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Abstract

Purpose: Deep convolutional neural network (CNN)-based methods are increasingly used for
reducing image noise in computed tomography (CT). Current attempts at CNN denoising are
based on 2D or 3D CNN models with a single- or multiple-slice input. Our work aims to inves-
tigate if the multiple-slice input improves the denoising performance compared with the single-
slice input and if a 3D network architecture is better than a 2D version at utilizing the multislice
input.

Approach: Two categories of network architectures can be used for the multislice input. First,
multislice images can be stacked channel-wise as the multichannel input to a 2D CNN model.
Second, multislice images can be employed as the 3D volumetric input to a 3D CNN model, in
which the 3D convolution layers are adopted. We make performance comparisons among 2D
CNN models with one, three, and seven input slices and two versions of 3D CNN models with
seven input slices and one or three output slices. Evaluation was performed on liver CT images
using three quantitative metrics with full-dose images as reference. Visual assessment was made
by an experienced radiologist.

Results: When the input channels of the 2D CNN model increases from one to three to seven, a
trend of improved performance was observed. Comparing the three models with the seven-slice
input, the 3D CNN model with a one-slice output outperforms the other models in terms of noise
texture and homogeneity in liver parenchyma as well as subjective visualization of vessels.

Conclusions: We conclude the that multislice input is an effective strategy for improving per-
formance for 2D deep CNN denoising models. The pure 3D CNN model tends to have a better
performance than the other models in terms of continuity across axial slices, but the difference
was not significant compared with the 2D CNN model with the same number of slices as the
input.
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1 Introduction

It is best practice in clinical computed tomography (CT) to use as low as reasonably achievable
(ALARA) radiation dose in each exam without compromising diagnostic image quality.1

However, the reduction of radiation dose often comes at the cost of increasing noise and artifacts
in the reconstructed images, which may negatively affect the diagnostic performance. To address
this issue, multiple noise reduction techniques have been developed: these include projection
data filtering,2,3 iterative reconstruction (IR) algorithms,4–7 and denoising on CT images after
reconstruction.8–10 Among these methods, various IR methods have been widely deployed
on clinical scanners for radiation dose reduction or image quality improvement. It was shown
that, at most, a 20% to 30% dose reduction is allowed without sacrificing diagnostic performance
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for low-contrast lesion detection tasks.11 One common problem associated with these IR meth-
ods is the perceived change of noise texture and relatively long computation time.12

In recent years, deep learning-based methods using convolutional neural networks (CNN)
have received increasing attention mainly due to their potential of preserving natural texture after
substantial noise reduction and high computational efficiency. Various deep CNN methods have
been proposed to reduce the noise of CT images after image reconstruction. Chen et al. intro-
duced a lightweight CNN-based framework with a single-slice input for low-dose CT images
denoising.13 To improve the CNN denoising performance, Yang et al. adopted Wasserstein dis-
tance and perceptual loss for a generative adversarial network.14 For the same purpose of noise
suppression and structural preservation, Chen et al.15 developed a residual encoder–decoder
CNN network for CT image denoising. To capture a wide range of spatial information both
within CT slices and between CT slices, 2D CNN models with a three-slice input were adopted
in low-dose CT imaging, which was proposed for natural image classification with three input
channels.16 This strategy was further investigated in 3D CNN-based low-dose CT imaging. One
version of 3D CNNmodels utilized the network architecture with fully 3D CT image as the input
and output17–19 and achieved better performance in both edge-preservation and noise-artifact
suppression than the 2D CNN model with a single-slice input. Another version of 3D CNN
models is a hybrid 2D/3D network with a 2D output,20 which was shown to be able to save
considerable computational time and achieve a better performance in suppressing image noise
and preserving subtle structures than the 2D CNN model with a single-slice input. Presumably a
multislice input in either 2D or 3D CNNs has the potential to incorporate spatial information
from adjacent slices.16–20 In previous works, CT image denoising performance has been com-
pared between 2D or 3D CNN models.17–20 But in these works, only the 2D CNN models with
single-slice inputs were adopted for comparison. The benefits of including three or more CT
slices for model training, especially in 2D CNN modesl, have not been clearly demonstrated.
In addition, there remains a question of whether a 3D CNN model is better than its 2D counter-
part with the same number of slices as the input.

