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Abstract. The fusion of depth acquired actively with the depth estimated passively proved its
significance as an improvement strategy for gaining depth. This combination allows us to benefit
from two sources of modalities such that they complement each other. To fuse two sensor data
into a more accurate depth map, we must consider the limitations of active sensing such as low
lateral resolution while combining it with a passive depth map. We present an approach for the
fusion of active time-of-flight depth and passive stereo depth in an accurate way. We propose a
multimodal sensor fusion strategy that is based on a weighted energy optimization problem. The
weights are generated as a result of combining the edge information from a texture map and
active and passive depth maps. The objective evaluation of our fusion algorithm shows an
improved accuracy of the generated depth map in comparison with the depth map of every single
modality and with the results of other fusion methods. Additionally, a visual comparison of our
result shows a better recovery on the edges considering the wrong depth values estimated in
passive stereo. Moreover, the left and right consistency check on the result illustrates the ability
of our approach to consistently fuse sensors. © The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.29.5.053016]
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1 Introduction

Depth acquisition has been investigated for many years as an established area of research due to
its many applications, such as view synthesis, autonomous navigation, machine vision, and
many more. The stereo depth estimation algorithms are problematic when the scene contains
weakly textured areas or occlusions in both indoor and outdoor environments.1 Active sensing,
on the other hand, does not have to deal with these problems. Instead, it suffers from different
sources of noise and it performs poorly on non-Lambertian surfaces.1

Due to the complementary behavior of passive algorithms and active depth sensing,2,3 the
idea of combining the two modalities got its interest to be one fundamental problem in computer
vision.4 Unfortunately, the combination of active with passive depth is not straightforward. The
reason is due to the limitation of manufacturing depth sensors. Most of these depth sensors either
use structured illumination or measure time-of-flight (TOF). The first technique can reliably
measure depth even in the areas where stereo depth estimation is an ill-posed problem such
as occlusions.4 But its main drawbacks are the lack of performance on the edges and limited
depth range.4 The TOF method can capture depth in various ranges with better performance
at boundaries compared to depth sensors using structured illumination.5 However, the TOF sen-
sors suffer from different sources of noise that make it difficult to get the most benefit from these
sensors.5 Most of these noises are treated by the manufacturers.6,7 Such noises include quanti-
zation and thermal noise and some sources, such as photon shot noise, that can be approximated.8
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The main problems of TOF cameras are their low lateral resolution and the “flying pixels” at
the borders.6 These can be the biggest challenge while combining the measured depth from TOF
with other sources of depth. To combine two sources of depth, there are various fusion imaging
techniques each solving the limitations and sources of errors differently. In Sec. 1.1, we sum-
marize these techniques by categorizing them based on their pros and cons and in the end, we
highlight our contributions in this work.

1.1 Literature Review

There are several categories of image fusion techniques that are surveyed in detail in Ref. 9. Our
focus in this paper is mainly on the category of guided approaches as our work stays within this
category. The common assumption in most of the guided image fusion techniques is based on the
similarity between the depth and the color image on the local structures.10,11 There are several
methods in this category that additionally assume the homogenous color areas are geometrically
similar.12–15 The well-known Markov random field formulates the fusion as an upsampling prob-
lem and defines the data term as the weighted depth map. The weights are computed from the
high-resolution image to smooth the estimated depth values on the high-resolution texture map.13

The other well-known fusion proposal is the approach of Ref. 15, which uses joint bilateral
filtering (JBF)16 and interpolates depth values on the high-resolution texture map. Due to the
interpolation, depth values are oversmoothed mostly on depth discontinuities. Because of the fast
performance of the JBF approach reported in Ref. 12, the approach was extended in different
variations. For instance, Ref. 12 uses regional statistics on the depth map to perform the JBF.
This allows deciding how to combine the result of upsampling and hence performs well in the
existence of noisy depth data from a range sensor.12 Even though the variations of JBF improve
the results, the problem of blurring the depth values is the downside of these approaches.17

