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ABSTRACT. Purpose: Understanding an artificial intelligence (AI) model’s ability to generalize
to its target population is critical to ensuring the safe and effective usage of AI in
medical devices. A traditional generalizability assessment relies on the availability
of large, diverse datasets, which are difficult to obtain in many medical imaging
applications. We present an approach for enhanced generalizability assessment
by examining the decision space beyond the available testing data distribution.

Approach: Vicinal distributions of virtual samples are generated by interpolating
between triplets of test images. The generated virtual samples leverage the char-
acteristics already in the test set, increasing the sample diversity while remaining
close to the AI model’s data manifold. We demonstrate the generalizability assess-
ment approach on the non-clinical tasks of classifying patient sex, race, COVID
status, and age group from chest x-rays.

Results: Decision region composition analysis for generalizability indicated that a
disproportionately large portion of the decision space belonged to a single “preferred”
class for each task, despite comparable performance on the evaluation dataset.
Evaluation using cross-reactivity and population shift strategies indicated a tendency
to overpredict samples as belonging to the preferred class (e.g., COVID negative) for
patients whose subgroup was not represented in the model development data.

Conclusions: An analysis of an AI model’s decision space has the potential to
provide insight into model generalizability. Our approach uses the analysis of
composition of the decision space to obtain an improved assessment of model
generalizability in the case of limited test data.
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1 Introduction
Understanding the limitations of artificial intelligence (AI) models in medical devices is crucial
to ensuring that they continue to be used in a safe and effective manner. An important real-world
safety and/or effectiveness issue is when a model does not generalize well to the intended target
population or users. However, determining the limitations of a model’s generalizability based
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only on a single independent test dataset is not trivial. Estimated generalizability is typically
evaluated using an external test dataset sequestered from multiple sources1,2 while accounting
for and mitigating any sources of bias.3 This test set is created with the assumption that it is a
good approximation of the intended target user or patient population of the medical device. In the
case of medical imaging devices, intended populations can change over time, and large and
diverse test datasets are difficult to obtain,4 making it challenging to provide timely access
to AI technologies in health care while ensuring a proper level of safety and effectiveness.
This is a dilemma considering the potential advantages that AI technologies5 have to offer in
improving health care delivery. The need for methods of assessing model generalizability is
becoming even more important with the advent of evolving algorithms that may be piece-wise
modified by the device developer,6 potentially updated continuously7 or tailored to a local
population8–10 or specific subgroups.11 Thus, there is a need to innovate and help overcome some
of the generalizability assessment limitations in AI-enabled medical devices.

There are a variety of approaches that can be used, either independently or in conjunction
with each other, to assess a model’s ability to generalize. One such approach is the use of explain-
able AI techniques. An explainable model provides users with information about how its decision
was reached, which can help indicate when models are being used in situations in which they
cannot generalize well and the model does not have sufficient knowledge to make a meaningful
prediction.12 Explainable AI approaches seek to increase the transparency of how deep convolu-
tional neural networks (DCNNs) arrive at their outputs. However, model transparency is ill-
defined13 and claims of explainability are difficult to validate. Another approach for ensuring that
models are only used on populations for which their predictions are reliable is to use open-set
or anomaly detection methods to determine when a sample is outside of the intended target
population.14 Although these approaches have the potential to increase the safety of AI-enabled
devices, the situations in which they can be realistically applied are limited. These approaches
require fitting an additional classifier or rely on access to extensive knowledge of the training data
distribution. Furthermore, a diverse test dataset is required to evaluate the effectiveness of open-
set and anomaly detection approaches. Out-of-distribution detection can also be accomplished
using Bayesian models due to their inherent capabilities at both capturing and using the data
distributions for prediction.15 Despite these capabilities, Bayesian models have limited practical
applicability as they are computationally expensive, training a robust model is difficult, and
they have been shown to perform worse than deep ensembles in the case of data shift.16

Current methods that can reliably evaluate model generalizability require the availability of
large, diverse datasets, which may be an unrealistic expectation in the field of medical imaging. An
analysis of the model’s decision function and accompanying decision space has the potential to
provide information on how it will perform on data beyond those available and how it can be
applied to any model, regardless of the architecture.17 In this work, we present a novel approach
for a test-time assessment of AI model generalizability with limited data that leverages the existing
diversity in the data to create virtual samples for each class, which are used to obtain a deeper
understanding of the model’s decision space (Sec. 2). Using the non-clinical task of classifying a
patient subgroup from chest x-rays (CXR) as an example (Sec. 3), we demonstrate that decision
region composition analysis can provide some additional understanding of model generalizability
beyond what can be gleaned from the performance on the original limited available data (Sec. 4).
Our work, along with parallel efforts in the areas of open-set, anomaly detection, and explainable
AI methods, may help in assessing the safety of AI-enabled medical devices in an efficient manner.