The purpose of this work is to answer these two questions by evaluating the performance
among 2D CNN models with different numbers of input slices and among 2D and 3D models
with the same number of input slices. We include two versions of 3D CNN models in this study;
the first has a 3D volume input and 2D output,20 and the second one is a pure 3D model with an
output that is also a 3D volume.18

2 Methods

2.1 2D/3D Residual CNN Framework

We employed a recently developed residual CNN denoiser16,21 as the basic network architecture
for the 2D CNN denoiser. In the previous work, we used three CT slices as the three-channel
input of the 2D residual CNN model. Here we varied the number of input channels to determine
whether it affects the denoising performance. The 2D residual CNN architecture is shown in
Fig. 1. The CNN inputs were first standardized (subtracted by the mean value and divided
by the standard deviation) and then subjected to initial layers that generated 128 feature maps
using 2D convolutional layers. The feature maps were further processed by a series of 2D
residual blocks, each of which consisted of repeated layers of 2D convolutional, batch normali-
zation, and rectified linear unit activation. The filter number of each 2D convolutional layer was
set to 128, and the kernel size of all layers was set to 3 × 3with a stride of one in each dimension.
Then the output of residual blocks was projected back to a single-channel image using a single
convolutional layer with one filter. This single-channel image was the estimated noise, which
was further subtracted from the central input slice to get the final denoising result. Mirror pad-
ding in the axial dimensions was employed in all of the convolutional layers for all CNN models
in this study. Hereafter, residual 2D CNN noise reduction with an input of one slice, three
slices, and seven slices will be referred to as ResNet2D_1Slice, ResNet2D_3Slices, and
ResNet2D_7Slices, respectively.
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To study the impact of 3D residual CNN, two versions of the architecture were designed. The
architecture of the first version (ResNet3D-v1) is shown in Fig. 2. We replaced the 2D initial
block and the first 2D residual block with a 3D initial block and two 3D residual blocks, respec-
tively. To reduce the computational burden and alleviate the overfitting problem, we employed a
bottleneck structure to reduce the dimension of feature maps in the 3D residual blocks [see
Fig. 2(b)]. No padding was applied to the slice dimension before each 3D convolution.
Hence after the second 3D residual block, the input 3D rectangular volume of N × N × 7 voxels

reduced to N × N × 1 voxels, which can be squeezed to the 2D input of the next 2D residual
block. Note that to have a fair comparison with the ResNet2D_7Slices model, which has the best
denoising performance among the three ResNet2D models, we only consider the scenario of the
ResNet3D models with the seven-slice input. Better denoising performance of the 3D CNN
model can be achieved using seven slices than fewer slices as the input according to the results
in Ref. 17.

The second version of the 3D residual CNN (ResNet3D-v2) architecture is shown in Fig. 3.
We replaced the remaining 2D convolution layers in ResNet3D-v1 with 3D ones to make the
model a pure 3D one. Mirror padding on the slice dimension was employed before the 3D con-
volutions with a convolution kernel of 3 × 3 × 3 for the first two 3D residual blocks but not for

Fig. 1 Architecture of a residual 2D CNN denoiser. (a) Global structure of the network containing a
2D initial block, three 2D residual blocks, and a final block. (b) Details of the convolutional layers
and transformations used within each block. Conv2D, two-dimensional convolutional layer; N ,
arbitrary image size; M , number of slices (1, 3, and 7), ReLU, rectified linear units.

Fig. 2 Architecture of the first version of the residual 3D CNN denoiser. (a) Global structure of the
network containing a 3D initial block, two 3D residual blocks, two 2D residual blocks, and a final
block. (b) Details regarding the convolutional layers and transformations used within each block.
The structures of 2D residual blocks and the final block are the same as those in Fig. 1.

Fig. 3 Architecture of the second version of the residual 3D CNN denoiser. (a) Global structure of
the network containing a 3D initial block, four 3D residual blocks, and a final block. (b) Details
regarding the convolutional layers and transformations used within each block.
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the next two ones. Hence, the size of the output is equal to the original input size (N × N × 7)
after the second 3D residual block and is reduced to N × N × 3 voxels after the fourth residual
block. A kernel size of 1 in the slice dimension was adopted for the 3D convolutions in the final
block, so the final output of ResNet3D-v2 is a 3D volume of N × N × 3 voxels. Only the center
slice of each output 3D volume is retained for each anatomy position. The final 3D volume of
slices is formed from all CNN denoised outputs.