To have a better recovery along the depth boundaries,18 they formulate the problem of upsam-
pling for the fusion based on a constrained optimization framework. They use the idea of depth
from focus by utilizing regularizers computed from nonlocal structures.19 They re-enforce the
similarities by edge-weighting schemes to achieve a better estimation of the fine details. Some
approaches3,20 came up with the idea of guiding the optimization framework by applying image
segmentation that results in better edge recovery. Other approaches21–23 formulate their guidance
as an edge-weighting scheme extracted by enforcing spatial similarity between neighboring pix-
els from both image and depth data without explicit image segmentation. Moreover, their method
uses the amplitude values to calculate the reliability of the measured depth in addition to other
guided optimization methods. For this reason, it achieves more accurate depth values at the end.
Since they stated their problem mainly as a TOF upscaling problem, thus, they consider a sparse
value mapping on the TOF samples in their implementation. The sparse value mapping is a
process that represents TOF samples after warping on the high-resolution texture map that results
in sparse representation of TOF samples due to its low lateral resolution.21 In the sparse value
mapping, first, the TOF depth map is sparsified by keeping values of the regular columns and
rows and setting the other depth values as unknown. Keeping values of columns and rows regu-
larly only does not perfectly mimic warping TOF data on the high-resolution texture map. In this
way, the lens distortion of the TOF sensor is neglected, and therefore, the irregular representation
of TOF data after projection on a high-resolution texture map is not considered. In addition,
where the relative resolution of TOF is much lower than the resolution of the high-resolution
texture map, their method does not perform well. This might be because the assumed smoothness
constraint considers the similarity of a depth value to the depth value of its four neighboring
pixels only. The work of Dal Mutto et al.24 utilizes a locally consistent framework to fuse the two
data sources regardless of their relative resolution as a set of local energy minimization problems.
The work of Marin et al.3 improves the one of Ref. 24 by driving the fusion process with the
depth map confidences to take into account the different nature and reliability of the data sources.
But they report inaccuracies on the recovered edges.3

Another improvement of Marin et al.3 incorporates a convolutional neural network to esti-
mate TOF and disparity confidences using the amplitude information of TOF and semiglobal
matching25 for aggregating matching costs for stereo and finally fuse two sources of data reliably.
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Their results represent fusion results with smoother edges in comparison with Ref. 3 but numeri-
cally they do not outperform.3

Since the inaccuracy of the above methods near the edges is the most common problem, our
main aim is to recover precise edges and to not oversmooth the depth values in the fused depth
map. Hence, we decided to apply optimization-based approaches to fuse TOF with a stereo depth
map. We extend the work of Schwarz et al.21 by adding stereo constraints into the optimization
framework. Additionally, we guide the optimization framework to fuse TOF and stereo depth
consistent with the image information. This is a result of the way we generate the edge-weighting
values as joint incorporation of edge information from two sources of data and cross masking
them with the image information considering the directional manner of the local structures. Thus,
the fused map is consistent with the two data sources. Our experiments show stereo consistency
between fusion maps on the left and right camera positions in our stereo setup. This permits the
usage of our method for applications such as view rendering that mandate consistency between
stereo depth maps. Our approach outperforms the state-of-the-art methods both visually and
numerically. Our algorithm computes more accurate depth values on the fused map especially
on the edge boundaries because we use the two complementary sources of data in a guided
optimization framework. Also due to the embedment of confidences for TOF and stereo, our
approach leads in an even more accurate fused map specifically on the homogenous areas.

2 Proposed Method

2.1 Optimization Framework

The main idea of the weighted optimization framework is introduced in Refs. 21–23. Their pro-
posal incorporates three sets of input sources, a video camera, a TOF sensor, and a preceding time-
sequential super-resolution result.21–23 They use the three sources in a super-resolution task in the
time domain to solve the problem of TOF upscaling to the resolution of the video camera regarding
a target point of view. We use their framework as the task of TOF super-resolution for TOF plus
stereo depth map fusion. We compute a fusion map by minimizing the combination of weighted-
error energy terms: spatial error energyQS, depth error energyQD, and stereo error energyQSt. For
projecting the low-resolution TOF depth D↓ onto a high-resolution depth map D of the reference
camera in the stereo system, we apply a piecewise approach, where piecewise projection means
that there is no smoothing happening during or after projection. Consequently, we assume a sim-
ilarity between spatially neighbored depth values that are expressed as horizontal and vertical
errors. We formulate our fusion problem to attain high-resolution fused depth map D� as

EQ-TARGET;temp:intralink-;e001;116;308D� ¼ arg min
D̂

ðk1Qs þ k2QD þ k3QStÞ; k1 þ k2 þ k3 ¼ 1; (1)

where D̂ is the all possible high-resolution estimates and k is the regularizer for each energy term
that determines the contribution of each error energy term in the energy system. The value for each
k is fixed in our implementation and defined as a constant.

