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ABSTRACT. Purpose: Retinopathy of prematurity (ROP) is a retinal vascular disease affecting
premature infants that can culminate in blindness within days if not monitored and
treated. A disease stage for scrutiny and administration of treatment within ROP is
“plus disease” characterized by increased tortuosity and dilation of posterior retinal
blood vessels. The monitoring of ROP occurs via routine imaging, typically using
expensive instruments ($50 to $140 K) that are unavailable in low-resource settings
at the point of care.

Approach: As part of the smartphone-ROP program to enable referrals to expert
physicians, fundus images are acquired using smartphone cameras and in-
expensive lenses. We developed methods for artificial intelligence determination
of plus disease, consisting of a preprocessing pipeline to enhance vessels and
harmonize images followed by deep learning classification. A deep learning binary
classifier (plus disease versus no plus disease) was developed using GoogLeNet.

Results: Vessel contrast was enhanced by 90% after preprocessing as assessed
by the contrast improvement index. In an image quality evaluation, preprocessed
and original images were evaluated by pediatric ophthalmologists from the US and
South America with years of experience diagnosing ROP and plus disease. All
participating ophthalmologists agreed or strongly agreed that vessel visibility was
improved with preprocessing. Using images from various smartphones, harmonized
via preprocessing (e.g., vessel enhancement and size normalization) and aug-
mented in physically reasonable ways (e.g., image rotation), we achieved an area
under the ROC curve of 0.9754 for plus disease on a limited dataset.

Conclusions: Promising results indicate the potential for developing algorithms and
software to facilitate the usage of cell phone images for staging of plus disease.
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1 Introduction
Retinopathy of prematurity (ROP), a disease affecting preterm infants characterized by abnormal
development of retinal blood vessels, is the leading preventable cause of infantile blindness.1,2

Plus disease is an indicator of ROP severity and is characterized by severe dilation and tortuosity
of retinal blood vessels in the posterior pole.1,3,4 Once plus disease is identified, infants are treated
using laser photocoagulation or anti-vascular endothelial growth factor (anti-VEGF) injections
with great success.5,6 However, an incorrect diagnosis or lack of screening can prove detrimental
as the onset of plus disease can result in blindness within two weeks if left untreated, with nearly
50,000 infants blinded due to ROP annually worldwide.7,8 Routine retinal examination by skilled
ophthalmologists is critical for early detection and treatment of ROP.

Screening for ROP is needed around the world. In high-income countries, routine screening
protocols are well established, using expensive imaging systems costing 50 to 140K US dollars.
As a result of screening, clinicians have managed to control ROP severity and rates of
blindness.9,10 However, in middle and low-resource environments where access to adequate
screening is limited and survival rates of premature infants have increased, ROP disease numbers
have risen, resulting in the “third epidemic” of ROP.10 The first ROP epidemic occurred as a
result of unrestricted use of oxygen, and the second was a result of increased premature infant
survival rates in high-income countries.11 The rise of telemedicine has led to the use of smart-
phone cameras for routine imaging in low-resource environments, proving necessary as prema-
ture infantile survival rates increase, causing the relative number of ophthalmologists trained for
ROP and plus disease diagnosis to decrease.9,12,13 Smartphones are advantageous in these settings
due to their accessibility, low-cost, mobility, and access to the internet for referral. However, the
image quality and field of view are much reduced compared with the expensive commercial
systems.12 An advanced imaging device is the Natus RetCam (Middleton, Wisconsin, United
States), a device costing ∼140;000 US dollars. RetCam images have a 130 deg field of view,
whereas the smartphone images have a field of view of ∼30 deg to 40 deg.14

There are reports of automated analysis of fundus images for ROP and plus disease diagnosis
using images from the RetCam.2,15,16 Various works used large datasets (thousands of images) for
model development consisting of standardized images with higher fields of view.2 Tan et al. used
4926 deidentified RetCam images to train inception-V3, a convolutional neural network (CNN),
to diagnose the presence of plus disease with a resulting area under the ROC curve (AUC) of
0.993.10 Brown et al. employed two successive CNNs, one for vessel segmentation and the other
for classification, to develop a high-accuracy model for three-stage plus disease classification.2

The success of such works encouraged us to apply similar methods to lower quality cell phone
fundus images.