The residual step with a global shortcut connection from the input to output is on top of those
with local shortcut connections within each 2D or 3D residual block. Relatively dense local
shortcut connections facilitate deep residual learning.20 The global shortcut connection results
in the network predicting the noise residual and then removing this noise from the input
directly,15 which can preserve structural details as well as make the training process stably and
quickly.21

2.2 Training/Validation and Testing Data Set

CNN noise reduction models were trained using images from the Mayo/American Association
of Physicists in Medicine (AAPM) Low-Dose CT Grand Challenge dataset.22 This dataset con-
sists of full-dose (FD) abdominal CT images that were taken from 30 patients and the corre-
sponding simulated quarter-dose (QD) CT images. All training data were reconstructed with
a field of view of 340 mm, a medium smooth kernel (B30), and slice thickness and interval
of 1.0 and 0.8 mm, respectively. We applied the overlapped sliding window with a sliding size
of 32 × 32 × 1 to obtain 2D image patches of size 64 × 64 and with a sliding size of 32 × 32 × 3

to obtain 3D image patches of size 64 × 64 × 3 and 64 × 64 × 7. For each CNN denoiser,
512,000 matched QD and FD patches were randomly selected from 17 patients of this dataset
for training, and 64,000 matched QD and FD patches were randomly selected from another five
patients to validate the performance of the trained models. During the training phase, the adjacent
QD patches were used as inputs of 3D residual models or 2D ones with multislice input, and the
corresponding central single or three slices from the FD patches was used as the CNN target. The
Adam optimizer23 with a descending learning rate from 0.001 to 0.00001 was used to train the
residual CNN models with a minibatch of 16 image patches for each iteration. We employed
pixel-wise mean-square-error between CNN output and FD images as the loss function during
optimization. The CNN training was performed on a NVIDIA Tesla M40 GPU with 12 GB
memory.

Eight patient exams from the grand challenge dataset were reserved for testing the perfor-
mance of residual CNN models. During testing phase, the five residual CNN models were
applied to the QD images without or with adjacent slices along the scan direction
(512 × 512, 512 × 512 × 3, and 512 × 512 × 7).

2.3 Model Evaluation

The denoising performance of three 2D models with the one-, three-, and seven-slice input
(ResNet2D_1Slice, ResNet2D_3Slices, ResNet2D_7Slices) and two 3D models with the
seven-slice input (ResNet3D-v1, ResNet3D-v2) were evaluated using quantitative metrics and
a radiologist’s visual assessment in comparison with QD images reconstructed with filtered-
backprojection (FBP) and IR methods and FD images reconstructed with FBP method, named
QD + FBP, QD + IR, and FD + FBP images, respectively. FBP reconstructed axial images with
512 × 512 matrix size at QD from eight reserved patients unseen during training (around 500
axial images per patient) were denoised by five trained CNN models, respectively. Three quan-
titative metrics, including root-mean-square error (RMSE), peak–signal-to-noise ratio (PSNR),
and structural similarity index measure (SSIM) were calculated between each FD + FDP axial
image and the corresponding CNN denoised axial image at the same anatomical position from
each of the five CNN models.

The RMSE is a measure of the residuals between the model predictions and the target image.
PSNR is the ratio of signal power to noise power in the image (in decibel unit), and SSIM mea-
sures perceptual similarity based on luminance, contrast, and structure. Paired t-tests were per-
formed to compare the quantitative metrics of different CNN models (p < 0.05 was considered

Zhou et al.: Multislice input for 2D and 3D residual convolutional neural network noise reduction. . .

Journal of Medical Imaging 014003-4 Jan∕Feb 2023 • Vol. 10(1)



significantly different) across all processed axial images of eight testing patients. Because RMSE
and PSNR are not directly related to the perceptual quality of the denoised images, images from
each model were also visually assessed by an experienced radiologist (11 years’ experience) by
ranking all five CNN models, along with the other three conditions: QD + FBP, QD + IR, and
FD + FBP, from best to worst for visualizing small anatomical structures, such as branch of
mesenteric vein, left gastric vein, intrahepatic portal vein, posterior superior pancreaticoduode-
nal vein, anterior superior pancreaticoduodenal artery, and jejunal artery.

