
Contrast computation methods for
interferometric measurement of
sensor modulation transfer function

Tharun Battula
Todor Georgiev
Jennifer Gille
Sergio Goma

Tharun Battula, Todor Georgiev, Jennifer Gille, Sergio Goma, “Contrast computation
methods for interferometric measurement of sensor modulation transfer function,” J.
Electron. Imaging 27(1), 013015 (2018), doi: 10.1117/1.JEI.27.1.013015.



Contrast computation methods for interferometric
measurement of sensor modulation transfer function

Tharun Battula,* Todor Georgiev, Jennifer Gille, and Sergio Goma
Qualcomm Technologies, Inc., San Diego, California, United States

Abstract. Accurate measurement of image-sensor frequency response over a wide range of spatial frequencies
is very important for analyzing pixel array characteristics, such as modulation transfer function (MTF), crosstalk,
and active pixel shape. Such analysis is especially significant in computational photography for the purposes of
deconvolution, multi-image superresolution, and improved light-field capture. We use a lensless interferometric
setup that produces high-quality fringes for measuring MTF over a wide range of frequencies (here, 37 to 434 line
pairs per mm). We discuss the theoretical framework, involving Michelson and Fourier contrast measurement of
the MTF, addressing phase alignment problems using a moiré pattern. We solidify the definition of Fourier con-
trast mathematically and compare it to Michelson contrast. Our interferometric measurement method shows high
detail in the MTF, especially at high frequencies (above Nyquist frequency). We are able to estimate active pixel
size and pixel pitch from measurements. We compare both simulation and experimental MTF results to a lens-
free slanted-edge implementation using commercial software. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of
the original publication, including its DOI. [DOI: 10.1117/1.JEI.27.1.013015]
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1 Motivation
Refinements of traditional film and digital photography, such
as light-field capture,1 superresolution,2 high dynamic range,
etc., were once confined to professional photographers and
optics researchers. Now, these features are becoming avail-
able in consumer cameras, especially the ubiquitous cell
phone camera. In addition, there is a push toward reducing
the size of the optical system, including lenses, focusing
mechanisms, sensors, and their pixels. It is the reduced sen-
sor pixel size that motivates the study and measurement of
sensor quality.

Image sensors are a critical part of digital cameras and
computational photography in general. They are usually
characterized by signal-to-noise ratio (SNR), wavelength
response, and dynamic range. These metrics are derived
from intrinsic parameters, such as noise, quantum efficiency,
and full-well capacity. However, there are additional, less-
commonly considered sensor parameters influencing image
quality. We will focus on the sensor modulation transfer
function (MTF) with corresponding intrinsic parameters
pixel crosstalk3 and pixel fill factor.4

Generally, camera MTF is a critical characteristic related
to the image quality of any camera. It is essentially the prod-
uct of lens MTF and sensor MTF (assuming the imaging
system is linear and shift independent). The quality of results
in computational photography applications such as stereo
depth, multi-image superresolution, and deconvolution, where
a goal is to capture subpixel information, specifically requires
a high MTF of both sensor and lens well above the Nyquist
frequency.1,2,5 Examination of measured sensorMTF at a wide

range of frequencies allows us to understand pixel active area
and shape in detail3 and to assess sensor utility for an
intended application.

At the sensor level, ideal sensor MTF is reduced by the
finite pixel size due to photon integration over the active
pixel area. Sensor MTF is also reduced by crosstalk. Gener-
ally, crosstalk between pixels occurs when light falling on
one pixel influences the response of its neighbors. Overall,
pixel crosstalk is part optical crosstalk and part electrical
crosstalk.4 Optical crosstalk occurs when some of the pho-
tons falling on a given pixel propagate to neighboring pixels.
Electrical crosstalk occurs when free electrons from a given
pixel diffuse to neighboring pixels.

As sensor pixels shrink, evaluating the sensor MTF using
common test chart-based methods (as defined in ISO 12233)
may exhibit limitations on measurability or accuracy at high
frequencies. This can happen due to limitations of the optics
that create the image on the sensor. In this paper, we expand
our previous work6 and describe the interferometric methods
we have developed to handle ultrasmall pixels and solve
problems encountered with earlier approaches. We utilize
the detailed mathematics describing sensor response by con-
sidering the effects of discretization and spectral leakage
(Sec. 3.2.3) and explicitly derive Fourier contrast in terms
of Dirichlet kernels7 [Eq. (22)].

2 Introduction
Sensor MTF is generally defined as the spatial frequency
response of the image sensor (in cycles per pixel pitch) in
the absence of optics. This motivates an interferometric
approach to measure the accurate MTF.8 Typically, interfer-
ometers can generate a wide range of sinusoidal signals on
the surface of a sensor. One advantage of such an approach to
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measure the MTF is that there is no mechanical touching of
the sensor surface as may be required with the lens-free
slanted-edge method.9 Because the approach is lens-free,
sensor MTF is measured directly and not confounded by
lens MTF. Also, local pixel response and its spatial uniform-
ity across the sensor can be analyzed at the same time as the
MTF is measured.

2.1 Setup
Our proposed interferometric setup is a combination10 of
Mach–Zehnder and Young interferometers.11,12 One improve-
ment, compared to prior work,8 that directly relates to our
approach is that with this setup, Fig. 1, we produce a reliable
and clean signal in the following way. A Young interferom-
eter12 produces a clean optical signal, free of both noise and
speckle, because it has no optical elements other than pin-
holes. However, the output signal has very low intensity due
to the light passing through two stages of pinholes. Also,
the Young interferometer usually has a path length on the
order of meters and so may be impractical due to high inten-
sity requirements. To address these issues, we considered
the Mach–Zehnder interferometer;13 however, the traditional

setup introduces speckle and noise due to imperfections of
the lens/prism surfaces and surface dust. Our design is essen-
tially a Mach–Zehnder interferometer with microscope
objectives and pinholes at the output. It has the advantages
of both Mach–Zehnder and Young in having high-energy
output and being clean of optical artifacts, especially speckle.

Another element in our design is that we are using a
polarized source and polarizers just before the final objec-
tives. This produces nearly complete constructive and
destructive interference, resulting in ∼98% modulation of
the optical signal.

Figure 1(a) shows a diagram of our interferometer, and
Fig. 1(b) shows a picture of our current implementation.
The beam splitter and first-surface mirrors arranged as in
a Mach–Zehnder interferometer split the laser beam 50–50.
Polarizers maximize the interference. We are equalizing the
beam intensities after splitting using a neutral density filter.
Fine adjustment of the remaining small difference is done
computationally based on the measurements performed.14

Two microscope objectives and two pinholes are used
at the end of the optical path to create fringes as in a Young
interferometer. Each pair of mirrors after the beam splitter
spans the full four degrees of freedom in the light field.