In this report, using cell phone images, we developed methods for image enhancement and
harmonization as well as artificial intelligence (AI) algorithms for ROP disease staging. Images
were obtained from collaborators across South America as part of the smartphone-ROP
(SP-ROP) project using Volk diopter lenses and a variety of cell phone makes and models. This
created a dataset with large variations in image quality, focus, lighting, and exposure, but we
developed a preprocessing method to enhance vessels and regularize presentation to clinicians
in all of the fundus images that we received. The same preprocessing method was used to prepare
images for deep learning classification of plus disease. In this report, we describe preprocessing
methods, image quality evaluations by physicians, deep learning classification of plus disease,
and a comparison between AI classifications and those of expert physicians.

2 Images and Algorithms

2.1 Image Acquisition and Preprocessing
Methods for smartphone image acquisition are as follows. Collaborators in Argentina and
Colombia acquired 440 images of the fundus of premature infants. Deidentified images were
obtained from collaborating institutions under an approved Data Use Agreement. The Case
Western Reserve University Institutional Review Board office deemed this project to be non-
human subject research. These images were obtained as part of the SP-ROP project, which
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consists of physician representatives from various countries in South America, Central America,
and North America. During image acquisition, physicians dilated the pupils of the infant using
eye drops, placed either a Volk 28D or 20D lens over the eye, and acquired images using a
smartphone camera. Smartphone camera makes and models varied. Deidentified data included
ROP stage and plus disease level (“no plus,” “pre plus,” or “plus”), as determined in person by an
expert physician using all clinical information available, including administered treatments.
Images ranged in size from 300 to 1200 pixels in length and width and had variable lighting,
sometimes with specular reflections. For each patient, physicians acquired images of both the
central and peripheral view of the fundus. For the purposes of this study, we only used images
that featured the optic nerve.

The image enhancement pipeline (Fig. 1) included various preprocessing steps and took into
account variations in image size and orientation. We began by selecting the green channel of the
RGB image, which has the greatest contrast between the vessels and fundus. A mask of the
fundus region was identified using the Hough circular transform, an algorithm that detects cir-
cular structures within a given input range. The algorithm increments through edge points in an
image, draws a circle with a center at the given edge point with radius r, and finds maxima in the
coordinates of the perimeter of this circle. The circular structure identified was used to create a
binary mask by which the green channel image was multiplied. The image was then cropped to
include only the fundus and then made square via the addition of rows or columns of zero-valued
pixels. Linear unsharp masking was then performed using a 5 × 5 averaging filter with a gain of
3. These values were qualitatively selected after testing a range of values on a subset of images
with varying lighting and quality. This was followed by contrast limited adaptive histogram
equalization, a version of adaptive histogram equalization that prevents noise enhancement and
overamplification of contrast in uniform regions.17 Gaussian filtering was used to counteract any
over-sharpening of non-vascular regions (i.e., specular reflection and artifacts) from previous
steps. Images were finally resized to 800 × 800 pixels for uniformity.

2.2 Deep Learning Algorithms
The algorithms used in this study are explained below. Although plus disease has been stratified
into three categories in recent years, the diagnosis of the “plus” category remains the indicator for
administration of treatment.18 Therefore, we grouped the “no plus” image category with “pre
plus” to develop a binary deep learning framework to distinguish these from images in the “plus”
category. The ground truth diagnoses for our deep learning model were those obtained during
image acquisition as part of a proper in-person clinical examination, during which physicians
examined the infant using indirect binocular ophthalmoscopy, saw more than the isolated image
(were able to achieve a larger field of view by moving the lens around the eye), and made treat-
ment decisions based on their expanded evaluations.

Fig. 1 Preprocessing workflow with example image.
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Our binary deep learning model was developed using the GoogLeNet (inception-v1) net-
work pretrained on the ImageNet dataset. The pretrained GoogLeNet is a 22-layer network
that classifies images into 1000 object categories. To leverage this network, we froze the first
20 layers and replaced the last learnable layer and the final classification layer with layers
relevant to our dataset. GoogLeNet was selected as the network of choice for transfer learning
as it outperformed other networks pretrained on ImageNet, including Inception v3 and ResNet.
Implementation on the untrained GoogLeNet was explored and abandoned, with poor results
due to limited dataset size. We additionally investigated the impact of pretraining ImageNet-
pretrained GoogLeNet on 5000 images from EyePACS, a large publicly available fundus
image dataset for classification of diabetic retinopathy and fine tuning on our dataset. This
yielded identical results on our held-out test set and was thus not included in our training
workflow.

