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Abstract

Significance: In photoacoustic tomography (PAT), numerous reconstruction algorithms have
been utilized to recover initial pressure rise distribution from the acquired pressure waves.
In practice, most of these reconstructions are carried out on a desktop/workstation and the
mobile-based reconstructions are far-flung. In recent years, mobile phones are becoming so
ubiquitous, and most of them encompass a higher computing ability. Hence, realizing PAT image
reconstruction on a mobile platform is intrinsic, and it will enhance the adaptability of PAT
systems with point-of-care applications.

Aim: To implement PAT image reconstruction in Android-based mobile platforms.

Approach: For implementing PAT image reconstruction in Android-based mobile platforms, we
proposed an Android-based application using Python to perform beamforming process in
Android phones.

Results: The performance of the developed application was analyzed on different mobile
platforms using both simulated and experimental datasets. The results demonstrate that the
developed algorithm can accomplish the image reconstruction of in vivo small animal brain data-
set in 2.4 s. Furthermore, the developed application reconstructs PAT images with comparable
speed and no loss of image quality compared to that on a laptop. Employing a two-fold down-
sampling procedure could serve as a viable solution for reducing the time needed for beamform-
ing while preserving image quality with minimal degradation.

Conclusions: We proposed an Android-based application that achieves image reconstruction on
cheap, small, and universally available phones instead of relatively bulky expensive desktop
computers/laptops/workstations. A beamforming speed of 2.4 s is achieved without hampering
the quality of the reconstructed image.
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1 Introduction

Photoacoustic tomography (PAT)/photoacoustic computed tomography (PACT) is a hybrid im-
aging method that enables deep tissue imaging with a high spatial resolution by combining opti-
cal illumination with ultrasound detection.1–4 Over the last decade, PAT has shown great
potential in preclinical and clinical applications due to its advantages, such as scalable resolution,
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higher imaging depth, and high contrast.5–12 PAT is based on the photoacoustic (PA) effect,
where the PAwaves are generated when incident laser energy is absorbed by the chromophores,
such as oxy- and deoxyhemoglobin. In PAT, nanosecond laser pulses are employed to illuminate
the tissue, leading to energy absorption and local temperature rise. This gives rise to pressure
waves (PA), which are propagated out to the tissue boundary in the form of ultrasound waves
(also known as PAwaves). These PAwaves are acquired using an ultrasound transducer (UST) at
the tissue boundary. Then, they are converted into an internal absorption map (or to be precise
initial pressure rise map) of the tissue with the aid of different reconstruction algorithms.

In PAT/PACT, circular scanning geometry in orthogonal mode is most widely used for deep
tissue imaging,13 where a single-element ultrasound transducer (SUT) is employed to rotate
around the sample in a full circle to acquire the PA signals at different locations. The acquired
PA signals are then reconstructed into cross-sectional PAT images utilizing various reconstruc-
tion algorithms.14–19 Conventionally, SUT takes several minutes to acquire the data, leading to
longer data acquisition (DAQ) time. Hence, array transducers such as linear array transduc-
ers,20,21 semi-circular transducers,22 and circular array transducers23 are used to improve imaging
speed. The reconstruction techniques employed for reconstructing the acquired PA signals by
these transducers remain the same as that of the SUT-based PAT systems. In comparison with the
SUT, employing a circular array transducer with 128 or 256 elements reduces the DAQ time as it
can simultaneously capture multiple time-resolved PA signals. However, the circular array trans-
ducers are custom-made and require complex back-end parallel signal processing.24 Hence,
SUTs are preferred due to their easy availability and low cost. In this work, we focused on the
SUT-based reconstruction algorithm, though the developed Android-based application can be
easily applied to even the data from array transducers.

Different reconstruction algorithms have been proposed to generate the initial pressure rise
map from the acquired PA data, such as simple delay-and-sum (DAS) beamformer, time reversal
method, iterative image reconstruction, Fourier-transform-based reconstruction, model-based
reconstruction approach, etc.15,16,25,26 Assuming that the local optical fluence is locally homo-
geneous, we can recover the initial pressure distribution p0 inside tissue by measuring the pres-
sures at the tissue surface pð ~r0; tÞ, followed by mapping p0 into the absorption coefficient.27

Many methods can be used to reconstruct p0 from pð ~r0; tÞ). Herein, we only focus on the simple
back-projection method, in which the initial pressure rise can be defined as follows:28