Images processed by each of the eight algorithms were displayed simultaneously on a multi-
viewer in a single sitting in a darkened reading room. The radiologist blinded to the conditions of
the study reviewed the axial and coronal images of all eight cases. The radiologist was asked to
rank images from each algorithm in terms of image noise texture (graininess/homogeneity of the
image in the liver parenchyma), sharpness (subjective impression on the sharpness of the edge of
the hepatic vessels), and artifacts (artificial zig-zag linear structure or streaking artifacts origi-
nated from iodine or bony structures).24 For structure preservation, the radiologist was instructed
to determine if the small vessels in the liver can be clearly identified as expected in normal
sectional anatomy. For continuity between slices, the radiologist was asked to evaluate the
smoothness of the intrahepatic vessels while scrolling images back and forth. A five-point
Likert scale [(1) poor, (2) adequate, (3) good, (4) very good, (5) excellent] was rated subjectively
by comparing with clinical routine abdominal CT images.

3 Results

The parameter counts and training time per epoch and the inference time of one 512 × 512 image
for each CNN model are shown in Table 1. Including more slices as the input does not signifi-
cantly impact the training or inference time of the 2D residual CNN models. Although the five
models have a similar number of parameters, the 3D models consumed significantly more time
for training and inference, especially for the pure 3D model (ResNet3D-v2). After approximately
35 epochs, the training was stopped due to no improvement in the validation loss for any of the
CNN models.

Figure 4 shows the quantitative evaluation results among 2D and 3D residual CNNs. The
means ± SDs (average scores ± standard deviations) of PSNR, SSIM, and RMSE across
all slices in the processed eight patient CT volumes (around 500 slices per volume) are plotted.
The ResNet2D_3Slices model had higher PSNR and SSIM and lower MSE than the
ResNet2D_1Slice model (p < 0.001 for all comparisons). The ResNet2D_7Slices model per-
formed even better than the ResNet2D_3Slices model as confirmed by these three metrics
(p < 0.001 for PSNR and MSE, p ¼ 0.004 for SSIM), demonstrating the benefit of the multi-
slice input. The ResNet3D-v1 model achieved significantly better performance than the
ResNet2D_3Slices model (p < 0.001 for PSNR and MSE, p ¼ 0.003 for SSIM). The
ResNet3D-v2 model had significantly higher PSNR and lower MSE (p < 0.001) but no signifi-
cant difference in SSIM (p ¼ 0.12) compared with the ResNet2D_3Slices model. Among the
three CNN models with the seven-slice input, no significant difference was found in terms of
PSNR, SSIM, and RMSE (p > 0.1 for all comparisons).

Table 1 Training time and parameter count for the five CNN models.

ResNet2D_1Slice ResNet2D_3Slices ResNet2D_7Slices ResNet3D-v1 ResNet3D-v2

Parameter counts
(million)

1.336 1.338 1.343 1.412 1.188

Training time
per epoch (h)

0.40 0.43 0.45 1.2 4.5

Inference time
per image (s)

0.16 0.19 0.20 0.54 1.25
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Three image examples are shown in Figs. 5–7. Figure 5 compares the QD images recon-
structed by FBP and IR, full dose (FD) images reconstructed by FBP, and the five versions
of CNN denoising of the QD + FBP images (ResNet2D_1Slice, ResNet2D_3Slices,
ResNet2D_7Slices, ResNet3D-v1, and ResNet3D-v2) from a patient case in the Mayo/
AAPM Low-dose CT Grand Challenge data library (case no. L123). Images at a slice location
containing many small anatomical structures were displayed: a branch of mesenteric vein (red
arrow), left gastric vein (blue arrow), anterior superior pancreaticoduodenal artery (yellow
arrow), posterior superior pancreaticoduodenal vein (green arrow), and jejunal artery (green
circle). The performance of five CNN models was assessed visually by an experienced radiolo-
gist. Overall, the radiologist’s ranking order (from best to worst) for visualizing those small
structures was (1) ResNet3D-v1, (2) ResNet2D_7Slices and ResNet3D-v2 (comparable),