2.2 Spatial Error Energy

The spatial error energy term QS penalizes discontinuities in the depth values. Hence, it enforces

a smooth depth value distribution in the high-resolution depth estimate D̂. To construct the piece-
wise aspect of the depth value distribution, the edge-weighting map WE is introduced.

EQ-TARGET;temp:intralink-;e002;116;155QS ¼
XX

x¼1

XY

y¼1

ðWEhðx;yÞf½dðx;yÞ − dðxþ1;yÞ�2g þWEvðx;yÞf½dðx;yÞ − dðx;yþ1Þ�2gÞ: (2)

This construction with the introduction of an edge-weighting map allows holding a similarity
assumption between spatially neighboring depth values by penalizing discontinuities. It is
important to note that we generate the edge weights in horizontal ½WEhðx;yÞ� and vertical
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½WEvðx;yÞ� directions. Consequently, edge-weighting maps consider the direction of edges. This
permits the enforcement of similarities between the depth and texture map in a more robust way
that yields in more correct edge information.

2.3 Edge Weights

The edge weighting allows for sharp depth transitions between objects by relaxing the spatial
similarity constraint for neighboring pixels at object boundaries. Weighting elementsWEðx;yÞ are
obtained by combining the texture information from the RGB image and the depth information
obtained from the TOF and stereo depth estimation. The combination is based on three assump-
tions. First, because the depth maps describe the scene geometry, the object boundaries should
correspond to edges in the corresponding texture from the image. Second, because thorough
edge detection on an image will result in many more edges than there are actual objects, the
edge information from the low-resolution TOF and stereo depth map can be utilized to select
edges that comply with actual depth transitions. Third, due to the higher precision of measured
depth from TOF in comparison to the estimated depth from the stereo in most cases, the wrong
estimated edges from stereo are invalidated by edge weights of the TOF image. Figure 1 shows
the combination of texture and depth information from different sources for generating an edge-
weighting map WE.

As shown in Fig. 1, a horizontal edge filter on the high-resolution IðimgÞ yields the edge map
EIðimgÞ. The low-resolution depth map DLðTOFÞ is also edge filtered after it warped to the high-
resolution texture map and the result is upsampled to the corresponding texture map of the image
to form the edge mask EDðTOFÞ . Furthermore, the high-resolution stereo depth map DðstereoÞ is
edge filtered to produce the edge mask EDðstereoÞ. The edge masking makes the selection of edges
in a cohesive manner, which affects having higher quality edges in the fused depth map.
References 21–23 explain that the missing or porous edges can lead to depth leakage where
erroneous depth values spread into the wrong areas. However, thorough edge detection in the
image will result in many more edges than there are actual objects as shown in Fig. 1. This will
lead to an unwanted structuration effect in the upsampled depth map.21–23 A larger threshold for
the edge detector reduces the number of unnecessary edges. However, less detected edges will
increase the risk of depth leakage. Finding the correct edge threshold for each sequence is dif-
ficult. Therefore, it is practical to use a smaller edge detector threshold, i.e., a greater sensitivity,
leading to more edges being detected, and validate the resulting edge map with actual depth
transitions in TOF and stereo depth. Multiplying each element of EIðimgÞ by its corresponding
element in EDðTOFÞ and EDðstereoÞ masks out redundant edges in areas with uniform depth and
returns the edge-weighting map WE:

EQ-TARGET;temp:intralink-;e003;116;292WEðx;yÞ ¼ 1 − EIðimgÞðx;yÞ:EDðTOFÞðx;yÞ:EDðstereoÞðx;yÞ: (3)

Fig. 1 Scheme showing the generation process for the edge-weighting mapWE . The edge maps
correspond to each source and are calculated with different thresholds. The edge maps exhibited
here are in a horizontal direction only.
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2.4 TOF Depth Error Energy

