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ABSTRACT. Purpose: Image-based prediction of coronavirus disease 2019 (COVID-19)
severity and resource needs can be an important means to address the COVID-
19 pandemic. In this study, we propose an artificial intelligence/machine learning
(AI/ML) COVID-19 prognosis method to predict patients’ needs for intensive care
by analyzing chest X-ray radiography (CXR) images using deep learning.

Approach: The dataset consisted of 8357 CXR exams from 5046 COVID-19–
positive patients as confirmed by reverse transcription polymerase chain reaction
(RT-PCR) tests for the SARS-CoV-2 virus with a training/validation/test split of
64%/16%/20% on a by patient level. Our model involved a DenseNet121 network
with a sequential transfer learning technique employed to train on a sequence of
gradually more specific and complex tasks: (1) fine-tuning a model pretrained on
ImageNet using a previously established CXR dataset with a broad spectrum of
pathologies; (2) refining on another established dataset to detect pneumonia; and
(3) fine-tuning using our in-house training/validation datasets to predict patients’
needs for intensive care within 24, 48, 72, and 96 h following the CXR exams.
The classification performances were evaluated on our independent test set (CXR
exams of 1048 patients) using the area under the receiver operating characteristic
curve (AUC) as the figure of merit in the task of distinguishing between those
COVID-19–positive patients who required intensive care following the imaging exam
and those who did not.

Results: Our proposed AI/ML model achieved an AUC (95% confidence interval) of
0.78 (0.74, 0.81) when predicting the need for intensive care 24 h in advance, and
at least 0.76 (0.73, 0.80) for 48 h or more in advance using predictions based on the
AI prognostic marker derived from CXR images.

Conclusions: This AI/ML prediction model for patients’ needs for intensive care has
the potential to support both clinical decision-making and resource management.
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1 Introduction
The coronavirus disease 2019 (COVID-19) is an ongoing pandemic caused by severe acute res-
piratory syndrome coronavirus 2, which was first reported in late 2019. As of June 28, 2023,
there have been 767,518,723 confirmed cases of COVID-19, including 6,947,192 deaths.1 The
reverse transcription polymerase chain reaction (RT-PCR) is the reference standard currently
used for COVID-19 disease diagnosis. In addition, clinical assessment2 and multimodality medi-
cal imaging3 are also used in disease diagnosis and patient management.

Artificial intelligence/machine learning (AI/ML), including deep learning, has been applied
in medical imaging and radiation therapy for several decades.4–8 Accordingly, various studies
have been reported using AI/ML on medical imaging for COVID-19 disease. AI/ML algorithms
have been developed to differentiate COVID-19 pneumonia from non-COVID-19 pneumonia
when RT-PCR is not readily available.9–12 Various AI/ML methods have been developed to
assess the severity/extent of disease13–16 and predict the prognosis of the disease,17 as well as
for patient management in therapeutic treatment planning and monitoring patients’ response.13,18

Image-based studies of long-term COVID-19 effects on other organs, including the heart and
brain, are also underway.19

Accurate prognosis prediction for COVID-19 patients is crucial not only for implementing
appropriate treatment for individual patients, but also for optimizing medical resource allocation
during the pandemic. Chest X-ray radiography (CXR) is recommended for triaging at patient
presentation and disease monitoring due to its ease of use, relatively low cost, wide availability,
and portability.3,20,21 Characteristics such as bilateral lower lobe consolidations, ground glass
opacities, peripheral air space opacities, and diffuse air space disease on CXR have been related
to COVID-19.22,23 However, the non-specificity of these features to COVID-19 and the shortage
of radiological expertise in some resource-strained healthcare systems during a pandemic make
precise image assessments challenging.

There are various studies in intensive care unit (ICU) requirement prediction for COVID-19
patients using AI/ML.24–32 Those predicting models are based on clinical data, laboratory test
results, comorbidity data, genetic data, and imaging data. Heo et al.24 performed the logistic
regression analysis to predict ICU admission status using clinical, radiological, and laboratory
variables. An area under the curve (AUC) value of 0.880 was obtained from an integer-based
scoring system using seven selected features. Asteris et al.26 developed an artificial neural net-
work (ANN) model based on complement-related genetic variants, age, and gender to predict
ICU admission. They reported an accuracy of 89.47% in predicting COVID-19 severity using
a sample of 133 patients with the developed ANN model. Chieregato et al.27 built a hybrid
ML/deep learning model for ICU prediction using CT images and clinical data from 558 patients
with high sensitivity and specificity as well as SHapley Additive exPlanations (SHAP) values for
each individual feature corresponding to the importance of each feature in the prediction model to
increase the interpretability of the model.