EQ-TARGET;temp:intralink-;sec1;116;363pð ~r0Þ ¼
Z
Ω0

b

�
~r0; t ¼

j~r − ~r0j
vs

�
dΩ0

Ω0

;

whereΩ0 refers to the solid angle subtended by the entire measurement surface S0 with respect to
the reconstruction point ~r inside S0, whereas dΩ0 refers to the solid angle subtended by the
detection element dS0 with respect to the reconstruction point at ~r inside S0. dΩ0∕Ω0 is a factor
that weighs how much the detection element dS0 contributes to the reconstruction. Ω0 ¼ 2π for
planner geometry and Ω0 ¼ 4π for spherical geometry [Fig. 1(a)]. bð~r0; tÞ denotes the backpro-
jection term, which is given as

EQ-TARGET;temp:intralink-;sec1;116;243bð ~r0; tÞ ¼ 2pð ~r0; tÞ − 2ct
∂pð ~r0; tÞ

∂t
;

bð~r0; tÞ is projected backward on a spherical surface centered at the position ~r0. In a circular
scanning geometry, a simple DAS beamformer is usually employed to implement back-projection
with bð ~r0; tÞ ¼ pð ~r0; tÞ. Signals from different recording locations are backprojected, and all the
projected values are added at every pixel in the reconstructed image.29 DAS beamformer takes a
relatively long time to be implemented due to expensive computation, and it induces artifacts in the
reconstructed image owing to considering a large aperture detector in practice as a point detector
during the reconstruction process. Despite the above-mentioned drawbacks, DAS beamformer still
enjoys great popularity for its simplicity and easy implementation.

Typically, these reconstructions are performed on a desktop/laptop/workstation owing to
their computational power. At present, mobile phones also have reasonable computing resources
with the kind of processors and memory (RAM) they are using. With the upgrade of mobile
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phones every year, they possess more and more advanced processors [even with graphics
processing units (GPUs)] and can be applied to many different fields, especially in biomedical
imaging fields.30–32 Mobile phone-based imaging, sensing, and diagnostics have been proposed
for microscopy modalities, such as bright-field33 and fluorescence microscopy,34–36 as well as for
ultrasound imaging. Different Metal API-based applications have been proposed to achieve US
beamforming reconstruction.30,37 For example, real-time ultrasound imaging formation on an
iPhone or iPad can be achieved by utilizing wireless transmission of raw channel data from the
ultrasound probe to the iPhone and the processing power of the GPU inside the phone.30 Here, an
iOS app was developed, and the code for beamforming and image reconstruction was performed
using Metal, an application program interface developed by Apple that accelerated GPU process-
ing. For a single-angle plane-wave transmission, real-time frame rates of 60 to 90 frames per
second have been achieved. Besides, a commercial smartphone (Samsung Galaxy Note 2) could
be employed to implement vein visualization.38 Based on the Wiener estimation method, the
multispectral information from the veins was acquired and visualized in real-time using an ultra-
sound processing application developed on the iOS platform, and signal processing of raw ultra-
sound data was accomplished for image generation. In recent years, the application for
ultrasound beamforming has been commercialized. Butterfly Network has launched a product
called Butterfly iQ+, where a US probe and an iOS or Android app were utilized for imaging.39

With the single probe, four types of imaging modes (e.g., B mode, M mode, Color Doppler, and
Power Doppler) and over 20 presets (e.g., lung imaging, cardiac imaging) can be selected. The
product not only supports real-time imaging with high frame rate, optimized beamforming, and
storage but also allows bedside ultrasound remotely and provides real-time guidance. However,
previous research on utilizing mobile phones for image processing mainly focused on the
matured imaging modalities, such as ultrasound imaging,40 but was rarely applied to photoacous-
tic imaging. By designing an application on a mobile phone for raw data processing, image
reconstruction can be fulfilled anytime and anywhere as mobile phones are ubiquitous.
Based on portable devices for image formation, point-of-care diagnosis can therefore be devel-
oped. Mobile phones have advanced processors that allow images reconstructed on mobile devi-
ces to have comparable quality and fast processing time compared to the images reconstructed on
a computer.