The depth error energy QD enforces similarity between the sparse TOF depth and the final high-
resolution result. We present our depth error definition in Eq. (4) such that dðx;yÞ is the unknown
depth value on the high-resolution texture map while Dðx;yÞ is the depth value that the TOF
sensor sampled. Optimizing our energy system with QD as one of its components allows esti-
mating the values for unknown depth values knowing sampled depth TOF values as our data
term. However, the piecewise projection of low-resolution TOF on the texture map of the image
might be not reliable in terms of mapping points from TOF to the texture map. Therefore, the
reliability weights WD are introduced as

EQ-TARGET;temp:intralink-;e004;116;618QD ¼
X

x;y

WDðx;yÞf½dðx;yÞ −Dðx;yÞ�2g: (4)

2.5 TOF Reliability Weights

The reliability weights can be used to remove erroneous depth values, suppress low reliability,
and emphasize high-reliability depth values in the upsampling process.21–23 The reliability of the
TOF measurements is affected by several issues, e.g., the reflectivity of the acquired surface, the
measured distance, multipath issues, or mixed pixels in the proximity of edges, and thus is very
different for each different sample.26–28 In this paper, we have calculated the reliability weights
by the method proposed in Ref. 3. They calculate confidences for each TOF pixel by considering
both the geometrical and photometrical properties of the scene. PAI considers the relationship
between amplitude and intensity of the TOF signal, whereas PLV , accounts for the local depth
variance. The two confidence maps PAI and PLV consider independent geometric and photo-
metric properties of the scene. Therefore, the overall TOF confidence map WD is obtained by
multiplying the two confidence maps together. Considering only the amplitude and intensity of
the TOF signal is not enough since one of the main issues in the fusion of TOF depth values with
other modalities is the finite size of TOF sensor pixels. This leads to a mixed pixel effect29 that
cannot be resolved by confidences estimated based on the photometrical characteristics of the
TOF signal only. As a remedy, Ref. 3 introduces another term in the proposed confidence model,
PLV . The details of the formulation can be found in Ref. 3.

EQ-TARGET;temp:intralink-;e005;116;357WD ¼ PAI:PLV: (5)

The variableWD has a value of zero at locations where there is no depth value available from
the TOF sensor. This means that the values at those positions are implicitly computed from the
smoothness assumption (see more in Ref. 21).

2.6 Stereo Depth Error Energy

The stereo error energy QSt encourages stereo consistency on the fusion result and enforces
TOF depth to be fused with stereo depth consistently. It also improves the enforcement of the
similarity between TOF depth values projected on the high-resolution texture map. Our defi-
nition of the QSt error energy term is elaborated in Eq. (6). Like Eq. (4), we aim to estimate
unknown depth values on a high-resolution texture map. Adding QSt in our energy equation
helps the optimization process in estimating the unknown values. It allows estimating the depth
of these pixels by knowing their estimated depth from the stereo as an additional data term to
TOF readings.

EQ-TARGET;temp:intralink-;e006;116;156QSt ¼
X

x;y

WStðx;yÞf½dðx;yÞ −DStðx;yÞ�2g: (6)

Due to the lack of accuracy in stereo depth estimation, the danger of introducing nonaccurate
depth values in the fused results is inevitable. This means that the addition of a stereo constraint
into the total error energy for the fusion can bring fewer benefits. To prevent the mentioned
disadvantages from adding the stereo error energy into our energy system, we introduced
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WSt by estimating stereo confidences into our formulation for QSt. The stereo confidences filter
out wrong depth values in the stereo depth map by assigning them low confidences. This allows
us to take advantage of the stereo error energy as a supplementary source for depth fusion, espe-
cially in areas where TOF performs poorly.

2.7 Stereo Depth and Confidence Estimation

We use the ADCensus algorithm (ADC) for stereo disparity estimation as described in Ref. 30.
Its cost function relies on both absolute pixel differences and the census transform.30 To estimate
the confidencesWSt, we used the method proposed in Ref. 31 together with calculating matching
costs for each pixel in the depth map. The proposed method in Ref. 31 computes confidence
solely based on the cost curve for each pixel in the disparity map. The confidence value for each
pixel indicates how likely the assigned disparity is correct. Further details about confidence esti-
mation are explained in Ref. 31.