2 Decision Region Analysis
Analysis of an AI model’s decision space involves mapping a change in the input data to a
change in the output class to determine the way in which altering different input features affects
the model’s prediction. For simple classifiers with low-dimensional inputs, the decision space
can be analyzed relatively easily using the dimensions of the input as the axes to create a visu-
alization to show the effect of each input feature on the model’s prediction. The increased dimen-
sionality and complexity of DCNNs make decision space analysis difficult18 as it requires a way
to create a meaningful representation of a high-dimensional space.
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One approach to creating an interpretable representation of the decision space is to use mani-
fold learning. Manifold learning involves the use of dimensionality reduction techniques to create
a low dimensional representation of high dimensional data that maintains the intrinsic structure.19

Dimensionality reduction techniques can provide useful information on the relative similarity of
samples from a model perspective. However, dimensional reduction techniques are always sub-
ject to the distortion of angles and distances,20 and they have varying degrees of subjectivity as
the projection depends heavily on the specific parameters and dataset used. Dimensionality
reduction techniques do not provide information about a model’s generalizability as they cannot
provide information about the decision space beyond the available data without the use of an
inverse projection.20 Analysis of the decision space without the use of dimensionality reduction
requires the creation of virtual samples.17 Creating virtual samples increases the density of
samples in the decision space and allows for the assessment of the decision space beyond the
available samples. Because of the limited information that dimensionality reduction techniques
provide regarding the decision space beyond the available data, virtual sample generation is used
to characterize the decision space instead.

There are several ways to create virtual samples and not all of them provide the same insight
into the decision space. Section 2.1 introduces properties of the decision space for DCNNs
related to the model’s generalizability and the characterization thereof. The approach used in
this study to generate virtual samples is presented in Sec. 2.2, and the assessment of the general-
izability of a DCNN via characterization of the decision space is given in Sec. 2.3.

2.1 Structure of the Decision Space
An understanding of the decision space is needed to ensure that the virtual samples generated are
useful for generalizability assessment. This relationship is the foundation for our proposed
approach of decision region analysis for generalizability (DRAGen). The decision space of
DCNNs becomes structured as the model trains, developing decision boundaries around a mani-
fold formed by the set of samples provided during training.21 The resulting decision space is
highly structured near the data manifold and lacks structure elsewhere. This results in the model
being unable to generalize well on samples that fall outside of the structured region of the deci-
sion space surrounding the data manifold.21 Thus, to assess the model generalizability using the
decision space, we must determine not the structure of the data manifold but rather how far
beyond the data manifold this structure extends. However, quantifying the distance in the deci-
sion space is an ongoing challenge22 due to its high dimensionality. Due to the difficulty in meas-
uring distance in the decision space, multiple samples that are already known to lie near the
manifold are used to generate virtual samples. Although the finite test set may not sufficiently
represent the entire intended population, it does represent a portion of it. Therefore, the data
manifold is known to reside within the portion of the decision space representing the intended
population. Using multiple original samples during the generation of virtual samples ensures that
the virtual samples lie near the manifold as each original sample serves to anchor the distribution
of virtual samples to the region of the decision space near the manifold. This approach has been
used to characterize the decision boundary using adversarial examples.23 However, this approach
by itself is restricted to the available samples rather than the behavior of the decision space
beyond the available data. Thus, increasing the diversity of the sample space through the gen-
eration of virtual samples can help determine the extent of the structure beyond the data manifold.

2.2 Vicinal Distribution Generation
Linear interpolation presents a simple and robust way to generate a vicinal distribution of virtual
samples from the original data distribution as was done in the mixup method.24 The linear inter-
polation of two samples has been shown to be sufficient for increasing the model generalizability
when used during training,24 and to characterize the properties of decision boundaries when used
at test-time evaluation.23 However, by interpolating between a “triplet” of three images sampled
from the original dataset, the virtual samples are generated closer to the existing data manifold
where the decision boundaries of the model are structured.21 The triplet of samples is composed
of three selected points in the input space that can be used to construct a plane spanning the triplet
in the input space.21 Virtual samples are created by uniformly sampling the constructed plane.
Model inference on the virtual samples allows for a region of the decision space to be visualized
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by mapping the model classification to a two-dimensional plane spanned by the triplet in the
input space. This allows for the characterization of the region of the decision space that lies
in the vicinity of the triplet samples, thus providing additional anchoring locations to the region
of the decision space near the manifold. The process is shown in Fig. 1. The use of vicinal
distributions for the analysis of the decision region composition was explored in a preliminary
work25 that evaluated the decision region for a classifier of patient sex and image acquisition
method from CXR. This study builds upon that preliminary work to connect the composition
of the decision region to the model’s generalizability.