In this work, we propose a mobile-platform-based (Android) DAS algorithm to reconstruct
the PAT image on phones. This is the first work where image reconstruction is conducted on
mobile phones without using computers. The algorithm was employed to reconstruct the simu-
lated and experimental PAT data into PAT images, achieving comparable efficiency and image
quality to that of the DAS algorithm employed on a laptop. The generation of simulated PA data
was performed on the k-wave MATLAB toolbox.41 Experimental phantom and in vivo imaging
performed on rat brain vasculature were also used to verify the performance.

2 Methods

2.1 Simulated Photoacoustic Datasets

To evaluate the performance of the developed application, three numerical datasets such as point
targets, triangular shape, and vessel shape were generated using the k-Wave toolbox.41 Although
in practice USTwith a large active area is used, an ideal point detector was used for simulation. A
circular scanning geometry with a scanning radius of 41 mm was used. The computational grid
was 820 × 820 (0.1 mm∕pixel) with a perfectly matched bounding layer [Fig. 1(b)]. An ideal
detector (2.25 MHz central frequency and 70% nominal bandwidth) was utilized for acquiring
the PA data at 800 uniformly distributed positions around the sample, with 1500 steps at each
position and a sampling frequency of 25 MHz. The speed of sound considered was 1500 m∕s
and the medium chosen was acoustically homogeneous. The first numerical phantom consisted
of five-point targets, as shown in Fig. 1(c). The distance between two adjacent points was 5 mm
while the intermediate point was located at the scanning center. Figures 1(d) and 1(e) present the
numerical phantom of the isosceles triangle and brain vasculature that mimics the venous sinuses
of rat brain, respectively.
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2.2 Experimental Phantom Imaging

For experimental phantom imaging, two types of phantoms were used for validating the per-
formance of the developed application, namely a point source phantom that was made up of
pencil leads and a triangular phantom made up of horsehair. As shown in Fig. 1(f), a ∼532-nm
Q-switched Nd:YAG laser delivering 10 pulses per second with a pulse width of 5 ns was used as
illumination source.42 An unfocused UST (Olympus NDT, V306-SU) with a central frequency of
2.25 MHz, active area of 13 mm, and fractional bandwidth of 70%, was used to scan the sample
with a scanning time of 480 s. 4800 A-lines were obtained during the 8-min scanning process,
and for each A-line, 1024 samples were captured with a sampling frequency of 25 MHz.
Averaging was performed for every two A-lines so that the number of A-lines became
2400. The collected PA signals were amplified via a low signal noise amplifier (Olympus-NDT,
5072PR) and stored in a computer (IntelXeon, 3.7 GHz 64-bit processor, 16 GB RAM) using a
DAQ card (GaGe, compuscope 4227).

2.3 In Vivo Photoacoustic Imaging

The schematic diagram of the pulsed laser diode (PLD)-based PA imaging system, PLD-PAT
system43 that was used for in vivo imaging is shown in Fig. 1(g). The PLD produced ∼816 nm

Fig. 1 (a) Schematic diagram for backprojection process. (b) Simulation geometry used in
MATLAB k-wave toolbox. (c) Point source numerical phantom (five-point targets; a point is located
at the center and surrounded by the other four points). (d) Triangle source numerical phantom.
(e) Numerical phantom that mimics the brain vessel of rat. (f) Schematic diagram of the PAT
system for experimental phantom imaging. (g) Schematic diagram of the PLD-PAT system
for in vivo imaging. AM, anesthesia machine; AMP, amplifier; LDU, laser driving unit; SM,
stepper motor; PC, personal computer; DAQ, data acquisition card; PLD; pulsed laser diode; and
GG, ground glass. P1, P2, and P3 are uncoated prisms; S1 is the sample used for phantom
imaging.
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light with a pulse repetition rate of 2000 Hz and a pulse width of ∼107 nm. A laser driving unit
(LDU) was used to control the PLD. The LDU comprises a water-cooling unit, a low voltage
power supply of 12 V (Voltcraft, PPS-11810), a variable high voltage power supply (Elektro-
Automatik, EAPS 8160-04T) that can control the laser power, and a function generator (RIGOL,
DG1022) that can control the pulse repetition rate. The laser beam homogenized by an optical
diffuser was expanded over an area of ∼20 cm2. The laser irradiated on the sample surface met
the requirements of American National Standards Institute safety limit.44 Single-element unfo-
cused UST (Olympus-NDT, V309-SU) was employed to collect PA waves, with a central fre-
quency of 5 MHz, active area of 13 mm, and fractional bandwidth of 70%. A 45 deg acoustic
reflector (F102, Olympus NDT) was placed on the transducer body. 600 A-lines were obtained
by continuously moving the UST in a circle around the sample for a scan time of 12 s, with each
A-line containing 1024 samples. The UST was driven by the stepper motor (SM), which was
controlled by the computer. The collected A-lines were amplified by a 48 decibels (dB) low
signal noise amplifier (mini-circuits, ZFL-500LN-BNC), followed by being stored inside the
computer (Intel Xeon, 3.7 GHz 64-bit processor, 16 GB RAM) via a DAQ card (Spectrum,
M2i.4932-Exp). The DAQ was synchronized with the laser irradiation by the functional gen-
erator. Sprague Dawley rats (weighing 90� 5 grams) were obtained from InVivos Pte. Ltd.,
Singapore for experiments. In vivo imaging was performed with one rat at a time, and the
pre-imaging operations were the same for all rats. Before the imaging, each rat was anesthetized
by a combination of ketamine (100 mg∕mL) and xylazine (20 mg∕mL), followed by hair
removal by employing depilatory cream and the utilization of ocular gel on both eyes. A layer
of ultrasound gel was applied to the rat scalp for better coupling. During the imaging process,
0.75% isoflurane and 1.0 L∕min oxygen were continuously supplied to keep the rat anes-
thetized. After the experiments, the rat was euthanized by the intraperitoneal administration
of Valabarb (sodium pentobarbitone 300 mg∕mL). All the animal experiments were performed
under the guidelines of the Institutional Animal Care and Use Committee, Nanyang
Technological University, Singapore (Protocol No.: A0331).