Our dataset suffered from imbalance in the class distribution, with 385 “no plus” images and
only 55 “plus” images. To mitigate the effects of class imbalance, we first performed large-scale
augmentation on the training set, creating eight times each class type using five rotation
augmentations, reflection over the x-axis, and reflection over the y-axis. Performing such trans-
formations was physically reasonable as our original images had varied orientations depending
on physician acquisition. From this augmented dataset, we randomly selected an equal number
of images from each class. The network was trained on this balanced dataset and evaluated on
a held-out unaugmented test data. This workflow, including the augmentation/randomized
selection method to correct for class imbalance, is depicted in Fig. 2.

Given the nature of the disease, it is critical to consider the implications of unsuccessful
classification. As such, we chose to employ the real-world-weight cross-entropy (RWWCE) loss
function, a loss function that assigns costs to false negatives and false positives to incorporate
information about the real-world impact of the problem.19 In the case of a false positive, the baby
would receive an inaccurate plus disease diagnosis and would be treated via either anti-VEGF
injections or laser photocoagulation.20,21 Although unlikely, along with either of these treatments
come potential side effects, including loss of visual field, myopia, and retinal destruction.20

However, the cost of a false negative is much more detrimental, as an untreated case of plus
disease can cause the baby to go blind within days.7 In terms of price point, treatment using
anti-VEGF is 20,076 US dollars on average and treatment with laser photocoagulation is
17,129 US dollars.22 Estimates suggest the mean annual expenses per patient with blindness
are US$ purchasing power parties (PPP) 14,882-24,180.23 It is important to note that this value

Fig. 2 Deep learning workflow for binary classification and GoogLeNet (inception-v1) architecture.
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is calculated for the US and may not be perfectly accurate for populations outside of the US as the
cost of caretakers contributes to this estimate, which may not be accessible to all. To estimate the
cost of blindness over a lifespan versus the cost of the procedure, we have selected a weight of
$1,700,000 for false negatives and a weight of $17,000 for false positives (100:1). Recognizing
that this is somewhat arbitrary, we tested the effect of changing this ratio to 50:1 and 200:1. The
RWWCE loss for binary classification is calculated as

EQ-TARGET;temp:intralink-;e001;117;664Jbrwwce ¼ −
1

M

XM

m¼1

½½wmcfn × ym × logðhθðxmÞÞ þ wmcfp × ð1 − ymÞ × logð1 − hθðxmÞÞÞ�; (1)

where Jbrwwce is the binary real-world-weight cross-entropy loss, M is the number of training
examples, wmcfn is the marginal cost of a false negative, wmcfp is the marginal cost of a false
positive, ym is the target label for training example m, xm is the input for training example
m, and hθ is the model with neural network weights θ.19

3 Experimental Methods

3.1 Evaluation of Image Preprocessing
The contrast improvement index (CII) was calculated to quantify the contrast in the preprocessed
image with respect to the input image.24,25 The CII was obtained by calculating the average local
contrast C as measured in a 3 × 3 window swept over the image and dividing C for the proposed
preprocessed image by C for the original image [Eqs. (2) and (3)]. A CII value>1 corresponds to
an increase in image contrast

EQ-TARGET;temp:intralink-;e002;117;455C ¼ max−min

maxþmin
; (2)

and

EQ-TARGET;temp:intralink-;e003;117;409CII ¼ Cproposed

Coriginal

: (3)

3.2 Physician Image Quality Assessment
We conducted an image quality evaluation study to evaluate the effect of image preprocessing
and harmonization. We surveyed a group of expert pediatric ophthalmologists, each having years
of experience monitoring, imaging, diagnosing, and treating patients with ROP and plus disease.
Physicians were presented with a graphical user interface (GUI) with images (with and without
preprocessing), buttons to grade plus disease for each image, and a series of questions regarding
their preference of the preprocessed or original images. Fifty images and their preprocessed
counterparts were randomly selected from our image dataset and presented to the physicians
in a randomized order, with each physician evaluating the same 100 images. Grading of the
images occurred in three categories—“plus,” “no plus,” and “pre plus.” The physicians were
presented with three questions after grading all 100 images, selecting from the responses
“strongly disagree,” “disagree,” “neither agree nor disagree,” “agree,” and “strongly agree”
on the 5-point Likert scale.