Training a deep learning model from scratch in the medical imaging field is a challenging
task since it requires large well-curated medical imaging datasets with annotations provided by
medical professionals. Due to the nature of medical imaging datasets, most with necessary
human-delineated annotations are small in size. Therefore, a technique called “transfer learning”
has emerged to bridge this gap and has been applied in medical imaging analysis.33 In these
situations, deep learning models pretrained on nonmedical image datasets or medical image data-
sets from either a different imaging modality or same imaging modality but for different clinical
tasks are fine-tuned with a relatively small medical imaging dataset for clinical decision-making
tasks.33–39 For example, Antropova et al.34 applied transfer learning on three different imaging
modalities to extract deep features and fused them with human engineered radiomic features for
the diagnostic classification of breast tumors, with results demonstrating statistically significant
improved classification performance as compared to previous developed computer-aided diag-
nosis methods. Huang et al.35 applied deep transfer learning to identify possible disease on CXR
images for multilabel classification task with improved prediction capacities. Samala et al.36 per-
formed a multi-stage transfer learning for the classification of malignant and benign masses in
digital breast tomosynthesis images and reported improved classification performance.
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The purpose of our study was to develop an AI/ML COVID-19 prognosis method to predict
patients’ need for intensive care by analyzing CXR images of COVID-19–positive patients using
deep learning with a sequential transfer learning strategy.

2 Materials and Methods

2.1 Dataset
A limited deidentified dataset was retrospectively collected from our institution under a Health
Insurance Portability and Accountability Act (HIPAA)-compliant, Institutional Review Board-
approved protocol during the COVID-19 outbreak, consisting of CXR exams acquired between
Feb 27, 2020 and January 21, 2022. From patients who underwent the RT-PCR test for the
SARS-CoV-2 virus, CXR exams and clinical data were collected after the initial RT-PCR tests.
The clinical data used in this study were last updated on March 13, 2022. In this study, intensive
care is defined as intubation (invasive mechanical ventilation) and/or ICU admission. We
assumed that all patients who needed intensive care were admitted without delay during this
study period. Chest radiographs of two groups of COVID-19–positive patients were included
in this study. One group consisted of COVID-19–positive patients who needed intubation or
ICU support. The other group consisted of COVID-19–positive patients who were not admitted
to ICU and did not need intubation following their COVID-19 diagnosis. The intubation or ICU
admission information was extracted from patients’ clinical information and radiology reports.
The ICU admission or intubation time was compared with the imaging exam time to determine
the time elapsed between imaging and any potential subsequent intubation or ICU admission
event. For example, if the CXR exam was obtained within the 24 h prior to ICU admission
or intubation, then the ICU admission status for 24, 48, 72, and 96 h would all be true; if the
CXR exam was obtained less than 48 h but more than 24 h prior to the intubation/ICU admission
event, then the 24-h status would be false, while the 48, 72, and 96 statuses would be true. For a
patient without an intubation or ICU admission event, all statuses would be false. Only images
acquired after a positive RT-PCR were included, and images obtained after ICU admission or
intubation were excluded. Ultimately, the dataset for this study consisted of 8357 CXR images
from 5046 COVID-19–positive patients. Patient demographics are summarized in Table 1.
Patients were largely unvaccinated, with only 16% having received one or more vaccinations
against COVID-19 at the time of imaging.