2.4 Development of a Mobile-Platform-Based Algorithm

Python 3.9.5 was used for developing an Android-based application due to its several merits.
Compared with another program, Android Studio, which is also commonly used for creating
Android-based applications, Python is an interpreted language and can be used cross-platform.
Many open-source libraries are available in Python, allowing users to flexibly call commands to
accomplish certain tasks. Besides, users can call the functions in other languages like C and C++
to run the command more effectively since Python is extensible. In addition, to further improve
the efficiency of the mobile-platform algorithm, we can employ Fourier-based or deep-learning-
based reconstruction algorithms in the future, which can be more easily achieved in Python. A
cross-platform Python framework, Kivy, was employed here for the development of the appli-
cation. The codebase developed in this article mainly targets the Android system, though it can
extensively target Linux, iOS, and Windows.

The process of developing the application was illustrated in [Fig. 2(a)]. Storage permission
was first asked for when opening the application, followed by uploading the raw data stored on
phones. The upload screen and the popup for uploading files were shown in Figs. 2(b) and 2(c),
respectively. Two parameters, including the radius and angle step, were provided by users in the
upload screen. During the image-forming process, the loading screen was shown as the transition
screen. After a while, the beamforming process finished and the image-display screen was exhib-
ited, where the reconstructed image and output parameters were displayed [Fig. 2(d)]. The output
parameters contained the running time of the image-forming process and the signal-to-noise
ratio (SNR) value of the image, which were shown at the bottom of screen. The reconstruction
algorithm used here was a simple DAS beamformer, which defined the reconstructed image size
as 250 × 250 pixels (0.1 mm∕pixel). The pixel size was smaller than both the spatial resolution
values of the PLD-PAT system, which utilized a 5 MHz UST (resolution is ∼180 μm), and
the Nd:YAG-PAT system, which employed a 2.25-MHz UST (resolution is ∼380 μm).
In addition, optimization of the application was implemented by using effective functions, such
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as Enumerate and improving loading animation, aiming at shortening the time taken for
reconstruction.

Although Kivy is cross-platform, packing the Python code into an executable program for the
mobile platform is necessary. To run Python code on an Android phone, the code should be
packaged into apk installer. There are several ways to finish packaging, including packaging
via Python-for-Android (p4a), Kivy launcher, or Buildozer. In this work, we utilized
Buildozer to package the Python code file into apk file since it was easily realized due to its
integrated framework and can solve the dependencies of deploying to different platforms very
well. In addition, while Buildozer debugging builds, the prerequisites were downloaded auto-
matically, like p4a, Android SDK, and NDK, which indicated that Buildozer can further encap-
sulate p4a. However, Buildozer only compiled with Linux and macOS, and Windows is not
supported. Before downloading Buildozer, a virtual machine or dual system was required to
be installed for using Ubuntu, which was a Linux distribution based on Debian. After
Buildozer was downloaded, an Android build could be initiated, leading to an apk file being
created. By downloading apk into an Android phone, we can run the program on the phone.
The whole process of transferring Python code into an executable mobile program was illustrated
in Fig. 2(e).