Fig. 1 (a) Our interferometer for measuring sensor MTF. (Not to scale) (b) Picture of our interferometer
built on a bread board with 25-mm mounting hole grid.
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This design achieves easy and fully adjustable aiming of
the beams into the objectives.

2.2 Interference
Interference of electromagnetic waves is produced by the
addition of the electric fields of two or more beams.
Intensity is proportional to the electric field squared. Details
can be found in Ref. 15. The resulting intensity, I, at the
sensor can be written as

EQ-TARGET;temp:intralink-;e001;63;649I ¼ I1 þ I2 þ 2αγ
ffiffiffiffiffiffiffiffi
I1I2

p
cosðϕ1 − ϕ2Þ; (1)

where I1 and I2 are the time-averaged intensities of the two
beams. The cosðϕ1 − ϕ2Þ term produces the sinusoidal
fringes based on the path difference between the beams,
where ϕ1 − ϕ2 is the phase difference. The parameter α is
the degree of coherence between the two light sources with
a maximum value of 1 for perfect coherence. The parameter
γ is the cosine of the angle between the polarizations of
the two electric field vectors.

2.3 Pixel Sampling Equation
For simplicity, our equations are written for a single spatial
dimension x on the sensor. Equations can be extended to two
dimensions.3,14 Let ΠϵðxÞ represent the active pixel response
function, the rectangle function of pixel width ϵ in the
x-direction. It can be written as ΠϵðxÞ ≔ ½Hðx − ϵ

2
Þ −

Hðxþ ϵ
2
Þ�, where HðxÞ represents the unit step function.

Similarly, ΠlðxÞ denotes a rectangle function for sensor
width l.

An optical signal fðxÞ, I from Eq. (1), is sampled at pixel
pitch p, and assuming pixel active size ϵ, over the sampling
length of the sensor l. The result can be written as

EQ-TARGET;temp:intralink-;e002;63;379gðxÞ ¼

8><
>:

Zxþϵ∕2

x−ϵ∕2

fðξÞdξ

9>=
>;ШpðxÞΠlðxÞ: (2)

The equation can also be written as

EQ-TARGET;temp:intralink-;e003;63;304gðxÞ ¼
8<
:
Z∞
−∞

fðξÞΠϵðx − ξÞdξ
9=
;ШpðxÞΠlðxÞ; (3)

where ШpðxÞ is the Dirac comb function of period p. The
integral can be written as the convolution f � Πϵ, thus

EQ-TARGET;temp:intralink-;e004;63;222gðxÞ ¼ ff � ΠϵgðxÞШpðxÞΠlðxÞ: (4)

In the case of a single-frequency sinusoidal signal, fðxÞ
will be fðxÞ ¼ A cosð2πu0xþ ϕ0Þ þ B, where A is the AC
amplitude, B is the DC offset, and u0 is the frequency of the
optical fringes formed on the sensor (in cycles per pixel
pitch). We assume an odd number of pixels and origin in
the middle of the central pixel. The term ϕ0 is the phase
difference between the sinusoidal fringe and pixel grid mea-
sured at the center of the sensor. Figure 2 shows the sam-
pling. The captured signal after sampling is

EQ-TARGET;temp:intralink-;e005;326;601gðxÞ ¼

8><
>:

Zxþϵ∕2

x−ϵ∕2

½A cosð2πu0ξþ ϕ0Þ þ B�dξ

9>=
>;ШpðxÞΠlðxÞ:

(5)

Integrating in the above equation and simplifying using
the normalized sinc function sincðtÞ ≔ sinðπtÞ

πt

EQ-TARGET;temp:intralink-;e006;326;507gðxÞ ¼ ½Aϵ sincðu0ϵÞ cosð2πu0xþ ϕ0Þ þ Bϵ�ШpðxÞΠlðxÞ:
(6)

Taking x at discrete locations n with p as pixel pitch

EQ-TARGET;temp:intralink-;e007;326;451gðnÞ ¼
�
0; jnj > N

2

Bϵþ Aϵ sincðϵu0Þ cosð2πu0npþ ϕ0Þ; jnj ≤ N
2

;

(7)

where N is the number of pixels in the x-direction on the
sensor, i.e., l ¼ Np.

3 Contrast Computation Methods
To describe the captured image on the sensor, Eq. (7) takes
the following form:

EQ-TARGET;temp:intralink-;e008;326;325gðnÞ ¼
�
0; jnj > N

2

BϵþMϵ cosð2πu0npþ ϕ0Þ; jnj ≤ N
2

: (8)

The variables areM, B, u0, ϕ0, and ϵ. In an ideal case with
no crosstalk, M ¼ A sincðϵu0Þ. In a real case, M could be
some other function of u0 and ϵ. For a given measurement,
u0 is fixed. It can be calculated from the setup geometry by
the formula u0 ¼ p

d, where d is the distance between fringes,
explained in Eq. (28). ϕ0 is controlled as described in
Sec. 3.1.3. ϵ is a pixel parameter that affects the shape of
the MTF as we will see in Sec. 4.1. From each measurement,
we could estimate the values of M and B based on spatial or
frequency analysis. However, we need only their ratio. Our
analysis proceeds by measuring gðnÞ for many values of u0.

Contrast, C, is defined as the ratio of AC component to
DC component

EQ-TARGET;temp:intralink-;e009;326;138C ¼ M
B
; (9)

and the MTF is calculated as contrast as a function of
frequency. We obtain the MTF experimentally by estimating
the M∕B ratio using contrast methods explained later.

Fig. 2 Pixel sampling of the sinusoidal optical signal.
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A captured image contains intensity data for N number of
samples, giving us N equations in five unknowns for each
measured frequency (e.g., N pixels in x-direction of the sen-
sor at Nyquist). This can be posed as a harmonic regression
or curve fitting problem that may have multiple solutions
due to aliasing.

This paper proposes improvements to two traditional con-
trast calculation methods for sinusoidal fringes captured as
sensor images. If the active pixel response is a Π function
with no crosstalk, the MTF will be a sinc function. In prac-
tice, active pixel response may not be a rectangle function,
but our current analysis estimates equivalent pixel width ϵ
under that assumption. This is the first step toward a more
detailed analysis of active pixel shape and size.

3.1 Michelson Contrast
Michelson contrast, CMichelson, is defined as

EQ-TARGET;temp:intralink-;e010;63;413CMichelson ¼
gmax − gmin

gmax þ gmin

; (10)

where gmax and gmin are the extrema of signal gðnÞ. In the
case of a sinusoidal signal, such as gðnÞ in Eq. (8), extrema
are observed when the cosine term evaluates to 1 and −1,
respectively. It is easy to see that for well-sampled data,
Michelson contrast will be equal to M∕B.