2.2 Classifier Training
The DenseNet121 architecture was chosen for this study because of its success in the diagnosis of
various diseases on CXR in previous publications.40–42 Instead of presenting the model with a
random mixture of CXR examples to learn to detect COVID-19, a sequential transfer learning
technique was employed to train the model on a sequence of gradually more specific and com-
plex tasks to mimic the human learning process.43 First, a model pretrained on ImageNet44 with
1.2 million natural images was fine-tuned on the National Institutes of Health (NIH) ChestX-
ray14 dataset to detect 14 common disease types.44,45 Then, the model was fine-tuned on the
Radiological Society of North America Pneumonia Detection Challenge dataset, which has a
high pneumonia prevalence, ∼24%, to detect evidence of pneumonia.46 The data for this pneu-
monia detection challenge can be accessed through the challenge website.46 The ground truth was
provided by the radiologists at the Society for Thoracic Radiology by labeling pneumonia cases.
Finally, the model was fine-tuned again on the training set of our COVID-19 dataset and then
ultimately evaluated on the independent held-out test set in the task of intensive care prediction
for COVID-19 patients, as conducted in our previous preliminary study.47 For the preprocessing,
the images were down sampled to 256 × 256 pixels and gray-scale normalized. Images were
randomly augmented by horizontal flipping, rotation of up to 8 deg and shifting by up to
10% of the image size. The model was trained with weighted cross-entropy loss function,
Adam optimizer, and a batch size of 64 with an initial learning rate of 0.0001. Step decay
on learning rate and early stopping were employed. The details regarding this cascade model
training approach can be found elsewhere.10,47 The sequential transfer learning diagram for pre-
dicting ICU admission of COVID-19 patients is shown in Fig. 1. The dataset was randomly split
at the patient level into 64% for training, 16% for validation, and 20% for testing using stratified
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sampling, holding the class prevalence for the least frequent outcome, i.e., intubation or ICU
admission within 24 h, constant across all subsets. Dataset statistics and the prevalence of cases
that required intensive care within 24, 48, 72, and 96 h after chest radiography exams are sum-
marized in Table 2.

2.3 Performance Evaluation
Performance was evaluated for the task of predicting the need for intensive care within 24, 48, 72,
and 96 h after each CXR exam in the test set (1048 patients, 1672 CXR exams). Here, the clas-
sification performance for each label was evaluated using receiver operating characteristic (ROC)
analysis with area under the proper binormal ROC curve (AUC) as the figure of merit.48,49 The
95% confidence intervals (CIs) of the AUC values were calculated by bootstrapping the posterior
probabilities of the test set (5000 bootstrap samples).50 The statistical difference between the

Fig. 1 Flow chart of sequential transfer leaning diagram for ICU admission prediction of COVID-19
patients.

Table 1 Patient demographics of the COVID-19 dataset. Age is reported in years as mean ±
standard deviation.

Dataset Entire dataset Training set Validation set Test set

By patients
Number of
patients

Age
(years)

Number of
patients

Age
(years)

Number of
patients

Age
(years)

Number of
patients

Age
(years)

Number of patients 5046 54.5�
19.1

3181
(63.0%)

54.3�
19.0

817
(16.2%)

55.7�
19.2

1048
(20.8%)

54.2�
19.3

Sex

Female 2833
(56.1%)

54.7�
19.7

1780
(56.0%)

54.6� 19.6 453
(55.4%)

55.1�
19.7

600
(57.3%)

54.4�
19.9

Male 2213
(43.9%)

54.4�
18.3

1401
(44.0%)

54.0� 18.2 364
(44.6%)

56.5�
18.5

448
(42.7%)

54.0�
18.5

Race

American Indian or
Alaska Native

9 (0.2%) 4 (0.1%) 0 (0.0%) 5 (0.5%)

Asian/Mideast Indian 44 (0.9%) 28 (0.9%) 10 (1.2%) 6 (0.6%)

Black/African-American 4241 (84.0%) 2687 (84.5%) 666 (81.5%) 888 (84.7%)

More than one race 198 (3.9%) 120 (3.8%) 37 (4.5%) 41 (3.9%)

Native Hawaiian/other
Pacific Islander

4 (0.1%) 2 (0.1%) 0 (0.0%) 2 (0.2%)

White 464 (9.2%) 278 (8.7%) 92 (11.3%) 94 (9.0%)

Unknown/patient declined 86 (1.7%) 62 (1.9%) 12 (1.5%) 12 (1.1%)

Ethnicity

Hispanic or Latino 271 (5.4%) 166 (5.2%) 45 (5.5%) 60 (5.7%)

Not Hispanic or Latino 4701 (93.1%) 2965 (93.2%) 759 (92.9%) 977 (93.2%)