Fig. 2 (a) How to develop Android app in Python via Kivy. (b) Upload screen. (c) Popup for upload-
ing raw data to the application. (d) Image-display screen on the Android phone (Huawei P20),
which showed reconstructed image, reconstruction time, and the SNR value. (e) How to transfer
Python code to mobile platform.
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2.5 Image Quality Assessment

Several image quality matrices were used to assess the reconstructed image quality. First, SNR
was calculated after beamforming and normalization, using the following equations:

EQ-TARGET;temp:intralink-;sec2.5;116;692SNR ¼ 20 log10

�
μi
σ0

�
;

where μi is the mean of the top ten signal amplitudes within a region of interest (ROI), and σ0 is
the standard deviation of noise amplitudes within ROI outside the photoacoustic targets. After
reconstruction, the SNR value of the resulting image would be displayed at the bottom of the
phone screen, expressed in dB. However, the absence of an upper limit in the measurement of
SNR could create difficulties in the interpretation and comparison of results.45 Thus, two addi-
tional metrices were employed to evaluate image quality: peak SNR (PSNR), and structural
similarity (SSIM) index. PSNR measures the ratio between the maximum possible value of
an image and the amount of noise present in the image, expressed in dB. Higher PSNR values
indicate better image quality. SSIM is another metric that measures the SSIM between original
and reconstructed images, taking into account luminance, contrast, and structure. SSIM values
range from 0 to 1, where a value of 1 indicates that the two images are identical in terms of
structure and content. Like PSNR, higher values of SSIM indicate better image quality. Both
PSNR and SSIM are full reference quality metrics, which compare the reconstructed image
against a reference image without distortion. However, obtaining a reconstructed image without
distortion in experimental datasets can be challenging. To evaluate the application’s perfor-
mance, we used both simulated and experimental datasets and downsampled the data to observe
how the reconstruction time changed with decreasing dataset size. The image reconstructed from
the original dataset was considered as the reference image for comparison with the image recon-
structed from the downsampled dataset. The following equations were used to calculate the
PSNR and SSIM values:

EQ-TARGET;temp:intralink-;sec2.5;116;408PSNR ¼ 10 log10

�
peakval2

MSE

�
; where MSE ¼

PP ðI − KÞ2
m � n ;

EQ-TARGET;temp:intralink-;sec2.5;116;350SSIM ¼ ð2μxμy þ C1Þð2σxy þ C2Þ
ðμ2x þ μ2y þ C1Þðσ2x þ σ2y þ C2Þ

;

where peakval is the maximum value of the reference image. MSE is the mean squared error
between the reference image and reconstructed image, which computes the average of the
squared difference between the pixel values of the reference and reconstructed images. m and
n are the height and width of the images, respectively. x and y are the reference and reconstructed
images and μx and μy are the means for x and y, respectively. σx and σy are the standard deviation
of x and y, respectively. σxy is the cross covariance of x and y.

3 Results and Discussion

3.1 Image Reconstruction on Mobile Platform

Figure 3 depicts the reconstructed images of both numerical and experimental datasets on
Huawei P20 using the DAS algorithm. The SNR values of Figs. 3(a)–3(h) was displayed in
Fig. 4(b). The reconstructed images of the numerical phantom are shown in Figs. 3(a)–3(c),
in which the SNR values are 48, 43.3, and 40 dB, respectively. The structures of the targets
have been properly reconstructed, which were well matched with the ideal condition as shown
in Figs. 1(c)–1(e).

Although more A-lines were captured for experimental phantom imaging, the PA images
formed from the phantom experimental dataset showed poorer quality compared with the
PA images formed from the numerical dataset. This could be due to the noise added in the
numerical datasets being lower than the actual experimental noise. The SNR values of
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Figs. 3(d) and 3(e) were 39.5 and 37.5 dB, respectively, around 8 dB lower than that of Figs. 3(a)
and 3(b). The point targets were not well reconstructed, especially for the points that were far
from the scanning center. This is expected, as the spatially variant tangential resolution due to the
large aperture size of the detector used for experimental dataset is well known.29,42 As for
Fig. 3(e), the structures of the triangle targets were reconstructed properly though the endpoints
was blurred and the background noise was higher relative to Fig. 3(b). Using PLD-PAT system,
rat brain was imaged. In vivo PA signals were captured at 600 uniformly distributed positions and
1024 samples were acquired in each position, resulting in a data size of 600 × 1024. The recon-
structed images of the brain vessels were displayed in Fig. 3(f), with SNR of 37 dB. Both the
transverse sinus and sagittal sinus were clearly observed, though some noises existed in the
background.