Discretization of the signal produces different maximum
and minimum values, based on sampling frequency and ini-
tial phase ϕ0. The extremal values in the sampled data also
depend on the number of sinusoidal periods that fit in the
sensor width. When the optical fringe period exceeds sensor
width, the contrast may not result in M∕B.

3.1.1 Noise effect on Michelson contrast

Michelson contrast is highly sensitive to noise. Since it is
calculated only from extrema, i.e., at two pixels, the noise
will affect contrast value [e.g., Fig. 3(a)]. To reduce the effect
of noise onMichelson contrast, finding an average consensus
of contrast from microregions is useful.

Artifacts affect the location of extrema leading to wrong
results [e.g., Fig. 3(b)]. By avoiding such regions or taking
the average of microcontrasts, we reduce noise and suppress
deviations resulting from artifacts.

3.1.2 Phase

In the case where the optical fringe period is comparable to
pixel size, Michelson contrast is also sensitive to the phase
difference, ϕ0, between pixel grid and optical fringe signal.

Figure 4 shows pixel sampling and Michelson contrast varia-
tion for different ϕo values at Nyquist and half Nyquist
frequencies.

The effects of phase difference ϕ0 can be demonstrated
with a simple simulation. Figure 6 shows the simulation of
Michelson contrast for two different initial phases ϕ0 chosen.
We take sinusoidal signals of different spatial frequencies for
1000 logarithmically spaced data points. Pixel pitch is 1 unit.
We integrate each signal assuming pixel pitch equal to the
active pixel size and zero crosstalk. We sample the data at
1000 pixels, calculate Michelson contrast, and plot the MTF.

Under these conditions, we observe sudden drops at cer-
tain frequencies and phases. Figures 5(a) and 5(b) demon-
strate sudden drops for phases 0 and π

2
. Contrast varies based

on the maxima and minima of the term gðnÞ in Eq. (8),
observed over 1000 pixels. Maximum contrast will be
observed when cosð2πu0npþ ϕ0Þ reaches maximum 1 and
minimum −1 for at least some values of n.

For some frequency and phase combinations, the
cosine term can result in repetitive values over n. For exam-
ple, when u0 ¼ 1

2
and ϕ0 ¼ π

2
, the cosðnπ þ π

2
Þ term will be 0

for all n. [Fig. 4(b)]. When u0 ¼ 1
4
and ϕ0 ¼ π

4
, the resulting

cos½ð2nþ 1Þ π
4
� term will be either − 1ffiffi

2
p or 1ffiffi

2
p [Fig. 4(c)].

Similar behavior is often observed at other integer fractions
of Nyquist frequency. These are the locations of the
observed drops.

Fig. 3 (a) A captured fringe image and its extrema and (b) dust particle artifact in the image.

Fig. 4 Pixel sampling shown at (a and b) Nyquist frequency and
(c and d) half Nyquist.
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For neighboring frequencies, very close to the observed-
drop frequencies, the cosine term will not result in a constant
value but will be varying over n across 1000 pixels.
Maximum and minimum picked up over 1000 pixels will
typically result in a significantly larger contrast value. This
change, when observed with limited granularity, will appear
as a sudden contrast drop.

3.1.3 Moiré pattern

For each optical fringe frequency measurement, an optimal
pixel grid-to-fringes alignment (or phase) should result in a
maximal contrast. In this way, we could plot the perfect
curve without sudden drops. Figure 5 shows varying drops
for two phases. To set the alignment required for maximal
contrast, additional individual measurements with varying
initial phase (ϕ0) are required.

To obviate problems with this procedure, we use an alter-
native solution based on a moiré pattern approach. This
approach allows for the collection of data from multiple
phases in a single two-dimensional (2-D) image. The sensor
needs to be slightly rotated relative to the fringes of the opti-
cal signal. For a small angle of rotation of the image sensor,
the fringe lines and pixel grid sampling form beats in the 2-D
space. Figure 6 shows moiré pattern beats formed horizon-
tally for vertical fringes. Each horizontal pixel row has a dif-
ferent contrast resulting from a different phase alignment.
This helps in choosing the maximum contrast line for calcu-
lating the MTF values unaffected by the phase difference
variation (ϕ0).

3.2 Fourier Contrast
For a continuous signal in the following form:

EQ-TARGET;temp:intralink-;e011;326;530gðxÞ ¼ BϵþMϵ cosð2πu0xþ ϕ0Þ

¼ BϵþMϵ

2
½eið2πu0xþϕ0Þ þ e−ið2πu0xþϕ0Þ�; (11)

contrast is defined in Sec. 3 as the ratio of M and B values.
Fourier analysis is a well-known method for finding the AC
and DC components in unknown frequency signal data. The
Fourier transform of the spatial signal is calculated, and a
simple peak detection algorithm can be used for identifying
dominant frequencies. The estimation of contrast, using the
measured magnitudes of the fundamental frequency and the
DC, is correct in an ideal case. However, it is subject to devi-
ations due to discretization and spectral leakage as explained
in Sec. 3.2.3.

3.2.1 Formulation in terms of periodic sinc

The Fourier transform of a sampled signal, using engineering
notation for convolutions,16 gðxÞ [from Eq. (4)], GðuÞ, is

EQ-TARGET;temp:intralink-;e012;326;312GðuÞ ¼ fFðuÞϵ sincðϵuÞg � 1

p
Ш1

p
ðuÞ � l sincðluÞ; (12)

where p is the pixel pitch, l is the length of sensor Np, ϵ is
the pixel active size, and u is the function variable in the fre-
quency domain. The Fourier transform of the optical signal

Fig. 5 Simulated MTF plotted with Michelson contrast: (a) ϕ0 ¼ π
2 and (b) ϕ0 ¼ 0.

Fig. 6 Moiré pattern beats formed on slightly rotated sensor by vertical fringes: (a) simulated image and
(b) actual captured image from our sensor.
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fðxÞ is
EQ-TARGET;temp:intralink-;e013;63;741FðuÞ ¼ FfBþ A cosð2πu0xþ ϕ0Þg

¼ BδðuÞ þ A
2
½δðuþ u0Þe−iϕ0 þ δðu − u0Þeiϕ0 �: (13)

The discrete time Fourier transform, substituting Eq. (13) in
Eq. (12), is
EQ-TARGET;temp:intralink-;e014;63;660

GðuÞ ¼
��

BδðuÞ þ A
2
½δðuþ u0Þe−iϕ0 þ δðu − u0Þeiϕ0 �

�

× ϵ sincðϵuÞ
�
� 1

p
Ш1

p
ðuÞ � l sincðluÞ; (14)

EQ-TARGET;temp:intralink-;e015;63;588

⇒ GðuÞ

¼ lϵ
p
fB sincðϵ0ÞδðuÞ þ A

2
½sincð−ϵu0Þδðuþ u0Þe−iϕ0

þ sincðϵu0Þδðu − u0Þeiϕ0 �g � sincðluÞ �Ш1
p
ðuÞ: (15)

Further, after convolving with the sinc function
EQ-TARGET;temp:intralink-;e016;63;502

GðuÞ ¼ lϵ
p
fB sincðluÞ þ A

2
sincð−ϵu0Þsincðlðuþ u0ÞÞe−iϕ0

þ A
2
sincðϵu0Þsincðlðu − u0ÞÞeiϕ0g �Ш1

p
ðuÞ: (16)

The convolution with the termШ1
p
ðuÞ represents the Nyquist

folding in the frequency domain, and sincðu0ϵÞ is the modu-
lation term.