2.8 Optimization Framework

Based on the error energy term, a minimization problem is solved by setting the sum of the
partial derivatives to zero.

EQ-TARGET;temp:intralink-;e007;116;506∀ ðx; yÞ∶ ∂ðk1Qs þ k2QD þ k3QStÞ
∂dðx; yÞ

¼ 0: (7)

Each partial derivative leads to a linear equation, so we get a linear system Az ¼ cwithN · M
equations. Each of it has five unknowns, where N and M are the resolutions of the high-
resolution texture map. We defined our data term as a sum of known depth values, sample points
from the TOF sensor, and estimated depth from the stereo. Eventually, we find a least-squares
optimal result via QR factorization.32

3 Experimental Setups

In principle, we want to test our algorithm with data that well represent all possible scenarios.
Therefore, we chose publicly available synthesized and real datasets. We also want to be able to
compare our results with other algorithms. This is simpler if we use the same data as others
because then we do not need to implement their methods. Since we did not have access to the
implementation of the methods that we are comparing our algorithm with, we are limited to use
only a few datasets and no other data. The description of the datasets we have used to test or
algorithm and to compare our results with other methods are as described in the following
sections.

3.1 Synthesized Dataset

The first dataset we used in this work is SYNTH3 that is published by Agresti et al.27 mainly for
machine learning applications. It contains 15 scenes of various objects. They synthesized the
images by Blender for stereo-TOF fusion with the corresponding ground truth for each scene.
More details of the dataset are elaborated in Ref. 27.

3.2 Real Dataset

The second dataset we used contains a collection of real data for TOF and stereo with ground
truth that is suitable for the evaluation of our fusion algorithm.24 The scenes are captured with
two Basler video cameras and a Mesa SR4000 TOF range camera located in the middle of the
two video cameras. The scenes include challenging object properties. The resolution of the video
cameras is 1032 × 778 while one of the TOF sensors is 176 × 144. The calibration parameters
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are also provided and thus the projection of the TOF depth map onto the texture maps of the
stereo cameras is easily possible.

3.3 Preprocessing

3.3.1 Projection of TOF to high-resolution texture map

To align the TOF depth map with the high-resolution texture map, we must warp the TOF depth
to the position of the reference stereo camera. This step is crucial to be done accurately since the
lack of precision between the TOF depth and the high-resolution texture map will lead to poor
accuracy on the fused results. In addition, it produces inconsistencies between the left and right
fused depth maps that can cause rendering artifacts in applications such as view rendering. Using
the intrinsic and extrinsic parameters of the cameras, we can warp the TOF depth to the position
of the reference stereo camera using a projection as following:4

EQ-TARGET;temp:intralink-;e008;116;567zImI ¼ zDKDK−1
I ½Rjθ�jmD; (8)

where zD is the low-resolution TOF depth value at the position ðx↓; y↓Þ, KD and KI are the
TOF and stereo camera intrinsic calibration matrices, respectively, R is the extrinsic rotation
matrix, and θ is the translation vector. We project the TOF depth value at position
mD ¼ ½x↓∕zI; y↓∕zI; 1�T onto its corresponding position mI ¼ ½x∕zI; y∕zI; 1�T in relation to the
high-resolution stereo camera point of view. Using homogeneous coordinates, we implement the
depth warping in a matrix multiplication that outputs zI , which is the new distance of each pixel
in the TOF sensor regarding the stereo camera.

3.3.2 Prefiltering TOF and stereo depth

Projecting TOF onto the high-resolution texture map results in a very sparse irregular depth
distribution. This is due to the low resolution of TOF in comparison with the high-resolution
texture map and due to lens distortion. Therefore, we apply a sparse bilateral filter as described in
Ref. 33. It replaces each pixel in the depth map by the depth value of that point in the histogram
of its neighbor pixels that corresponds with a preset percentile. We repeat the same filtering on
the result of stereo depth estimation to get a denser depth map. This removes the outliers without
degrading the image quality.