To quantitatively evaluate the influence of data size on reconstruction image quality and time,
six datasets were downsampled two times and three times in the number of positions around the
circle. The reconstruction time for the original datasets and downsampled datasets was tested by
five runs. Figure 4(a) shows the mean reconstruction time and standard deviation for each data-
set, whereas Fig. 4(b) shows the corresponding SNR values of the reconstructed images. It can be
found from Fig. 4(a) that for datasets of the same size (number of A-lines x samples in each A-
line), irrespective of whether it is simulated or experimental data and what type of simulated data,
the time for PAT image reconstruction was similar. Such relationship can be more easily seen in
Table 1. Here, the reconstruction time was the average reconstruction time used for the same size

Fig. 3 Reconstructed PAT images displayed on the mobile platform: images formed from
(a) numerical point source data, (b) numerical triangle data, (c) numerical brain vessel data,
(d) experimental point phantom data, and (e) experimental triangular phantom data. (f) In vivo
brain vessel data, which were captured with 600 steps. (g) In vivo brain vessel data, which were
downsampled to 300 steps. (h) In vivo brain vessel data, which were downsampled to 200 steps.
The background region and a part of photoacoustic region (marked by blue solid box and blue
dashed box) are shown in the bottom row.
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of datasets. When the original dataset was downsampled twofold, the reconstruction time was
reduced by approximately half, whereas the SNR value was only decreased by <4 dB.
Considering the limitation of only taking SNR as image quality metric, PSNR and SSIM were
also employed to assess the quality of images. As shown in Fig. 4(c), the PSNR values for all
twofold downsampled datasets were higher than 40 dB, except for in vivo data, which was still
∼40 dB (39.7 dB). This reveals that the difference between the image generated from original
datasets and twofold downsampled datasets was relatively low in terms of the maximum image
pixel values and the noise levels. Also, the SSIM values of the reconstructed images from the
downsampled datasets were all not <0.95. A high degree of similarity between the reconstructed
images and reference images was thus demonstrated. Minimum distortions of the image recon-
structed from twofold downsampled datasets can be further verified by the PA image

Table 1 Relationship between the size of dataset (no. of A-lines × samples in each A-line) and
reconstruction time.

Original dataset Twofold downsampled dataset Threefold downsampled dataset

Phantom data size 2400 × 1024 1200 × 1024 800 × 1024

Reconstruction time (s) 80.3 40.3 27.1

In vivo data size 600 × 1024 300 × 1024 200 × 1024

Reconstruction time (s) 20.2 10.1 6.9

Simulated data size 800 × 1500 400 × 1500 266 × 1500

Reconstruction time (s) 27.7 13.9 9.3

Fig. 4 (a) Reconstructed time comparison among different datasets. (b) SNR comparison among
different reconstructed images formed from different datasets. (c) PSNR comparison between
images from twofold downsampled and threefold downsampled datasets; the images from original
datasets were taken as reference images. (d) SSIM comparison between images from twofold
downsampled and threefold downsampled datasets; the images from original datasets were taken
as reference images. (e) Comparison of beamforming time on the mobile platform among different
image-forming process. N, numerical dataset; E, experimental dataset. (f) Comparison of DAS
image formation time on different mobile platforms; the data used here was in vivo original and
downsampled data.
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reconstructed from two-fold downsampled in vivo data [Fig. 3(g)]. A part of background region
and a part of photoacoustic target region were enlarged (marked by blue solid box and blue
dashed box), suggesting that the structures of the photoacoustic target were still properly recon-
structed, and the background was clean with not much noise perceptible. The quantitative and
qualitative results demonstrate that the twofold downsampling process significantly reduced
computation time without significantly degrading the image quality.