3.2.2 Periodic sinc (Dirichlet kernel)

The convolution of a finite impulse train and a sinc function
is a periodic sinc function or Dirichlet kernel,7,17 written as
EQ-TARGET;temp:intralink-;e017;63;351

1

p
Ш1

p
ðuÞ � l sincðluÞ ¼

Z∞
∞

ШpðxÞΠNpðxÞe−iαxdx

¼
XN−1

2

k¼−N−1
2

e−iαk ¼
sin

�
Nα
2

�
sin

�
α
2

� ; (17)

where α ≔ 2πu. For the Dirichlet Kernel, we will be using

the notation DNðαÞ ≔ sinðNα
2
Þ

sinðα
2
Þ .

Using Eq. (17) simplifying Eq. (15), the resulting GðuÞ
can be expressed as

EQ-TARGET;temp:intralink-;e018;63;208GðuÞ ¼ ϵfðBDNð2πpuÞ

þ A
2
sincðu0ϵÞDN ½2πpðuþ u0Þ�e−iϕ0

þ A
2
sincðu0ϵÞDN ½2πpðu − u0Þ�eiϕ0g: (18)

3.2.3 Discrete Fourier transform and spectral
leakage

To calculate an N-point discrete Fourier transform (DFT),
we consider the transform at discrete frequencies u ¼ k

l,

where k is an integer varying over the N integers in the
observed window, and l ¼ Np is the length of the sensor.

Let ĜðkÞ be the discrete transform of GðuÞ

EQ-TARGET;temp:intralink-;e019;326;719ĜðkÞ ¼ ϵ

�
BDN

�
2πk
N

�

þ A
2
sincðϵu0ÞDN

	
2πðkþ lu0Þ

N



e−iϕ0

þ A
2
sincðϵu0ÞDN

	
2πðk − lu0Þ

N



eiϕ0

�
: (19)

The Dirichlet kernel DNð2πkN Þ evaluates to �N when k is an
integer multiple of N and evaluates to 0 for other integers.

In evaluating the Dirichlet kernel terms DN

h
2πðk�lu0Þ

N

i
in

Eq. (19), two cases arise:

i. If lu0 is an integer:
This case happens when the spatial signal fits the

sensor width in an integer number of periods. The
Dirichlet terms evaluate to �N at the integer multi-
ples of the fundamental frequency and 0 at all other
discrete frequencies. In this case,M can be calculated
as follows: [Fig. 7(a)]

EQ-TARGET;temp:intralink-;e020;326;479M ¼ jGðu0Þj þ jGð−u0Þj: (20)

ii. If lu0 is not an integer:
This case happens when the spatial signal does not

fit the sensor width in an integer number of periods,
and the Dirichlet terms evaluate to nonzero values at
sampled frequencies. It appears as the combination of
different-frequency sinusoids. This phenomenon is
known as spectral leakage18 [see Fig. 7(b)]. In this
case, M ≠ jGðu0Þj þ jGð−u0Þj.

3.2.4 Contrast

When spectral leakage occurs for certain frequencies, as
mentioned in Sec. 3.2.3, the value of M, the AC amplitude,
cannot be represented as a sum of individual magnitude values.

When spectral leakage occurs, the shape of the spectrum
distribution follows from the Dirichlet kernel. The power at
a single frequency is spilled to other nearby frequencies in
such a way that the combined spectral power from all the
frequencies remains the same. This can be understood by
considering Parseval’s theorem. The value of M, the AC
component, can be evaluated by summing power for nonzero
frequencies and taking the square root. The DC component
can be obtained from the FFT value at 0 frequency. In case of
spectral leakage, jĜð0Þj value is contaminated by AC signal
as well (see Appendix A). For large data, B ≈ jĜð0Þj.

Concluding from the above, Fourier contrast, CFourier,
can be defined as

EQ-TARGET;temp:intralink-;e021;326;157CFourier ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k jĜ½k�j2 − jĜ½0�j2

q
jĜð0Þj : (21)

This approach has an added advantage in terms of sim-
plicity. According to Parseval’s theorem, normalized power
in the Fourier domain and power in the spatial domain are
equal. Thus, we can calculate and utilize power in the spatial
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domain in the case of a clean signal. Also, Fourier contrast is
conceptually similar to RMS contrast.19 We divide the stan-
dard deviation by the mean of the data, which is similar to
the coefficient of variation, used in statistics.

Figure 8 shows the simulation of Fourier contrast for differ-
ent frequencies (in cycles per pixel pitch). We follow the same
simulation setup as mentioned for the Michelson contrast sim-
ulation in Fig. 5. The curve has a sudden jump at Nyquist (and
its odd harmonics), which when examined closely is seen to
be an oscillation with a strong peak exactly at Nyquist.

This sudden-jump oscillation can be understood in the
frequency domain in terms of aliasing as the optical fringe fre-
quency approaches Nyquist. The spectral leakage distribution
[Fig. 7(b)] from the central window overlaps with its neighbor-
ing window’s distribution. In the spatial domain, this can be
observed in the signal energy variation with beats formation as
the optical fringe frequency approaches Nyquist. Near Nyquist
frequency, the number of beats within the sensor width
decreases and energy increases, with oscillation. At Nyquist
frequency, the signal will not beat (i.e., infinite period beat) and
energy reaches maximum, resulting in contrast value 2A cosðϕ0Þ

Bπ .
Using algebraic manipulations, the Fourier contrast value

in Eq. (21) can be calculated as follows (see Appendix A;
again, α ≔ 2πu):

EQ-TARGET;temp:intralink-;e022;63;284CFourier ¼
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ DNð2αÞ cosð2ϕ0Þ

N − 2D2
NðαÞcos2ðϕ0Þ

N2

q
ffiffiffi
2

p
B
h
1þ MDNðαÞ cosðϕ0Þ

BN

i : (22)

For an active pixel response function Πϵ, M ¼
A sincðϵu0Þ. We recognize several distinct cases in this
contrast evaluation.

