with the seven most frequently selected
features, for the three different prediction tasks (ISUPGG > 1, ISUPGG ≥ 1, and high grade).
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during the insertion of the optical probe and track it in real-time in correspondence to pre-
operative MRI, which contributes to a time-efficient procedure, by adding an acceptable time
to the procedure.

Previous studies showed the important potential of RS for PCa detection; for instance,
ex-vivo studies20,39,53 presented a classification accuracy ranging between 83% and 89%. For
some of these studies, in addition to not being carried out under in-vivo conditions, models were
trained with at least 10 times more ex-vivo data; this prepares the model to overcome data vari-
ability and widens the range of features to be used (no feature selection in some cases). These
differences (ex-vivo/ in-vivo, size of the dataset, and number of features) may be the reason why
the RS models alone are not as performant, especially using HW; however, it should be noted
that FP and FPþ HW have accuracy larger or equal to 70% using just 10 features for in-vivo
conditions.

There are models trained only with MRI-based features that achieve AUC above 80% in the
literature.41,52 For instance, a model trained with nine radiomics features achieved a sensitivity of
84% and a specificity of 73%, detecting clinically significant PCa better than the Rad model.52

Nevertheless, they used some shape-based features that need the tumor’s segmentation and some
features extracted after using different filters on the images. The relatively simpler features used
in this study simplify the processing of the images, do not require the segmentation of the GTV,
and allow the extraction of the features at the place where the probe is placed; this is essential for
potential real-time applications.

As multimodal information provides significant advantages for navigation, different charac-
terization modalities are also advantageous for classification purposes.43 One of the models that
combined optical and image-based properties exhibited the best performance: FPþ Rad. The
complementary information of mesoscopic and macroscopic characterization allowed FPþ Rad

to outperform the models that only used a single modality (FP or Rad) on all metrics. Data
variability is difficult to model in small datasets; features coming from different modalities, prin-
ciples, or equipment could contribute to model generalization. The performance of this model,
using eight features from two different modalities, is comparable to the studies mentioned before
that use more features from a single modality in ex-vivo conditions.

The combination of FP + Rad was the only model that yielded a sensitivity and specificity
over 80%, which is very important since prostate-specific antigen is known for its high false
positives rates, and TRUS-guided biopsies can lead to a high number of false negatives.
Some mpMRI- or PET-based methods have greater sensitivity and specificity (respectively) for
the localized characterization of PCa, but require time-consuming processing by experts or could
have potential side effects for some tracers.41,48,54

The most frequently selected Raman shifts were related to three important spectra bands that
are usually more predominant in healthy (or ISUP GG ≤ 1) tissue. The first one, from 990 to
1015 cm−1, has a central peak usually related to proteins (phenylalanine).22,39,55,56 From 1330 to
1350 cm−1, the second band is commonly associated with collagen, DNA, or RNA.22,56 Finally,
the band from 1760 to 1790 cm−1, influenced by DNA/RNA, proteins and phospholipids, is also
present on benign prostatic hyperplasia.23,56

Energy, as a radiomics feature, is the measure of the magnitude of the value (square intensity
of segmented voxels), so the lower the intensity is on the image, the lower metric. Low intensity
in ADC images is generally associated with tumors, which is consistent with the higher mean
value for ISUP GG ≤ 1 tissue for this feature calculated on ADC images (r17).40,57

The loss in performance when using only the samples with HG >20% instead of using all
the acquisitions (high grade versus ISUP GG > 1) was very limited (∼1% on AUC and 3% on
accuracy). This indicates that, despite having limited datasets, by eliminating 6 observations
(and using the same features), the model still performed adequately, which can be explained
by the pooling of features from macro- and mesoscopic levels and the fact that the model uses
less than 60% of the observations as support vectors. Comparing the ISUP GG > 1 versus
ISUP GG ≥ 1 prediction tasks, the performance at the optimal point is similar (∼4% difference
in accuracy), projecting the potential of the approach for both classification tasks. The slightly
better performance in this experiment (prediction task experiment) compared to the initial one
(feature combination experiment) may stem from the fact that the seven features were chosen
based on the selection of all folds, not on our LOPOCV scheme.
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This pilot clinical study has some limitations, such as the limited number of patients enrolled,
making the feature selection process critical. The selection approach was useful to exclude many
silent features, but also to choose a small number that is comparable, ideally smaller, than the
number of observations. Other limitations are related to some elements that may compromise
the correct co-localization of the optical acquisitions and histopathological results; although the
navigation system helped and the performance for high grade was correct (when removing the
samples that could be less certain), the co-location of the ground truth would be an aspect to
improve for the following stages.

The implemented approach has facilitating elements for performing a minimally invasive
classification in real-time. However, for future work, the signal/image processing and the pre-
trained classification model need to be integrated into the navigation system to get a complete
system for in-vivo real-time studies.

5 Conclusion

We demonstrated that complementary information from in-situ RS and mpMRI radiomics fea-
tures allowed to accurately stratify the ISUP GG >1∕ISUP GG ≤1, as well as discriminate
ISUP GG ≥ 1∕ISUP GG <1 sites using SVM classifiers. This classification performance, com-
bined with our custom navigation system, can lead to an accurate PCa detection and localization,
improving tumor targeting in minimally invasive interventions.
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