Unknown/patient declined 74 (1.5%) 50 (1.6%) 13 (1.6%) 11 (1.1%)
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AUC values for different models was computed using ROCKIT software.51 Gradient-weighted
class activation mapping (Grad-CAM) was generated to provide a visual explanation of the mod-
el’s classification.52 The second performance evaluation was performed by patient and involved
the first CXR exam of each patient only (1048 patients, 1048 CXR exams). Here, time-to-event
analysis53,54 was performed based on the AI/ML output for the task of predicting the need for
intensive care within 96 h after the initial CXR exam. The median of the intensive care risk score
(the AI/ML output) was used to divide the patient cohort into “high risk” and “low risk” subsets,
and the corresponding hazard ratio was calculated. The third analysis involved post-hoc stepwise
fitting of a linear regression model using the intensive care risk score, patient age, sex, race,
ethnicity, and immunization status as initial variables to investigate whether variables other than
the AI/ML output, i.e., the ICU/intubation risk score, were important for determining the patient
prognosis within our test cohort. All reported performances pertain to the independent test set
(1048 patients).

3 Results
The ROC curves for predicting COVID-19 patients’ potential need for intensive care in 24, 48,
72, and 96 h in advance are shown in Fig. 2. We achieved an AUC (95% CI) of 0.78 (0.74, 0.81)
when predicting ICU admission 24 h in advance, while also achieving promising performances in
predictions made more in advance: 0.77 (0.73, 0.80), 0.76 (0.73, 0.80), and 0.76 (0.73, 0.80)
when predicting ICU admission 48, 72, and 96 h in advance, respectively.

Figure 3(a) shows two examples, each with the original CXR image and the Grad-CAM
heatmap from the last batch normalization layer of the model overlaid on the CXR image.
The top row in Fig. 3(a) is from a COVID-19–positive patient who was admitted to ICU within
4 h following image acquisition. The bottom row in Fig. 3(a) is from a COVID-19–positive
patient who did not receive intensive care within the 96 h after the CXR image was acquired,
most likely due to a mild assessment of the likelihood of receiving intensive care. The predictions
for intensive care within 24, 48, 72, and 96 h after CXR images agreed with the clinical assess-
ment with both patients. The highlighted areas from the Grad-CAM heatmaps showed the abnor-
malities in the lungs indicating those areas of lung that had the most impact on the classification
score, i.e., on the probability of COVID-19–positive patient to be admitted into ICU. This
elevated Grad-CAM signal in the COVID-19 patient could be an indication of pneumonia and
may be associated with the extent of ground glass/hazy opacities and consolidation of the lung

Table 2 Dataset statistics and the prevalence of cases that required intensive care within 24, 48,
72, and 96 h after chest radiography exams. The number of patients and images in each subset are
listed.

Entire dataset Overall Training Validation Test

Total Patient 5046 3181 (63.0%) 817 (16.2%) 1048 (20.8%)

Image 8357 5347 (64.0%) 1338 (16.0%) 1672 (20.0%)

ICU cases Overall Training Validation Test

24 h Patient 730 (14.5%) 468 (14.7%) 115 (14.1%) 147 (14.0%)

Image 979 (11.7%) 626 (11.7%) 157 (11.7%) 196 (11.7%)

48 h Patient 790 (15.7%) 505 (15.9%) 125 (15.3%) 160 (15.3%)

Image 1104 (13.2%) 718 (13.4%) 172 (12.9%) 214 (12.8%)

72 h Patient 801 (15.9%) 512 (16.1%) 126 (15.4%) 163 (15.6%)

Image 1174 (14.0%) 772 (14.4%) 179 (13.4%) 223 (13.3%)

96 h Patient 809 (16.0%) 519 (16.3%) 126 (15.4%) 164 (15.6%)

Image 1222 (14.6%) 808 (15.1%) 185 (13.8%) 229 (13.7%)
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area. Figure 3(b) shows two examples, the top row is a false positive example and the bottom one
is a false negative example.

The time-to-event analysis demonstrated that the “high risk” subset of patients (the half of
the cohort with a risk score larger than/equal to the median score) had a significantly increased
risk of the need for intensive care than the “low risk” subset (the half of the cohort with a risk
score lower than the median score, Table 3, Fig. 4). The hazard ratio was 0.22 [95% CI (0.16,
0.30); p-value < 0.0001].