i. At Nyquist frequency (u0 ¼ 0.5);DNðαÞ ¼ DNðπÞ ¼ 0;
DNð2αÞ ¼ DNð2πÞ ¼ N and using the trigonometric
identity 1þ cosð2ϕ0Þ ¼ 2cos2ðϕ0Þ the contrast evalu-
ates to

EQ-TARGET;temp:intralink-;e023;63;141CFourier ¼
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N cosð2ϕ0Þ

N − 0
N2

q
ffiffiffi
2

p
Bð1þ 0Þ ¼ M

ffiffiffi
2

p
cosϕ0ffiffiffi
2

p
B

¼ A sincð0.5ϵÞj cosϕ0j
B

: (23)

a. When ϕ0 ¼ 0 or π, CFourier ¼ A sincð0.5ϵÞ
B and it will

be 2
π when ϵ ¼ p, A ¼ B.

b. When ϕ0 ¼ π
2
, CFourier ¼ 0.

ii. At sampling frequency (u0 ¼ 1), α ¼ 2π; DNð2αÞ ¼ N
and DNðαÞ ¼ N

EQ-TARGET;temp:intralink-;e024;326;482

⇒ CFourier ¼
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ DNð2αÞ cosð2ϕ0Þ

N − 2D2
NðαÞcos2ðϕ0Þ

N2

q
ffiffiffi
2

p
B
�
1þ MDNðαÞ cosðϕ0Þ

BN

�

¼
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N cosð2ϕ0Þ

N − 2N2cos2ðϕ0Þ
N2

q
ffiffiffi
2

p
B
�
1þ MN cosðϕ0Þ

BN

�

¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosð2ϕ0Þ − 2cos2ðϕ0Þ

p
ffiffiffi
2

p
B
�
1þ M cosðϕ0Þ

B

� ¼ 0: (24)

By the trigonometric identity, 1þ cosð2ϕ0Þ ¼
2cos2ðϕ0Þ, the numerator results in 0 for any phase ϕ0

iii. Very close to the Nyquist frequency, CFourier oscillates
based on the Dirichlet kernel values.20

iv. At a low and non-Nyquist frequency, contrast approxi-
mately evaluates to

Fig. 8 Simulated Fourier contrast—MTF.

Fig. 7 DFT of a finite length sinusoidal sampled signal: (a) when the period fits the sensor width and
(b) when the period does not fit the sensor width.
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EQ-TARGET;temp:intralink-;e025;63;752

CFourier ≈
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0 − 0

p
p
2Bð1þ 0Þ ¼ A sincϵðu0Þffiffiffi

2
p

B
→

sincϵðu0Þffiffiffi
2

p

for A ¼ B: (25)

The maximum contrast is reached at very low frequency
(MTF at 0 frequency) where this formula evaluates to
1ffiffi
2

p . There are many definitions of contrast, andMichelson
contrast is widely used. To match our definition of
Fourier contrast with Michelson contrast, a multiplica-
tion of factor of

ffiffiffi
2

p
is required as normalization. With

this new normalization, the maximum contrast will be
equal to 1, and the normalized Fourier contrast will
match with Michelson contrast whenever there are no
sudden jumps. Including this normalization, Fourier
contrast becomes

EQ-TARGET;temp:intralink-;e026;63;572CFourier norm ¼
ffiffiffi
2

p
CFourier

¼
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k jĜ½k�j2 − jĜ½0�j2
q

jĜð0Þj : (26)

4 Simulations

4.1 Varying Pixel Size
Figure 9 shows theoretical simulated sensor Fourier MTF
plots for varying active pixel size ϵ with constant pixel pitch
p ¼ 1, with initial phase values of ϕ0 ¼ 0 and ϕ0 ¼ π

2
.

An ideal symmetric Πϵ active pixel response function is
assumed. We use the same simulation settings as mentioned
for Fig. 5 plots. Equation (26) is used for calculation of
Fourier contrast.

In the ideal case of an infinite sensor and infinitesimal
sampling, the graph generated would follow sincðϵu0Þ. How-
ever, in the graphs where pixel pitch is different from pixel
active size, a sudden drop is observed at integer multiples of
the sampling frequency. This drop results from the fact that
contrast Eq. (26) evaluates to 0, by substituting u0 ¼ 1 in
the Dirichlet kernel terms. The spatial explanation is that,
at u0 ¼ 1, the optical fringe signal period is 1 pixel. This
means that for any phase, the integration of the optical signal
over the active pixel area results in the same constant value at

each pixel. The contrast for this uniform sampled signal data
would be zero.

Figure 13 in Sec. 6.1 shows the measured values for
our proposed methods. The sudden drop at the sampling
frequency confirms agreement with the theoretical plot.
In the case where sensor pixel pitch and pixel active size are
unknown, precise measurement of the MTF at high frequen-
cies can be studied, with the goal of estimating both values.
The locations of sudden drops can be used to estimate the
sampling frequency and thus estimate true pixel pitch. With
the assumption of rectangular pixel response, active pixel
size can be calculated by fitting a sinc function to the data
and finding its zero. For example, the location of zero in the
red plot is calculated to be 1.25, indicating an active pixel
size of 0.8 times pixel pitch.

In general, the MTF curve is a “Fourier fingerprint” of the
pixel response function. In our current work, we estimate the
pixel response function assuming a rectangle function, Π, or
the equivalent sinc function in the Fourier space. In principle,
a similar derivation can be applied to different pixel response
functions, which can be estimated from experimental data.
In Eq. (8), M is a function of u0 and ϵ. This function can be
modeled and estimated within a multiparametric representa-
tion. Also, the pixel active area could be irregular in shape in
2-D, and a related analysis can be done using directional
optical fringes on the sensor. This approach would require
a larger number of measurements using multiple angles
and an involved analysis to estimate a 2-D response function
and could be explored in detail in future work.

4.2 Crosstalk Modeling Example
Interpixel crosstalk deteriorates the MTF shape. As pixel size
decreases, the deterioration plays a significant role in sensor
resolution. The active pixel response function for an ideal
pixel is a rectangle function, Πϵ, with value 1 inside the
pixel and 0 outside. For a simple illustration, we show how
crosstalk affects the MTF in a one-dimensional (1-D) case. In
a hypothetical model where ϵ ¼ p and 20% of light energy is
lost symmetrically to the immediately neighboring pixels,
the pixel response kernel can be written as [0.1 0.8 0.1].
Alternatively, the overall active pixel response function
can be written as 0.7Πϵ þ 0.1Π3ϵ (Fig. 10).