The reconstruction time could further be reduced by the three-fold downsampling operation,
which led to about three times decrease in computation time. However, the images formed from
threefold downsampled data show visible degradation (streak artifacts), as the SNR value of
these images dropped compared to the images formed from original data. Streak artifacts are
quite common when the number of A-lines used for reconstruction is low. The degradation can
be observed from PSNR and SSIM values. The PSNR of the images formed from threefold
downsampled datasets were around 35 dB, except for numerical triangle dataset (29.7 dB) and
numerical brain vessel dataset (38.6 dB). The difference between the images from threefold
downsampled datasets and original datasets became more pronounced, implying a loss of infor-
mation during the reconstruction process (due to low number of A-lines). Similarly, the SSIM of
images declined to around 0.96 for simulated datasets except for numerical triangle dataset,
around 0.93 for experimental phantom dataset, and even lower, 0.88 for in vivo dataset, which
implied a lower degree of similarity between the reconstructed image and the reference image.
However, the SSIM values higher than 85% still demonstrate the proper reconstruction of target
structure, though some degradation was present (more pronounced in the background areas). It is
worth noting that the SSIM value for the image from numerical triangle dataset is highest among
the images formed from threefold downsampled datasets, though the PSNR value of that is the
lowest. Such divergence could be due to the fact that the image had a high SSIM with the refer-
ence image though it has undergone some form of compression that has reduced the pixel values,
resulting in a lower dynamic range and a lower PSNR. But the image still retained the essential
structural features of the reference image. Figure 3(h) showed the reconstructed image from
three-fold downsampled in vivo data in which the background artifact (streak artifact) was
notably higher than Fig. 3(f), leading to an SNR decrease of more than 5 dB. But three-fold
downsampling process still led to the PA images with comparable target structure to that of the
PA images obtained from the original datasets, which was consistent with the SSIM value of
the image.

These findings suggested that there was a tradeoff between image quality and reconstruction
time, as larger-sized datasets led to images with higher quality but longer reconstruction time,
whereas smaller-sized datasets resulted in lower-quality reconstructed images but reduced recon-
struction time. Limited by the size of the screen and screen resolution, smartphones cannot dis-
play high-resolution images as clearly as desktops/workstations/laptops, indicating that the
phone application can focus more on the time consumed for the image-forming process instead
of image quality. Considering the influence of downsampling on reconstruction time and image
quality, two-fold downsampling led to much less time spent on beamforming but still maintained
the image quality without much loss, offering a balance between speed and quality. An addi-
tional step was done to verify that transferring the Python file into apk file would not influence
the reconstructed image quality. We employed the same DAS algorithm and the same raw dataset
in laptop Python to obtain the reconstructed images, for which the SNR values were the same as
that of images reconstructed on mobile platforms.

3.2 Reconstruction Time Comparison Between Mobile Platforms and Laptop

Figure 4(c) demonstrates the reconstruction time difference between the laptop and mobile plat-
forms (Huawei P20) among different samples. The laptop used here was Lenovo Thinkbook 15,
possessing 24 GB DDR4 memory and a processor of 10’th Gen Intel®Core™i7. To evaluate the
stability of the application, five runs have been tested on six datasets on both laptop and Huawei
P20. The mean time and standard deviation were calculated for the reconstruction time.
The datasets used here were maintained in their original size without any downsampling
performed. As for the same dataset, the time taken for reconstruction in Huawei P20 was sig-
nificantly higher than that on the laptop. Around 7-s differences were observed between the
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image reconstruction time on laptop and mobile platforms for all numerical datasets (800 steps ×
1500 samples). For larger-size datasets (2400 steps × 1024 samples, for experimental phantom
datasets), the time spent on reconstruction showed a huge difference between laptop and mobile
platforms. Around 50 s was required for the laptop to form the PAT images, and the mobile
application took an additional 30 s to fulfill the same beamforming process. The significant
difference in the reconstruction time in the two platforms was mostly owing to the relatively
less advanced processor of Huawei P20, which was released four years ago. In vivo brain vessel
dataset comprised fewer DAQ points (600 points), resulting in significantly less time for DAS.
Without performing downsampling on the raw dataset, there was about a 5-s reconstruction time
difference between the two platforms. These results indicated that the mobile application pos-
sesses no significant running time difference from the laptop when performing the DAS for the
small-sized datasets, whereas a significant time difference would be there between the two plat-
forms for the large-sized datasets. Performing downsampling to the dataset can accelerate the
image reconstruction, and the reconstructed image showed not many differences from the image
reconstructed from the original large dataset. In addition, the standard deviation of five runs on
the mobile platforms was lower than 1 s, suggesting the stability of the application.