In the stepwise fitting of a linear regression model using the intensive care risk score, patient
age, sex, race, ethnicity, and immunization status as initial variables, the intensive risk score was
selected first (p-value < 0.0001), and patient sex was selected second (p-value ¼ 0.020), with
the women being at a slightly lower risk of needing intensive care than the men in our cohort. All
other variables failed to reach statistical significance and were not selected.

4 Discussion
In this work, we present a deep learning method that can predict the need for intensive care of
COVID-19–positive patients using CXR images, where intensive care is defined as intubation
and/or ICU care, i.e., a prognostic marker of COVID severity.

Note here, without fine-tuning, the AUCs of 0.72 (0.68, 0.76), 0.70 (0.67, 0.74), 0.70 (0.66,
0.73), and 0.70 (0.66, 0.73) were obtained when predicting ICU admission 24, 48, 72, and 96 h in
advance, respectively. We observed statistically significant improved performance in predicting
ICU admission between two schemes, with fine-tuning and without fine-tuning, 0.78 versus 0.72
[95% CI of ΔAUC (0.0200, 0.0941), p ¼ 0.0025]; 0.77 versus 0.70 [for 95% CI of ΔAUC
(0.0305, 0.1038), p ¼ 0.0003]; 0.76 versus 0.70 [95% CI of ΔAUC (0.0305, 0.1011),
p ¼ 0.0003]; and 0.76 versus 0.70 [95% CI of ΔAUC (0.0322, 0.1027), p ¼ 0.0002] for pre-
dicting ICU admission 24, 48, 72, and 96 h in advance, respectively. These results indicated that
this sequential transfer learning strategy may be useful on improving the model performance.

A similar study by Shamout et al.56 predicted patient deterioration and achieved an AUC of
0.786 (0.745, 0.830) when using both clinical variables and imaging data and 0.738 (0.695,
0.785) when using CXR image data alone. Although a direct quantitative comparison with the
existing approaches was not feasible due to the differences in the task definition and datasets,

Fig. 2 ROC curves for classification tasks requiring intensive care or not within 24, 48, 72, and 96 h
from image acquisition. The legend gives the AUC with 95% CI for each task.
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Table 3 The number of ICU admission/intubation events within the different time windows for the
“high risk” and “low risk” patient subsets of the test set, i.e., for those patients receiving a risk score
smaller than, or larger/equal to, the median score of the test cohort in its entirety.

ICU admission/intubation events

Time window (h) “High risk” cohort (N ¼ 524) “Low risk” cohort (N ¼ 524) Entire cohort (N ¼ 1048)

0 to 24 123 (23.5%) 24 (4.6%) 147 (14.0%)

24 to 48 10 (1.9%) 3 (0.6%) 13 (1.2%)

48 to 72 2 (0.4%) 1 (0.2%) 3 (0.3%)

72 to 96 1 (0.2%) 0 (0%) 1 (0.1%)

0 to 96 136 (26.0%) 28 (5.3%) 164 (15.6%)

Fig. 3 Example CXRs overlaid with their Grad-CAM heatmaps for prediction of the need for inten-
sive care within 24, 48, 72, and 96 h, respectively, for instances (a) in which the AI/ML prediction
was correct and (b) in which the output was incorrect. The probability is the model output for the
likelihood of receiving intensive care scaled to 50% prevalence.55 The term “label” in the figure
reflects the “ground truth” for the intensive care requirement: 1 for ICU admission/intubation and
0 for no ICU admission/intubation. (a) The patient in the top example was admitted into ICU within
4 h after image acquisition (true positive example). The patient in the bottom example did not
require intensive care within 96 h after image acquisition (true-negative example). (b) The top
is a false positive example and the bottom is a false negative example.

Li et al.: Predicting intensive care need for COVID-19. . .