Fig. 9 Theoretical Fourier contrast MTF plots for pixels of the same pitch p ¼ 1 but with three different
active area sizes: (a) ϕ0 ¼ 0 and (b) ϕ0 ¼ π

2.
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The Fourier transform of this crosstalk model is a combi-
nation of sinc functions

EQ-TARGET;temp:intralink-;e027;63;402F ½0.7Πϵ þ 0.1Π3ϵ� ¼ 0.7 sincðϵÞ þ 0.3 sincð3ϵÞ: (27)

Figure 11 shows the simulated MTF for this crosstalk
model. We observe that the MTF value at Nyquist frequency

is reduced, and this reduction can be used as a measure for
the degree of crosstalk.

4.3 Modulation Transfer Function Simulations
We have generated simulations of a lens-free implementation
of the slanted-edge method for measuring sensor MTF.
Figure 12 compares simulations of the slanted-edge method
to the Fourier contrast method. For Fourier contrast simula-
tion, we used the same simulation setup as for Fig. 8.
Here, ϵ ¼ p ¼ 1. This is modeled MTF with 20% crosstalk
kernel mentioned in Sec. 4.2. i.e., yielding 0.7 sincðϵÞ þ
0.3 sincð3ϵÞ as the theoretical MTF. For the slanted-edge
method, rather than using a captured image, we generated
synthetic images where a sharp edge is placed at a 5-deg,
10-deg, and 25-deg angles to the vertical axis.21 We applied
a 20% crosstalk kernel to the synthetic images and use the
resulting images to evaluate the slanted-edge MTF using
Imatest software.22

Our Fourier contrast method applied to simulated sinus-
oidal fringes data with crosstalk produces results that match
with the theoretical formula curve. The jump at Nyquist fre-
quency comes as part of the Fourier method for a finite num-
ber of pixel samples in the sensor. This is explained as part of
Fig. 8. The slanted-edge method applied to the simulated
pixels with the same crosstalk follows the theoretical curve
with a small deviation. This deviation increases with the tilt
angle. It is known that by increasing the tilt angle, the MTF
calculated by the software implementation of ISO12233 dete-
riorates.21,23 The close match between the simulation curves
for the 5-deg tilt confirms that the Fourier contrast method
and the slanted-edge method produce comparable results.

5 Implementation
The interferometer was set up as described in Sec. 2.1. The
sensor was attached to the rail as shown in Fig. 1(b). The
interference fringes are created on the sensor surface, and
the optical fringe spatial frequency is varied by moving

Fig. 10 Active pixel response function Πϵ, where ϵ ¼ p: ideal function
and function modeled with 20% crosstalk.

Fig. 11 MTF variation with and without crosstalk, ϵ ¼ p.

Fig. 12 MTF slanted-edge simulation compared to our Fourier contrast simulation. 20% crosstalk
example.
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the sensor on the rail. The spacing between optical fringes, d,
can be written as15

EQ-TARGET;temp:intralink-;e028;63;730d ¼ λ

2 sin θ
2

≈
zλ
D

; (28)

where λ is the wavelength of the laser light source, z is the
distance of the sensor from the pinholes, D is separation
between pinholes, and θ is the view angle from a point
on the sensor to the pinholes.

In this formulation, u0 ¼ p
d, where u0 is in cycles per pixel

pitch.
To create a high-contrast fringe signal, light cones from

the pinholes are directed such that central concentration of
each beam falls on the sensor. For each position z on the
rail (each spatial frequency), four images are captured: both
pinholes closed, both open, left closed, and right closed.

We capture multiple sensor images of optical fringes over
a wide range of frequencies under darkroom conditions. Any
remaining ambient illumination and fixed noise in the sensor
are captured when both pinholes are closed, and this image is
subtracted from the fringe and single-pinhole images, creat-
ing corrected images.

The measurements taken with each pinhole closed in turn
are used to calculate a correction factor for contrast in the
following way. When light intensities from the interfering
beams differ, there will be a reduction in the contrast.
For example, for the optical fringe signal per Eq. (1),
I ¼ I1 þ I2 þ 2αγ

ffiffiffiffiffiffiffiffi
I1I2

p
cosðϕ1 − ϕ2Þ, the contrast will be

2αγ
ffiffiffiffiffiffi
I1I2

p
I1þI2

(α is related to coherence and γ is related to polari-
zation) and I1 and I2 are the beam intensities.

For a perfect setup, highest contrast is achieved when
I1 ¼ I2, α ¼ 1, γ ¼ 1. But in general, due to imperfections,
a correction factor is needed to compensate for the reduction.
For our setup, we assume α ¼ 1, γ ¼ 1. We obtain I1 and I2
from the corrected single-pinhole images. Hence, we apply
I1þI2
2
ffiffiffiffiffiffi
I1I2

p as the multiplication factor to the measured contrast.
We apply this correction factor on a per pixel basis using
the intensity values at each pixel. Phase effects explained in
Sec. 3.1.2 are obviated by rotating the sensor slightly relative
to the optical fringe orientation, producing a moiré pattern of
beats in the image, as described in relation to Fig. 6.

We find minimum and maximum intensity in each sensor
image row and calculate Michelson contrast with correction

EQ-TARGET;temp:intralink-;e029;63;257CMichelson corr ¼
I1 þ I2
2

ffiffiffiffiffiffiffiffi
I1I2

p gmax − gmin

gmax þ gmin

: (29)

For Fourier contrast, we calculate the 1-D FFT for each
row of the sensor image to find the AC and DC components
and take their ratio. We apply a multiplication factor of

ffiffiffi
2

p
, as

mentioned in Eq. (22) analysis, i.e., using Eq. (26) we calcu-
late CFourier norm. Thus, Fourier contrast with correction is

EQ-TARGET;temp:intralink-;e030;63;157CFourier corr ¼
ffiffiffi
2

p I1 þ I2
2

ffiffiffiffiffiffiffiffi
I1I2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k jĜ½k�j2 − jĜ½0�j2
q

jĜð0Þj : (30)

For each method, we choose the row with the highest con-
trast and use the average of their contrast values as the final
measure. The averaging produces a measure more robust to
noise and artifacts.

Choosing optimal contrast lines also causes Fourier con-
trast, at Nyquist frequency, to fall into case i(a) in Sec. 3.2.4,
where the Dirichlet kernel has maximum value. This is pre-
dicted as a sudden jump in the Fourier contrast MTF. A jump
is not predicted for Michelson contrast, which uses only
extrema values from the signal within the sensor width.
The presence of beats will not affect the extrema, and the
beats variation does not result in the sudden jump.

5.1 Crosstalk Measurement
To estimate crosstalk24 for a given image sensor, the MTF
value at Nyquist frequency (or MTF50) is usually used.
At Nyquist, in the absence of confounding factors, the
observed MTF deviation from the theoretical MTF quantifies
the degree of crosstalk. One single measurement at Nyquist
frequency suffices to determine the crosstalk. Refer to
Sec. 4.2 for a simulation.