3.3.3 Converting depth to disparity space

We chose the disparity space for our fusion algorithm. It is worth noting that working in-depth
space instead of disparity space does not have any effect on the result of the fusion algorithm
since the spaces are easily convertible. Therefore, we have converted the TOF depth map into the
disparity map to fuse it with the disparity map estimated from the stereo. To do so, we use the
relationship between depth and disparity as follows:

EQ-TARGET;temp:intralink-;e009;116;231disp ¼ bf∕D; (9)

where b is the baseline of the rectified stereo system and f is the focal length of the stereo camera
after rectification.

An overview of our experimental setup and the whole of the processing pipeline is shown
in Fig. 2.

3.4 Implementation Details

Our implementation is based on a heuristic concept that compares the confidences of the TOF
and stereo source and choose the source values with higher confidence in the final fused map. In
the case of equal confidences or very tiny deviation of the confidences of both modalities, the
TOF samples are weighted 0.70, and stereo values are weighted 0.30. This setting is fixed for
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whole the experiments in this work and is chosen based on our observations that measured TOF
signals seem to be more reliable than estimated stereo in the datasets we used.

4 Results and Evaluation

In Fig. 3, we show our fused maps for the synthetic dataset provided in Ref. 27 together with
each of the input sources and the ground truth depth maps. The absolute difference (AD) maps,
which calculated the differences between the disparity map results and the ground truth, are
provided in a red-color-coded format for better visualization in the second column. Mean
squared error (MSE) maps are also provided in the third column. We assess the precision of
disparity values with average root-mean-square error (RMSE) values over all the scenes in each
dataset. MSE maps of AD maps are to more clearly show where the errors occur. We assumed
that the combined input data, stereo plus TOF, give the desired output, smaller errors at a certain
area of the image, and therefore the RMSE and MSE are employed to give a size of the error
related to the energy of the error, which is the basis for the optimization in Eq. (6). In addition,
MSE emphasizes large errors more than AD. But it also implies that small errors may be difficult
to see. MSE is also consistent with the metric RMSE used for the overall error presented in the
table, and MSE is used in the optimization.

We have evaluated our algorithm numerically and compared it against other methods for the
synthesized dataset in Table 1 (on the valid pixel mask) and Table 2 (on the whole image).
Because the work of Agresti et al.27 provided us the exact valid pixel masks that they used
to compare their method with the method of Ref. 3, we could also include these methods in
our objective evaluation as shown in Table 1. Based on the definition in Ref. 27, the valid pixel
mask is calculated where there is a valid disparity for a pixel in all the sources (stereo, TOF, and
fused map).

As it is shown in Fig. 3, the visual comparison shows improvement in the vicinity of the
edges in all the scenes in comparison to the TOF data and stereo data. The TOF disparity map
for scene 11 is very poor. The stereo disparity map, on the other hand, is acceptable to some
extend even though the values are not very accurate. The poor performances of TOF and stereo
for scene 11 can be explained based on our observation, due to the existence of the objects with
the non-Lambertian surface.

Since the assumption is made for the synthesizing both TOF and stereo based on directional
light, thus, the results are poorly produced for the scenes with non-Lambertian properties. Both
of our evaluations on the result for this scene visually and numerically indicate the improvement
in the accuracy of the disparity values on the fused map, mainly due to the usage of confidences,
WSt, andWD as we introduce them in our proposed method. The edges of the table are an exam-
ple of this case as we can see its corresponding area in the MSE map is almost showing no error.

We improved RMSE of the state-of-the-art27 from 2.06 to 1.64 for the synthesized dataset on
the valid mask (see Table 1).

Fig. 2 An overview of the entire processing pipeline.
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Fig. 3 The input color image is shown in the first column. Also, the ground truth, the input TOF,
stereo, and our results are shown in other columns. AD maps calculated from disparity maps and
the ground truth are provided in the red color-coded form in the second row for each corresponding
column for all the scenes. MSEmaps are presented in the third row for each corresponding column
for all the scenes. The MSE unit is scaled with 104.

Table 1 Numerical evaluation of the result with RMSE on the provided mask from Ref. 27.