1. Did you find it easier to view the vessels in the processed images?
2. Will this image processing method improve your ability to diagnose plus disease?
3. Would you find it helpful to implement the processing method on your images immedi-

ately after acquisition?

We collected responses from eight pediatric ophthalmologists, two from the United States
and six from Argentina. The physicians from the United States typically work with RetCam
images, whereas those from Argentina use the smartphone as their primary tool for fundus image
acquisition. It is important to note that, when making diagnoses on the GUI, physicians were
forced to diagnose based only on the image displayed, whereas the ground truth diagnoses were
made during an in-person clinical examination of the patient.
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3.3 Deep Learning Classification Experiments
We conducted the following cross-validation experiments to investigate the consistency of our
results:

1. stratified five-fold cross-validation experiment using cross entropy loss
2. stratified five-fold cross-validation experiment using RWWCE loss

and the following train/held-out test experiments to compare network performance to that of
physicians:

1. train/test experiment on processed images using cross entropy loss
2. train/test experiment on processed images using RWWCE loss
3. train/test experiment on original (unprocessed) images using cross entropy loss.

The details on each of these experiments follow.
The stratified five-fold cross-validation experiments were conducted for four repetitions. For

each repetition, the dataset was randomly split into five folds, with four splits constituting the
training dataset and one the testing dataset (80% train and 20% test). The augmentation/random-
ized selection method was used to generate 2464 “no plus” images from 308 and 352 “plus”
images from 44 and to create a balanced 600 image training dataset. The network performance
was evaluated on the unaugmented testing dataset. This was performed for each of the five folds,
and the experiment was repeated four times. The cross-validation experiment was conducted
once using a standard cross-entropy loss function and again using the RWWCE loss function.
The real-world cost, evaluated to compare loss function performance, was calculated as the cost
of a false negative multiplied by the number of false negatives plus the cost of a false positive
multiplied by the number of false positives, divided by the number of samples.19

The train/held-out test validation experiments, using the 50 images randomly selected for
physician evaluation via the GUI as the held-out test set, were performed to analyze the relation-
ship between physician performance and model performance. Each label from the remaining 390
images was split into training and validation sets (90% train and 10% validation). For the training
set, the augmentation/randomized selection method was used to create a class-balanced training
dataset of 600. We trained the network using standard cross-entropy loss and RWWCE loss.
Training on the unprocessed images was then performed using the same methods, with the
unprocessed versions of the same 50 images constituting the held-out test set, to evaluate the
utility of the preprocessing method for the deep learning classifier.

3.4 Comparison Between Deep Learning and Physician Performance
We compared the performance of our preliminary deep learning model to that of the pediatric
ophthalmologists. We again grouped the “no plus” category with the “pre plus” category and
distinguished these from “plus,” as was done for the deep learning model, for the 50 image test
set. Accuracy, sensitivity, and specificity were calculated for each physician evaluator, as well as
for the deep learning model that performed best on the held-out test set.

4 Results

4.1 Evaluation of Image Preprocessing
Image enhancement greatly improved the visibility and contrast of retinal vessels (Fig. 3). 10 out
of the 440 total image pairs were randomly selected for evaluation of the CII. We found that
the average CII for the subset of 10 images was 1.899, meaning the contrast was enhanced by
89.9% for the preprocessed images. Additionally, each image pair had a CII > 1.