Fig. 5 Example image comparing the FBP and IR QD, FBP FD, and the five versions of CNN
denoising of the QD images (ResNet2D_1Slice, ResNet2D_3Slices, ResNet2D_7Slices,
ResNet3D-v1, and ResNet3D-v2) from a patient case in the Mayo/AAPM Low-dose CT Grand
Challenge data library (case no. L123). (a) QD + FBP, (b) QD + IR, (c) ResNet2D_1Slice,
(d) ResNet2D_3Slices, (e) ResNet2D_7Slices, (f) ResNet3D-v1, (g) ResNet3D-v2, and (h) FD
+ FBP. The red rectangles indicate zoomed-in ROIs of the green rectangles on the original image,
with some small vessels labeled as follows: branch of mesenteric vein (red arrow), left gastric vein
(blue arrow), anterior superior pancreaticoduodenal artery (yellow arrow), posterior superior pan-
creaticoduodenal vein (green arrow), and jejunal artery (green circle). The display window of this
slice is [40, 300] HU.

Fig. 4 Quantitative comparison among 2D and 3D residual CNNs in terms of (a) PSNR, (b) SSIM,
and (c) RMSE.
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(3) ResNet2D_3Slices, and (4) ResNet2D_1Slice. The ResNet2D_1Slice model showed the pos-
terior superior pancreaticoduodenal vein with lower enhancement than pancreatic parenchyma
despite all five small vessels being visualized. The ResNet2D_7Slices model better depicted the
branch of mesenteric vein and posterior superior pancreaticoduodenal vein with more smooth
edges than the ResNet2D_3Slices model. The two ResNet3D models have a similar performance
to the ResNet2D_7Slices model in terms of the visibility of vessels. Focusing on the pancreatic
parenchyma, the ResNet3D-v1 model had less noise than the ResNet2D_7Slices and ResNet3D-
v2 models. The original QD + FBP and QD + IR images were too noisy to visualize those small
vessels for a diagnostic purpose. All CNN denoising results were visually better than the original
FD + FBP image.

Figure 6 shows another example in a coronal reformat (case no. L061). As shown in the
zoomed-in images, the intrahepatic portal vein is well traced with the smoothest edge in the
ResNet3D-v1 [Fig. 6(f)], whereas the two denoising images from ResNet2D_1Slice and
ResNet2D_3Slices models show the vein with obvious mosaic-like and discontinuous appear-
ance. The overall radiologist’s ranking order (from best to worst) was (1) ResNet3D-v1,
(2) ResNet3D-v2, (3) ResNet2D 7Slices, (4) ResNet2D_3Slices, and (5) ResNet2D_1Slice.
Three profiles vertical to the intrahepatic portal vein [labeled with three dashed lines in
Fig. 6(h)] were plotted [Figs. 6(i)–6(k)]. It can be seen that ResNet3D-v1, ResNet3D-v2, and
ResNet2D with the seven-slice input better preserved the profiles from the corresponding FD

Fig. 6 Coronal reformatted image comparing the FBP and IR QD, FBP FD, and the five versions of
CNN denoising of the QD images (ResNet2D_1Slice, ResNet2D_3Slices, ResNet2D_7Slices,
ResNet3D-v1, and ResNet3D-v2) from a patient case in the Mayo/AAPM Low-dose CT Grand
Challenge data library (case nno. L061). (a) QD + FBP, (b) QD + IR, (c) ResNet2D_1Slice,
(d) ResNet2D_3Slices, (e) ResNet2D_7Slices, (f) ResNet3D-v1, (g) ResNet3D-v2, and (h) FD
+ FBP. The red rectangles indicate zoomed-in ROIs of the green rectangles in the original images.
Three profiles were plotted in (i)–(k) along a direction vertical to the intrahepatic portal vein [labeled
in dashed lines in (h)]. The display window of this slice is [40, 300] HU.
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image than the other models. The ResNet3D-v1 and ResNet3D-v2 slightly outperformed the
ResNet2D-7Slices in terms of noise texture and homogeneity in liver parenchyma as well as
subjective visualization of the target vein.