3.3 Reconstruction Time Between Different Mobile Platforms

Mobile phone performance varies significantly with different specifications, including central
processing unit (CPU), GPU, and internal memory size. To measure the extent to which different
specifications affect reconstruction time and verify that the application can be universally applied
on Android platforms, we compared the running time on six different Android phones, as shown
in Fig. 4(d). Their specification is presented in Table 2, and Samsung Galaxy S21+ is the most
recent Android phone that was tested. In vivo brain vessel dataset was used here, with both the
original (600-step) and downsampled (200-step) datasets. The first developed version of the
application required 127.7� 8.4 seconds to accomplish the image-forming process for the
600-step in vivo brain dataset on a Samsung Galaxy S9 phone. Owing to performing optimi-
zation operation including importing only the required modules of a library, employing functions
with short execution time, and using smoother loading animation, the reconstruction time was
reduced to 10.7� 0.0 s.

With similar release year and configurations, Huawei P20 and Samsung Galaxy S8+ com-
pleted image forming process within similar time for both datasets. 6.9 s and 20.2 s were needed
for Huawei P20 to perform image reconstruction in 200-step and 600-step brain vessel data,
respectively. Similarly, 6.5 s and 18.9 s were required for Samsung Galaxy S8+ to finish the
beamforming process in both reduced-sized and original datasets. For the Samsung Galaxy
series of smartphones with improved specifications, the reconstruction required less and less
running time. Compared to Huawei P20, the newly released Samsung Galaxy S21+ possessed
an advanced processor, with >60% decrease in time spent on the image-forming process. 2.4 s
and 6.9 s were required for the reconstruction of downsampled dataset and the original dataset,
respectively. The less running time revealed the possibility that the advanced mobile system
owned similar or even superior performance in the image-forming process compared to the
laptop.

In this work, the reconstructed image size was fixed at 250 × 250 pixels (0.1 mm∕pixel),
which means that only the photoacoustic targets within a region of 2.5 × 2.5 cm can be recon-
structed. However, the image size can be adjusted arbitrarily by modifying the parameters that
control its height and width in the Python scripts. As for the dataset size, there is no limit as long
as it does not exceed the maximum memory capacity of the phone. The development of an
Android-based application for photoacoustic image reconstruction is expected to contribute sig-
nificantly to the advancement of portable phone-based photoacoustic imaging systems. These
systems have the potential to improve medical diagnostics and make healthcare more accessible
to underserved populations. However, building such systems has been a challenge due to the
difficulty of integrating high energy light sources or the ultrasound detectors within the phone.
Advancement of LED light sources could accelerate the development of mobile PA imaging
system. Mobile based ultrasound imaging systems are already developed. Potentially one can
modify such a system to get the raw channel ultrasound radio frequency (RF) data (not a trivial
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task though), as already beamformed RF data will not be useful for PA imaging. On the other
hand, controlling the hardware of an external laser (or other potential light source) from a phone,
DAQ, digitization and transfer into a mobile phone might be possible but has not been dem-
onstrated yet. So, there are few different paths through which it might be possible in the future to
develop the full PAT imaging system on a mobile. Although on the image acquisition side not
much work has been done for a mobile-based PAT system, it might be feasible to do so soon. Our
future work will focus on not only the mobile based reconstruction but also developing mobile
based PAT imaging system.

4 Conclusion

In this work, we use the potential of mobile platforms for PAT image reconstruction. Simulated
datasets and experimental datasets were both used to evaluate its performance. The results indi-
cate that the images shown on mobile phones were reconstructed well, with all the SNR values of
reconstructed images >30 dB. Significantly longer image reconstruction time was needed for
mobile applications, especially for large-sized datasets. Two-fold downsampling operation could
be an alternative for lowering the time spent on beamforming but still maintaining the image
quality without much loss. Different types of phones have been employed to compare the appli-
cation performance. With the newly developed phones that possess powerful GPU and CPU, the
required time for image forming can possibly be as close as to the time needed for reconstruction
on the laptop. Although demonstrated by the dataset from the PAT system with a single-element
transducer, the proposed application is sufficiently broad and general that it should directly be
applied to the dataset from the PAT system with an array-based transducer, like a circular-array
transducer.
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