4.2 Physician Image Quality Assessment
Responses from the physician image quality experiment are recorded in Fig. 4. Physicians
answered “agree” or “strongly agree” to every question, with the exception of one participant
responding “neither agree nor disagree” to the third question, “Would you find it helpful to
implement the processing method on your images immediately after acquisition?” It should
be noted that this physician practices in the United States and thus does not use smartphone
images for diagnosis, so there may have been some ambiguity in this question.
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4.3 Deep Learning Classification Experiments
We performed cross-validation experiments using both the standard cross-entropy loss function
and the RWWCE loss function. ROC curves were averaged over all 20 iterations (5 folds with 4
repetitions) and their standard deviations were calculated. Averaged ROC curves and standard
deviations are shown in Fig. 5, along with traditional metrics (accuracy, sensitivity, specificity,
and AUC) averaged over 20 iterations. Accuracy, sensitivity, and specificity were measured using
a threshold of 0.5. Using the RWWCE loss function, the average number of false negatives
over 20 iterations (the number of infants with plus disease that would be misclassified and thus
not treated) becomes 2.65 from a previous value of 3.3 using the cross-entropy loss function.
To understand this, consider a cohort of 1000 infants with a prevalence of plus disease of 12.5%,
as in our dataset. Using smartphone images for diagnosis, based on the network trained using
cross-entropy loss, 38 infants with plus disease would be misdiagnosed, whereas based on the
network trained using RWWCE loss, 30 infants having plus disease would be misdiagnosed.
Although this may seem like a small numerical improvement, aside from eight babies not going
blind being the biggest gain, when considering the weighting of the cost of a false negative at
$1,700,000, or what we have determined to be the “cost of lifelong blindness,” this is a change of
$13,600,000. Furthermore, the average real-world cost using the cross-entropy loss function was
$65,768.75 over the 20 iterations of test sets, whereas that using the RWWCE loss function was
$54,892.61. Our results demonstrate the benefit of employing the RWWCE loss function in cases
in which the cost of missing a case of the disease vastly outweighs that of falsely identifying the
disease.

Fig. 4 Responses of pediatric ophthalmologists to questions at the end of GUI. Question 1: Did
you find it easier to view the vessels in the processed images? Question 2: Will this image process-
ing method improve your ability to diagnose plus disease? Question 3: Would you find it helpful to
implement the processing method on your images immediately after acquisition?

Fig. 3 Original smartphone fundus images and corresponding images after preprocessing.
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On the held-out test set, training/testing on the preprocessed images gave promising results,
and doing so on the unprocessed images provided insight into the utility of the preprocessing
method. When training/testing using the preprocessed images, we obtained an AUC of 0.9754,
accuracy of 0.96, specificity of 1, and sensitivity of 0.7143 on the held-out test set of 50 images.
The precision was 1, recall was 0.7143, and the F1 score was 0.833. The ROC plot shows a high
AUC for both empirical and parametric estimations of the ROC curve, and two of the seven
“plus” images were classified as “no plus” in the confusion matrix (Fig. 6).26 Results using the
RWWCE loss function for the train/held-out test experiments on the preprocessed images are

Fig. 5 ROC curves for five-fold cross validation, with four iterations, using both the cross entropy
loss and the real-world weight cross-entropy loss.

Fig. 6 (a) ROC curve, including both parametric and empirical estimations and (b) confusion
matrix for the test set.
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reported in Fig. 7. The loss function correctly identified an additional “plus” case at the expense
of four false positives. We finally evaluated deep learning classification on images without pre-
processing, using the standard cross-entropy loss function. Classifier performance was not quan-
tifiably much worse than in the corresponding experiment using processed images, also only
misclassifying two of seven “plus” cases and accumulating five false positives. However, the
assessment of the class activation maps for both the network trained/tested on the original and
preprocessed images demonstrates that, without processing, the network relies on unreasonable
regions of the image to make classification decisions (Fig. 8). Class activation maps were gen-
erated using a weighted sum of the feature maps of the final convolutional layer and highlighted
discriminative regions critical to the final classification of the image.27 It is clear from the acti-
vation maps that the network is focusing on haphazard regions of the unprocessed images for
classification, but after preprocessing, it focuses on a targeted region of the vasculature.

Fig. 7 Results on the held-out test set using the real-world-weighted cross-entropy loss function.
(a) Confusion matrix for held-out test set and (b) the inaccurately classified plus disease image.