Methods TOF Stereo JBF Ref. 21 Ref. 27 Ref. 3 Proposed

Average RMSE 2.19 3.73 5.58 2.23 2.06 2.07 1.64
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In addition to evaluating on the valid mask, we also evaluated the input sources and our fused
maps on the whole image, see Table 2. Unfortunately, we could not include the method in Ref. 3
in the evaluation of the whole image since their result was only available for the valid mask but
not for the whole image. Our objective evaluations on the whole image show in Table 2 that the
method of Ref. 21 outperforms the method of Ref. 27. Our proposed method is the best and
reduces the RMSE from 11.21 to 10.49.

Figure 4 shows our results (seventh column) for the real image dataset provided in Ref. 24 in
comparison with the filtered TOF (TOF BF, third column), the filtered stereo disparity map for
the left camera (stereo BF, fourth column), the result of joint bilateral filtering on TOF BF and
stereo BF (JBF, fifth column), and the result of the method21 (sixth column).

As, according to Ref. 27, their method cannot be applied to the real images at the moment, we
could not include it in our evaluation. Also, we could not consider the method of Ref. 3 in our
evaluation of real images due to technical implementation issues.

The poor resolution and lens distortion of the TOF camera are the reasons why the projected
TOF depth map shown in the second column of Fig. 4 is extremely sparse and the samples are
irregularly placed. Consequently, applying bilateral filtering cannot recover all the edges. Hence,
objects are partially deformed for TOF BF. On the other hand, the maps of stereo BF are
smoother. But it is perceptually noticeable that the ADC algorithm fails in texture-less areas,
such as the front of the table in all scenes and part of the books in scene C. Considering textured
areas, there are fewer areas on the maps of both TOF BF and stereo BF. Hence, it is not a surprise
that the map of JBF is not visually looking better. This is caused by the nature of JBF that jointly
filters the results. Therefore, the relatively nonaccurate values are jointly included in the fused
map instead of being filtered out.

Table 3 shows the RMSE for each scene in addition to the average RMSE for all the scenes.
These RMSE values show that JBF and stereo BF maps do not have good quality. From the

AD maps, we see that disparity estimation (ADC disparity estimation algorithm) fails to estimate
disparity for the homogeneous areas: in front of the table in all scenes and the body of bears in
the scenes A and B. Disparity estimation also performs poorly on the reflective surfaces of the
books in scene C. More importantly, it cannot estimate the disparity for the edges as the ADmaps
illustrate. JBF jointly fuses the TOF BF and stereo BF regardless of the reliability of each source
without any edge guide. Therefore, it transfers most of the errors in the stereo map to the final
fused map. The other state-of-the-art method considered in our evaluation is one of Ref. 21.
Their method objectively performs better than both input data, TOF BF and stereo BF, and
JBF. Thus, it reduces the overall disparity error specifically at depth discontinuities. It also per-
forms better visually in comparison with the TOF BF and stereo BF (Fig. 4).

Since the method21 for TOF disparity upsampling bases on the assumption of similarity
between the disparity values of neighboring pixels, the result of Ref. 21 is not very distinguish-
able from its input data, TOF BF. The reason is that when the resolution of TOF in comparison to
the stereo camera is too low, the distribution of the projected TOF pixels is too sparse. Therefore,
the assumption of smoothness cannot be applied to two consecutive samples. Finally, the result
of our proposed algorithm is shown in the last column of Fig. 4. It is not only visually smoother
than each of the input modalities and the other two methods but also numerically more accurate.
The proposed method shows a much better recovery on the edges due to our approach of cross-
checking the edges from all sources of data: image, TOF, and stereo disparity. MSE maps are
indicating this, the edges of small teddy bear on the top of the ball in scene A, the right side of the
color checkerboard and in scene C, and front of the table in both scene B and C. Also due to the
usage of confidences for TOF and stereo, the fusion itself is choosing the more reliable data
source for the fused results. This gives better RMSE value than those of the input modalities
and other methods. It is visually clear that our approach benefits from both sources as they

Table 2 Numerical evaluation of the result with RMSE on the whole image.

Methods TOF Stereo JBF Ref. 21 Ref. 27 Proposed

Average RMSE 11.77 14.36 14.34 11.21 19.20 10.49
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complement each other, see Fig. 4. The depth map of the one depth modality source in the final
fused map improves error-prone areas in the depth map of the other modality.