Journal of Medical Imaging 044504-7 Jul∕Aug 2023 • Vol. 10(4)



interestingly, our study, using imaging data alone, yielded a similar AUC to Shamout’s results
incorporating both clinical and imaging data. Li et al.16 also reported a COVID-19 pulmonary
disease severity model using CXR and achieved an AUC of 0.80 (95% CI 0.75 to 0.85) in pre-
diction of subsequent incubation or death within 3 days of hospital admission. Others have inves-
tigated ICU admission prediction based on clinical characteristics alone. Zhao et al.32 built a
prediction model for ICU admission based on clinical characteristics of COVID-19 patients.
That risk score model yielded an AUC of 0.74 (0.63, 0.85) for predicting ICU admission. A
similar study by Li et al.30 using only clinical variables achieved an AUC of 0.780 (0.760,
0.785) in ICU admission prediction with deep learning model, interestingly, our study achieved
comparable performance using image data alone.

The potential clinical utility of our CXR imaging-based ICU admission/intubation risk score
is further emphasized by both the presented time-to-event analysis and the fitted linear regression
model. In the former, patients deemed to be “high risk” by our AI/ML model were almost five
times as likely to require intensive care compared to those deemed “low risk.” In the latter, the
linear regression model included only patient sex as contributing significantly to the prediction of
the need for intensive care and coming second after the AI/ML predicted risk score. It should be
noted; however, that for different patient cohorts, demographical characteristics may play a larger
role since our institution serves a population with a demographic distribution that is different
from those of the US census57 or CDC.58

The majority of previous publications using imaging data of COVID-19 patients focus on
diagnosis rather than prognosis.12,59–65 While early and rapid diagnosis is crucial for highly infec-
tious diseases, such as COVID-19, laboratory testing ability has largely advanced so that timely
diagnosis by imaging is a lesser concern. Prognostic tasks are challenging but have substantial
benefits including accurately triaging patients and forecasting demands on related hospitalization
resources. An imaging-based model that can predict intensive care needs could potentially help to
alleviate these challenges. We expect our CXR-based AI model could supplement prior AI stud-
ies, which only incorporated clinical variables, such as vital signs and laboratory tests or CT
images,56,66–68 in the prognosis of COVID-19 patients.

Some cases were classified as false positive or false negative by the model and there are
some factors that could have contributed to this. First, the influence from irrelevant regions on
CXR images on the prediction of ICU admission status may contribute to the false positive cases.

Fig. 4 Time-to-event analysis for the need of intensive care within the 96-h time window after each
patient’s first CXR exam. The time progression of the data is plotted at the midpoint of the time
interval. For example, the patient fraction without ICU/intubation event at 24 h post-imaging is
plotted at 12 h.
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Incorporating lung region segmentation and cropping in the model could reduce false positive
cases. Second, CXR images are a primary imaging modality for assessing the COVID-19 disease
progression and pulmonary disease is the main complication associated with COVID-19 patients.
However, some COVID-19 patients may have other non-pulmonary related comorbidities con-
tributing to their deteriorating health and their ICU admission. These could cause a false negative
prediction by the model. By incorporating both imaging and non-imaging data, including clinical
variables and lab test results in the model could reduce the false negative and improve the model
performance.

Our study has some limitations, which will be addressed in future work. First, we will
expand the database to include more images as well as images from other institutions, so that
we can assess the robustness of our approach. While we had access to patient demographics,
clinical variables were not readily available. Thus, we will gather clinical variables as part of
future investigations. AL/ML models combining imaging data with clinical variables to predict-
ing ICU admission will be explored. We will also investigate the role of temporal analysis, taking
advantage of previous and follow-up CXR exams of COVID-19 patients to evaluate disease pro-
gression. Finally, we did not compare the performance of our AI/ML model to clinician perfor-
mance in predicting ICU admission from CXR. A reader study will be conducted to gather
clinicians’ performance on this ICU prediction task and compare with the proposed model
to access the potential clinical benefit of our model.

In summary, a deep learning CXR-based model was developed to predict patients’ risk of
requiring intensive care for COVID-19 at 24, 48, 72, and 96 h post-imaging. Overall, our findings
show the promise of AI-assisted medical image analysis in COVID-19 prognostic task, which
bear the potential to play an important role in supporting clinical decision-making especially in
situations of limited resources. Our proposed model may be potentially useful for efficient patient
triage and for low resourced regions that need to prioritize care, knowing who to treat immedi-
ately during a pandemic. This work has the potential to support both clinical decision-making
and resource management.
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