Fig. 8 Class activation maps. (a)–(c) Test images when network training/testing uses a processed
dataset. (d)–(f) Corresponding images when network training/testing uses the original unproc-
essed dataset.
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4.4 Comparison Between Deep Learning and Physician Performance
As seen in Fig. 9, the deep learning classifier outperformed the physicians in terms of accuracy,
sensitivity, and specificity for a binary plus disease diagnosis. Sensitivity is particularly of inter-
est as it corresponds to the number of correctly classified “plus” cases, for which deep learning
largely outperformed the ophthalmologists. In 91.7% of cases, the physician performance on
preprocessed images was better than or equal to their performance on the original images, dem-
onstrating the utility of the preprocessing method for physician use.28 The accuracy and sensi-
tivity of classification by physicians were both statistically greater on preprocessed images than
on the original images, as determined using one-sided paired t-tests (p ¼ 0.00127 and
p ¼ 0.00579, respectively).

5 Discussion
To address the unmet need for accurate, affordable access to ROP staging around the world,
we investigated preprocessing enhancements and AI on fundus images obtained using a simple
handheld lens and a smartphone. Preprocessing increased vessel visibility and harmonized
smartphone images as evaluated by physicians. Remarkably, deep learning classification on
single images gave very good classification results compared to a ground truth from physicians
examining the infant in-person with consideration of the patient’s condition. Furthermore,
deep learning outperformed physicians making diagnoses based on single smartphone images
alone (Fig. 9). Although deep learning on unprocessed images gave similar classification
results to that on preprocessed images, class activation maps suggested that deep learning with
unprocessed images focused on clinically unimportant image regions as compared with a net-
work trained with the preprocessed images that we developed (Fig. 7). Activation map analysis
suggests that preprocessing might give more generalizable results across a larger variety of
images. Cell phone images certainly have limitations, but our image enhancement steps greatly

Fig. 9 Comparative performances of physicians and deep learning on a held-out test set.
(a) Accuracy, (b) sensitivity, and (c) specificity.
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improve their utility. The image size is regularized, the contrast of vessels is greatly enhanced,
and images can be read in sub-par lighting conditions. Image enhancement was preferred by
pediatric ophthalmologists for decision making, quantitatively increased contrast and vessel
visibility, and facilitated the development of a deep learning model with high accuracy and
explainability.

Image enhancement and harmonization proved beneficial not only for physician evaluation
but also for deep learning classification. Class activation maps on preprocessed images suggest
that the network classifies images as “plus” by looking at the first branching after the optic nerve
and classifies “no plus” based on the region immediately surrounding the optic nerve. This is in
contrast to physicians, who examine the entirety of the infant’s eye, including regions out of the
field of view of these images, and make final decisions based on the optic nerve alone. This is
interesting moving forward as we continue to develop software for automated plus disease
diagnosis and potentially incorporate peripheral fundus images into our work.

We found that, when evaluated on the same held-out test set presented to trained ophthal-
mologists for grading, the deep learning model greatly outperformed physicians, particularly in
terms of sensitivity (Fig. 9). This is likely due to the fact that ophthalmologists are accustomed to
diagnosis based on an in-person clinical eye exam or a gold-standard RetCam image. The suc-
cessful performance of our deep learning solution suggests the potential for accurate diagnosis
using smartphone fundus images and the future utilization of these images for telemedicine-
based diagnoses.

Our project had some limitations. First, we had access only to a limited dataset of 440
images. Second, we selected single images for deep learning work. Our selection criteria for
images included in our study was the presence of the optic nerve; however, inclusion of addi-
tional images showing peripheral anatomy might provide a more complete picture for network
analysis. Despite the limited number of cases of plus disease in our dataset, we developed
an experimental protocol to measure the physicians’ abilities to use low quality, low field of
view smartphone fundus images to diagnose plus disease and compare this with the deep learning
performance. Future work will involve further collaboration with other countries in the
SP-ROP project and access to more smartphone images.

6 Conclusion
We have demonstrated the ability to enhance cell phone images of the fundus for improved visu-
alization and the ability to detect plus disease using AI. Results suggest that it might be possible
to create local or cloud software to improve the diagnosis of plus disease in low-resource settings,
saving many premature infants from blindness. We hope that our work can stimulate further
efforts for creative low-cost solutions to this critical issue. With accessible, accurate staging,
clinicians can treat the right patients and reduce the rates of the leading cause of preventable
blindness in children.
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