For instance, the homogeneous area in scene B in front of the table in Fig. 5 shows failure in
estimating disparity using the ADC algorithm. In contrast, the TOF sensor did a rather good
sampling in this area. Another same example can be observed in scene C in Fig. 5 on the book

Fig. 4 The input color image is shown in the first column. Also, the ground truth, the input TOF BF,
stereo BF, and the results of other methods are demonstrated in other columns. Our proposed
fusion map is shown in the final column for all scenes. The AD map is provided in the red color-
coded form in the second row for each corresponding column for all scenes. MSE maps are pre-
sented in the third row for each corresponding column for all the scenes. The MSE unit is scaled
with 104.

Table 3 Numerical evaluation of the result with RMSE on the whole image.

Methods TOF BF Stereo BF JBF Ref. 21 Proposed

Scene A 1.2698 2.4971 2.5449 1.2696 0.9389

Scene B 1.2786 2.4135 2.6467 1.2783 1.0801

Scene C 0.8498 2.6957 0.8498 0.8493 0.8181

Average RMSE 1.1327 2.5354 2.0138 1.1324 0.9457
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that partially occludes the color chart behind it. While the opposite example can be seen on the
color chart itself where the TOF samples the disparity poorly, but stereo estimated the disparity
rather good. All these examples indicate the aggregation of stereo confidences and TOF reli-
ability weights in the proposed fusion approach. Additionally, these examples explain how this
aggregation is managed such that the proposed approach takes advantage of stereo BF over the
TOF BF and vice versa based on their accuracy for different areas of the scene.

4.1 Consistency Check

There are several applications such as disparity image-based rendering that require consistency
between left and right disparity maps. To show that our approach produces consistent left and
right fused maps in the stereo setup, we applied a consistency check on the results.

First, we produce fusion maps for both left and right cameras in the stereo system. Next, we
check stereo consistency between the two maps and generate consistency maps for both the left
and right disparity map (see Fig. 6).

In the consistency check, for each pixel coordinate ðx; yÞ, in the left fused map, we add its
disparity value to find its correspondence in the right fused map. Then, we compare the disparity
value of the left and right correspondences with different thresholds (three) of one to four pixels.
If the difference between the disparity value of the left and right correspondences is less or equal
than the threshold at pixel coordinate ðx; yÞ, we return the disparity value as it is and assign it to

Fig. 5 Results in zoom mode. The first row shows a homogenous part of scene B, in front of the
table. The second row shows an occluded area, which includes a color chart as a homogeneous
area and the edge of the book in front of it.

Fig. 6 Color-coded consistency map between the right- and left-fusion maps for three scenes.
Each column corresponds to a specific threshold.
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the same pixel coordinate in the consistency map. Otherwise, we set a zero value as the disparity
value of that pixel coordinate in the consistency map. Figure 6 shows the color-coded consis-
tency maps of different thresholds for all the scenes. The results demonstrate the consistency
between left and right fused maps even for a harsh threshold of one pixel.

4.2 Computational Cost

The current nonoptimized MATLAB implementation can process each image of the synthetic
dataset with a resolution of 540 × 960 in 572.38 s.

5 Conclusion

This paper introduced an approach for the fusion of TOF and stereo depth maps in a reliable
manner. We proposed an approach that is based on a simple optimization framework that utilizes
reliability weights and stereo confidences. We introduced stereo constraints into the optimization
framework and guided the framework by edge information generated as a result of cross-
checking between the RGB image and TOF and stereo disparity. Our approach outperforms
state-of-the-art on a synthesized and real dataset both visually and objectively. We examined
our result for the left and right consistency and demonstrated the ability of our approach to fusing
right and left disparity maps with TOF map in a consistent manner.

The proposed method is straightforward to extend with further depth data from other depth
sensing equipment by adding new energy terms in the cost function. Future research consists of
identifying new data sources with supplementary accuracy of the depth information in different
parts of the image, along with identifying appropriate weighting of those terms such that the
respective advantage of the different data is emphasized in the optimization. The proposed
method can gain better results in case of incorporating alternative confidence estimation
approaches with higher accuracy that could be investigated in the future. The current
MATLAB implementation can be optimized to be able to process higher resolutions in shorter
computational time.
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