For optical fringes at Nyquist, using the moiré pattern, the
calculation of contrast becomes simpler and can be evaluated
using linear filters based on the following approach. We
calculate contrast using the kernels for each 1 × 3 row neigh-
borhood for each pixel. This contrast measure is equivalent
to Michelson contrast
EQ-TARGET;temp:intralink-;sec5.1;326;495

Local difference∶ gdiffðxÞ ¼
1

4
½2gðxÞ− gðx− 1Þ− gðxþ 1Þ�

Local average∶ gavgðxÞ ¼
1

4
½2gðxÞ þ gðx − 1Þ þ gðxþ 1Þ�

Local contrast∶ gcontrastðxÞ ¼
gdiffðxÞ
gavgðxÞ

¼ g � ½−12− 1�
g � ½121� ;

where * indicates the convolution. For frequencies, other
than Nyquist, similar calculations using kernels are difficult.

6 Results
Several predictions for the measured MTFs result from the
theoretical discussion in Sec. 3 and simulations in Sec. 4.
The MTF should follow a curve related to those in
Figs. 8 and 9. There should be observable troughs at odd
multiples of 1∕ϵ, ϵ being the active pixel size, and sudden
drops at odd multiples of the sampling frequency. To the
extent that there is crosstalk, there should be a reduction
in contrast from the no-crosstalk expectation near Nyquist
frequency as in Fig. 11. We also expect a sudden jump at
Nyquist frequency for the Fourier contrast MTF (Fig. 8). As
the frequency approaches 0, the MTF value should approach
1. The MTF curves would be modulated by the Fourier
fingerprint of the pixel shape, crosstalk “shape” and strength,
and effects of noise.

6.1 Measured Results
We used a XIMEA grayscale CMOS sensor MQ013RG-E2
for comparison to theoretical results. Pixel pitch is 5.3 μm.
The captured image is 1.3 MP with 1280 × 1024 pixels. We
removed the cover glass on the sensor to avoid noise and
interference fringes from the glass. We used the original
camera board and camera software that come with the sensor.
We selected ISO 100 for lowest noise and raw image setting
to capture unaltered data.
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Consider Eq. (28), d ≈ zλ
D. For varying z, we used a rail

with length 2 m. This enforced an upper limit on z. The
lower limit for z was 100 mm for practical purposes.
Distance between pinholes (D) was 35 mm. With the current
sensor and setup, we were able to measure contrast for
frequencies ranging from 0.2 to 2.3 cycles per pixel pitch
(or 37 to 434 line pairs per mm). The sensor was held in a
mechanical stage that allowed rotation and tilt for the experi-
ments. We used a 633-nm HeNe laser. To avoid stray light,
we conducted experiments in a dark room and we put black
bellows-type paper in the areas of light reflection. We used
sorbothane isolators to support the setup table for isolation
from environmental vibrations. We repeated experiments three
times, and consistency of the measurements was verified. In
the present paper, we publish two typical sets of measurements.

Figure 13 shows the comparison between Michelson and
Fourier contrast results and a theoretical sinc curve based on
estimated pixel active size. Both Michelson and Fourier con-
trast values are calculated in the presence of noise [Eqs. (29)
and (30)]. Michelson contrast values are calculated from
extrema and, therefore, tend to slightly overestimate the con-
trast compared to Fourier contrast as can be seen in the plot.

We observe the sudden drop at sampling frequency as pre-
dicted. However, the trough of the MTF is not at sampling
frequency. This behavior suggests that active pixel size is not
the same as pixel pitch, in line with simulations in Sec. 4.1.
We estimated the first trough location of the MTF to be 1.3
by approximate interpolation. This suggests ϵ of 0.77 and we
use this value to plot the sincð0.77uÞ for reference in the plot
of Fig. 13.

Fourier contrast has a sudden jump at Nyquist, as can be
seen in Fig. 13. The jump at Nyquist corresponds to the sud-

den variation in the
h
1þ DNð2αÞ cosð2ϕ0Þ

N − 2D2
NðαÞ cos2ðϕ0Þ

N2

i
term

in Eq. (22). This jump is explained in the simulation in Fig. 9
and discussed in Sec. 3.2.4.

Note that our theoretical MTF curve assumes no cross-
talk. The deviation of the measured curve from the theoreti-
cal MTF curve provides an estimate of the pixel crosstalk, as
explained by simulations of crosstalk influence in Sec. 4.2.

In this study, noise influence is reduced using several
methods. However, for very low optical fringe frequencies,
the large distance from pinholes to sensor and our limited-
power laser lead to a low SNR and underestimated contrast.
Thus, although the tendency of the measured MTF at low
frequencies continues upward toward a predicted value of 1,
these data can be considered less reliable for detailed analysis.

6.2 Slanted-Edge Comparison
“Slanted edge” is the traditional method for evaluating sen-
sor MTF. It can be performed using a lens to project an image
of a sharp edge onto the sensor or by laying the sharp edge
directly on the sensor surface. The lens-projection method
necessarily confounds the lens MTF with the sensor MTF.
For this reason, we used the lens-free version in our exper-
imental setup to validate our work relative to prior results in
the literature.9,25 We carefully cut a short piece of stainless
steel razor blade and placed it on the sensor such that the
sharp edge touched the silicon die. A XIMEA CMOS sensor
MQ013RG-E2 was used as in Sec. 6.1. We illuminated the
sensor using a parallel beam produced with the same 633-nm
HeNe laser that was used to produce the fringes. The beam

was formed as a narrow-angle cone steered directly from the
spatial filter. No beam expander was used. The beam uni-
formly covered an area larger than the sensor. We captured
multiple images with different orientations of the edge angles
varying between −10 deg and 10 deg. We used Imatest
software22 conforming to ISO 12233 standard to compute
the sensor MTF. We computed the average MTF. For more
details, refer to our previous publication.6

Figure 14 shows the comparison between our methods
versus the lens-free slanted-edge method. This figure shows
measurements using our method to observe more granular
detail at high frequencies.

The slanted-edge method uses a line estimation algorithm
in the sampled image and collects data points from each row,
from which the edge spread function is estimated. The MTF
generated by ISO12233 method uses interpolation and
thus misses granular details. Our methods capture these
fine details, where a sudden drop or jump is expected as
part of theoretical simulations.

Although in simulation, Sec. 4.3, the slanted-edge and
Fourier contrast methods produce comparable results, here,

Fig. 13 Comparing measured Michelson and Fourier contrast to
theoretical curve. The difference between the theoretical and the
measured curve is a measure of crosstalk.