In Fig. 7, the black dot artifact in the hepatic metastasis is obviously seen in the
ResNet2D_1Slice and ResNet2D_3Slices models, despite there being a similar overall image
quality among the five denoising images based on the subjective evaluation of the radiologist.
A similar trend of noise reduction was noted in liver images as pancreas images from all CNN
denoising algorithms, ResNet3D-v1 is less noisy than ResNet2D_7Slices and ResNet3D-v2.
The overall radiologist’s ranking order (from best to worst) was (1) ResNet3D-v1,
(2) ResNet2D_7Slices and ResNet3D-v2 (comparable), (3) ResNet2D_3Slices, and
(4) ResNet2D_1Slice.

In the large patients, artifacts described as nodular or patchy low- or high attenuating areas in
the liver parenchyma, which mimic liver lesions, were marked despite less noise texture in
ResNet2D_1Slice and ResNet2D_3Slices. The artifact was linked to a lower score of overall
image quality in the radiologist’s interpretation. For each method, the scores were reported
as means ± standard deviations (SDs) across all eight patient cases. The FD + FBP images
were used as the reference standard. The student t-test with p < 0.05 was performed, and the
statistical results are provided in Table 2.

For all six image quality criteria, the three CNN models with the seven-slice input
(ResNet2D_7Slices, ResNet3D-v1, and ResNet3D-v2) had higher scores than QD + FBP,
QD + IR, and ResNet2D_1Slice (p < 0.05 for all comparisons), but no significant difference
was found among these CNN models with the seven-slice input (p > 0.05 for all comparisons).
The ResNet2D_1Slice and ResNet2D_3Slices models had scores superior to QD + FBP and QD
+ IR in terms of noise texture, structure preservation, sharpness, and overall image quality
(p < 0.05 for all comparisons), but no significant difference or even a worse performance was
found in terms of artifacts and continuity between slices. For some cases, when the intra- and
extrahepatic vessels were focused, ResNet3D-v2 had a better performance in continuity between
slices than ResNet2D_7Slices and ResNet3D-v1, but there was no statistically significant differ-
ence for all cases. In terms of artifacts, the two 3D CNN models performed similarly in com-
parison with the ResNet2D_7Slices model (p > 0.05). ResNet3D-v2 was ranked the best

Fig. 7 Example image comparing the FBP and IR QD, FBP FD, and the five versions of CNN
denoising of the QD images (ResNet2D_1Slice, ResNet2D_3Slices, ResNet2D_7Slices,
ResNet3D-v1, and ResNet3D-v2) from a patient case in the Mayo/AAPM Low-dose CT Grand
Challenge data library (case no. L136). (a) QD + FBP, (b) QD + IR, (c) ResNet2D_1Slice,
(d) ResNet2D_3Slices, (e) ResNet2D_7Slices, (f) ResNet3D-v1, (g) ResNet3D-v2, and (h) FD +
FBP. The red rectangles indicate zoomed-in ROIs of the green rectangles on the original image,
where a hepatic metastasis is presented. The display window of this slice is [40, 300] HU.
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according to the score of overall image quality, but the difference was not statistically significant
compared with either ResNet2D_7Slices or ResNet3D-v1 (p > 0.05).

We calculated the averaged MSE loss value achieved by different methods versus the number
of epochs as the measure of convergence in Fig. 8. From this figure, we observe that all models
have similar convergence trends in that all validation loss curves decreased initially and then con-
verged around 35th epoch. When the input channels of the 2D CNN model increased from one to
three to seven, a trend of a lower MSE loss was observed. The ResNet3D-v1 model achieved a
lower MSE loss than the ResNet2D_7Slices model. The lowest MSE loss was achieved by the
ResNet3D-v2 model, although it was trained for only 38 epochs (totally around 171 h).

4 Discussion and Conclusions

In this work, we investigated the impact of multislice input in deep CNN CT denoising on image
quality by comparing 2D residual CNN models with different numbers of input slices, and

Fig. 8 Comparison of MSE loss values versus the number of epochs with respect to different
residual CNN models.

Table 2 Subjective image quality scores for different algorithms (mean ± SDs).

QD + FBP QD + IR
ResNet2D_

1Slice
ResNet2D_
3Slices

ResNet2D_
7Slices

ResNet
3D-v1

ResNet
3D-v2 FD+FBP

Noise
texture

1.25 ± 0.46 1.88 ± 0.35 3.63 ± 0.52 3.88 ± 0.35 4.25 ± 0.46 4.13 ± 0.35 3.88 ± 0.35 3.00 ± 0.00

Structure
preservation

1.5 ± 0.53 1.75 ± 0.46 3.12 ± 0.83 3.38 ± 0.52 3.75 ± 0.46 3.75 ± 0.46 3.75 ± 0.46 4.00 ± 0.00

Continuity
between
slices

2.25 ± 0.71 2.38 ± 0.74 1.88 ± 1.13 2.63 ± 0.92 3.50 ± 1.07 3.75 ± 0.46 3.88 ± 0.35 3.75 ± 0.46

Sharpness 1.63 ± 0.52 1.75±0.46 2.88 ± 0.64 3.25 ± 0.71 3.75 ± 0.46 3.88 ± 0.35 3.75 ± 0.46 3.25 ± 0.46

Artifact
reduction

3.00 ± 0.00 3.00 ± 0.00 2.50 ± 1.07 2.63 ± 0.92 3.63 ± 0.74 3.75 ± 0.46 3.75 ± 0.46 3.88 ± 0.53
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among the 2D and two versions of 3D residual CNN models with the seven-slice input. To the
best of our knowledge, this study was the first to evaluate if a multislice input improves the
denoising performance compared with a single-slice input and if a 3D network architecture
is better than a 2D version at utilizing the multislice input.

The evaluation results clearly demonstrated that the denoising performance was improved by
including more CT slices as the input of 2D residual CNN.

With the same number of CT slices as the input, two versions of 3D residual CNNs, espe-
cially the fully 3D model (ResNet3D-v2), seem to be superior to the corresponding 2D model in
terms of artifacts and continuity between slices. However, the overall image training time was
significantly longer for the fully 3D model. The performance of 2D and two versions of 3D
residual CNN models with the seven-slice input may be further improved with more slices
as the input, but the number of slices should be carefully selected for various applications
in terms of slice thickness. The relationship and redundancy that can be leveraged between slices
persists but eventually vanishes due to distance.

The 2D residual CNN models using a stack of 2D slices as input were referred to as 2.5D
CNN in some prior publications.25–27 This 2.5D CNN can exploit 3D geometric information
while still using a 2D CNN architecture. Although some researchers stated that the 3D structures
may be lost by the first 2D convolution in the 2.5D CNN model,28 others believed that the 2.5D
CNN can often achieve an image quality similar to 3D CNNs at a reduced computational
cost.26,27,29 In this work, we did not refer to this model as “2.5D CNN” because this name was
also used to represent a CNN model that uses both 2D and 3D convolutions in the same model,30

which is similar to our ResNet3D-v1 model.
We investigated two versions of 3D CNN models for comparison, as shown in Figs. 2 and 3,

respectively. The architecture of ResNet3D-v2 model is similar to that in Ref. 18, except that
the sizes of the training patches were different (64 × 64 × 7 in our study versus 44 × 44 × 24

in the previous work). The ResNet3D-v1 model was designed following the same idea in
Ref. 20, which used a 3D input and a 2D output, except that we used a residual net instead
of Unet. Despite those similarities, neither study in Refs. 18 and 20 included 2D CNN
models with multiple slices as the input to compare with their proposed 3D CNN models.
Although both ResNet3D-v1 and ResNet3D-v2 require more processing than the 2D residual
CNN models with the seven-slice input, the former is less computationally expensive than
the latter: 3D convolution layers are used in the first half and the entire model for
ResNet3D-v1 and ResNet3D-v2, respectively. Pure 3D CNN models are more popular in the
research field of anatomical segmentation.25 In this study, the pure 3D ResNet3D-v2 model
delivers better performance than the ResNet3D-v1 model based on the radiologist’s subjective
evaluation.

There are several limitations in this research such as the relatively small sample size used in
the analysis. In future research, more cases will be included for nonparametric statistical analysis
and to determine the reliability of the statistical findings. Additionally, our study used only one
radiologist. We will use more radiologists for visual assessment of the images to exclude bias
arising from an observer variation.

We conclude that the multislice input is an effective strategy for improving the performance
for 2D deep CNN denoising models. Pure 3D CNN model tends to have a better performance
than the other models in terms of continuity across axial slices, but the difference was not sig-
nificant compared with the 2D CNN model with the same number of slices as the input.
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