Fig. 14 Our calculated MTF results compared with slanted-edge
method.
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in the experimental measurements, they do not. At Nyquist
frequency, we observe interferometric MTF value to be 0.52
and lens-free slanted-edge MTF value to be 0.41. One pos-
sible explanation in our setup is as follows. The passivation
layer and anything else that distances the blade from the sen-
sor surface (e.g., dust particles or microlenses under the
blade) will cause the shadow of the edge to be blurred due
to diffraction, thus lowering the measure of contrast. We
observed microlenses on the surface of our sensor using a
Leica DM6000M microscope. We measured their thickness
to be ∼1.7 μm using a Zygo Zegage optical profiler. We cal-
culated the contrast loss for the sharp edge placed at a sep-
aration distance of 1.7 μm using the diffraction knife edge
formulas.26 We found a reduction of contrast at Nyquist fre-
quency of 0.9 for our setup parameters mentioned in Sec. 5.
This is one of the reduction factors explaining why our lens-
free slanted-edge method observations are lower than the inter-
ferometric MTF values. The passivation layer or microlenses
will not affect the formation of sinusoidal fringes on the sensor
surface which are due to interference of two plane waves.

7 Conclusions
Computational photography is grounded in the image sensor.
Precise MTF calculation is an important step in camera cal-
ibration and sensor evaluation. A camera design will always
benefit from a better sensor and especially a sensor with
higher MTF and reduced crosstalk. A true MTF curve can
provide insight into pixel shape and fill factor. The well-
estimated models of pixel response from the MTF can be
used for deconvolution or simple sharpening in the image-
processing pipeline of raw camera data.

Our system and methods allow for precise sensor MTF
calculation over a wide range of frequencies. In industry,
crosstalk is inferred from the MTF50 metric, and recent stud-
ies indicate a need for a better metric.23,25 Our theoretical
analysis gives scope for an improved metric to evaluate pixel
crosstalk quantified in terms of the deviation of observed
values from theoretical values.

We have designed and implemented an interferometer for
measuring sensor MTF and pixel crosstalk. Our setup solves
problems in previous designs by removing spurious fringes
resulting from double reflection in the optics. We are produc-
ing clear, speckle-free images, and a strong optical signal
with 100% contrast.

Using interferometric images, we analyze sensor MTF
with both Michelson contrast and Fourier contrast methods.
For the analysis, we have developed a mathematical frame-
work that predicts peculiarities and fine detail features in the
simulated MTF plots and hence in the measurement data.
Our results are based on comparing simulations from our
theoretical framework (based on aliasing, spectral leakage,
and Dirichlet kernel terms) to the measured data.

Our simulations and our measurements show the following
features in the MTF. There is a sudden drop at the sampling
frequency, a trough at 1

ϵ, and a sudden jump at Nyquist fre-
quency for Fourier contrast. In previous works,8 such features
have been observed but were ignored or considered noise.

We compared our results to the standard ISO 12233
slanted-edge approach for measuring MTF below sampling
frequency and observed that the lens-free slanted-edge MTF
was lower than the interferometer MTF. This may be partly
explained by the thickness of observed microlenses. Our

interferometric method has high precision with high granu-
larity, covering a wide range of frequencies reaching far
beyond Nyquist.

Appendix A: Calculations—Dirichlet Kernel
The DC component of sampled signal gðnÞ

EQ-TARGET;temp:intralink-;e031;326;674Ĝð0Þ ¼
XN−1

2

n¼−N−1
2

gðnÞ ¼
X
n

gðnÞ

¼
X
n

½BþM cosðαnpþ ϕ0Þ�; (31)

where α ¼ 2πu0

EQ-TARGET;temp:intralink-;e032;326;587Ĝð0Þ ¼
X
n

Bþ
X
n

M
ðeiαnpeiϕ0 þ e−iαnpe−iϕ0Þ

2
: (32)

The sinusoidal series using Lagrange identity can be writ-
ten as

EQ-TARGET;temp:intralink-;e033;326;523

X
m

e−iαm ¼ sin
�
Nα
2

�
sin

�
α
2

� : (33)

Using the above equation in Eq. (32) and considering the
symmetric nature of summation over n

EQ-TARGET;temp:intralink-;e034;326;453Ĝð0Þ ¼ BN þM
sin

�
Nα
2

�
sin

�
α
2

� �
eiϕ0 þ e−iϕ0

2

�

¼ BN þMDNðαÞ cosðϕ0Þ; (34)

where DNðαÞ is the Dirichlet kernel (periodic sinc function)
and DNðαÞ ≔ sinðNα

2
Þ

sinðα
2
Þ .

As per Parseval’s theorem, the spectral power can be
found from equivalent power summation in spatial domain
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ðg½n�Þ2
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n
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�
: (35)

Using Lagrange trigonometric identities, for cosð2αnpþ
2ϕ0Þ, cosðαnpþ ϕ0Þ terms
EQ-TARGET;temp:intralink-;e036;326;135X
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This right-hand side can be written in short notation
as
EQ-TARGET;temp:intralink-;e037;63;730X
k

jĜ½k�j2 ¼ N2B2 þ N2M2

2
þ NM2

2
DNð2αÞ cosð2ϕ0Þ

þ 2BNMDNðαÞ cosðϕ0Þ: (37)

Considering the Fourier contrast definition [Eq. (25)]

EQ-TARGET;temp:intralink-;x1;326;741CFourier ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k jĜ½k�j2 − jĜ½0�j2
q

jĜð0Þj :

And substituting Eqs. (34) and (37) into it, we get the
following for CFourier:

EQ-TARGET;temp:intralink-;e038;63;643

¼

N2B2 þ N2M2

2
þ NM2DNð2αÞ cosð2ϕ0Þ þ 2BNMDNðαÞ cosðϕ0Þ − ½BN þMDNðαÞ cosðϕ0Þ�2

q
BN þMDNðαÞ cosðϕ0Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2B2 þ N2M2

2
þ NM2

2
DNð2αÞ cosð2ϕ0Þ þ 2BNMDNðαÞ cosðϕ0Þ

−½N2B2 þM2D2
NðαÞcos2ðϕ0Þ þ 2BNMDNðαÞ cosðϕ0Þ�

s

BN þMDNðαÞ cosðϕ0Þ

¼
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

2
þ N

2
DNð2αÞ cosð2ϕ0Þ −D2

NðαÞcos2ðϕ0Þ
q

BN þMDNðαÞ cosðϕ0Þ
; (38)

EQ-TARGET;temp:intralink-;e039;63;482 ⇒ CFourier ¼
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ DNð2αÞ cosð2ϕ0Þ

N − 2D2
NðαÞcos2ðϕ0Þ

N2

q
ffiffiffi
2

p
B
h
1þ MDNðαÞ cosðϕ0Þ

BN

i : (39)
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