2.3 Decision Region Composition
Model classification of the vicinal distribution of virtual samples provides information on how
the model will behave when presented with samples that are not represented by the model devel-
opment data but still fall near the structured regions of the decision space. However, the virtual
samples lack associated labels and attribute information. Previous work using linearly interpo-
lated virtual samples during model training demonstrates increased generalizability when the
labels are linearly interpolated along with the sample images.24 Nevertheless, the same approach
cannot be applied to virtual samples generated for model evaluation as there is no way to deter-
mine the “true class” of a virtually created image. To overcome this limitation, the decision
regions in this study are generated from triplets in which the samples within a triplet all belong
to the same class. Each decision region’s composition is then evaluated with respect to the class
of the triplet rather than the model’s performance on individual virtual samples.

As explained in Sec. 2.1, the difficulty in measuring the distance in an interpretable way
complicates the analysis of the decision space and makes it challenging to directly measure the
area of the decision space dedicated to each class. To overcome this limitation, in our approach

Fig. 1 Overview of the proposed approach to characterize the model’s decision regions (Sec. 2). A
vicinal distribution of virtual samples is created using linear interpolation along the plane between a
triplet of three samples in the input space (Sec. 2.2). Model classification of the virtual samples
allows for the mapping of the model output to the input space and visualization of a region of the
decision space. Aggregation of the composition of decision regions from a multitude of triplets
provides insight into the model’s behavior on samples beyond the available dataset (Sec. 2.3).
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the composition of the regions of the decision space is estimated using the percentage of vicinal
distribution samples classified as belonging to each class. As the virtual samples of the vicinal
distribution are evenly distributed between the samples of the input triplet, they can be used as
a proxy to the area of that region of the decision space dedicated to that class.

3 Materials and Methods
The AI models developed in this study were trained to classify CXR images into patient attrib-
utes: sex, race, age group, and COVID status. Although these tasks are not all clinically relevant,
this systematic experimental setup is designed to develop and validate the enhanced generaliz-
ability assessment approach that can be used for any AI-enabled medical imaging classification
task, as described in Sec. 2.

3.1 Data
Data from the Medical Imaging and Data Resource Center (MIDRC) Open-A1 repository were
used in this study, and the associated patient subgroups are provided in Appendix A. Patients
with missing label information for one or more of the classification tasks (sex, race, age, or
COVID status) were not included in the study as they could introduce noise into the training
data and would be impossible to evaluate. A single image with the imaging study date closest
to the patient’s polymerase chain reaction (PCR) test date was selected for each patient. Random
image selection was used in the event that a patient did not have a recorded PCR test or to make
a selection between multiple images taken with the same number of days from a PCR test.
The images used in this study were restricted to anterior-posterior and posterior-anterior view
positions to prevent unintended bias. Additionally, due to an imbalance between the number of
patients with computed radiography (CR) and digital radiography (DX) imaging studies, only
CR imaging studies were included. All images were converted from 16-bit DICOM to 8-bit JPEG
file format. Images were downsampled using bilinear interpolation such that their shortest dimen-
sion was 320 pixels, followed by a center crop, resulting in all images being 320 × 320 pixels.21

3.1.1 Represented and unrepresented subgroups

Patients were divided into distinct subgroups as defined by the combination of the patient attributes
of sex, race, COVID status, and age group (e.g., female-black-negative-40s). A limited dataset
was simulated by restricting the data used during model development to sixteen patient sub-
groups. The patient attributes represented in the model development data are shown in Table 1.

Table 1 Represented and unrepresented patient groups selected in this study. For each attribute,
the two groups with the most patients were represented in the model development data. All other
groups are considered unrepresented andwithheld for evaluation of the generalizability assessment.

Patient attribute Represented groups Unrepresented groups

Sex Female None

Male

Race Black or African American American Indian or Alaska Native

White Asian

Native Hawaiian or Other Pacific Islander

COVID status Negative None

Positive

Age group 40 to 49 <40

60 to 69 50 to 59

70þ
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All subgroups that were not used during model development are considered unrepresented in this
study and withheld for use during the evaluation (Sec. 3.4) of our proposed generalizability
assessment method. Additional extended trials using patient subgroups defined only by patient
sex, race, and COVID status are included in Appendix D.

3.1.2 Data partitions

The represented subgroups were divided into four partitions (training, validation-1, validation-2,
and testing), each stratified by patient such that each subgroup was equally represented in each
partition, as shown in Fig. 2. 50% of the data were used for model training, 10% for model
selection and determination of thresholds (validation-1), 20% for decision region generation
and performance evaluation (validation-2), and 20% for independent testing and verification of
the validation-2 performance. The represented patient subgroups were separated into model
development and evaluation data. This separation was repeated five times, resulting in five
separate model development and evaluation sets. The model development data were then
randomly divided into training and validation-1 partitions. The training/validation-1 partitioning
process was repeated five times for each model development set. This resulted in 25 different
training and validation-1 sets, 5 sets for each of the evaluation sets. The 25 different combi-
nations were used for sensitivity analysis of variations due to both development and evalu-
ation data.

3.2 Model Development
The models used in this study are ensembles of 20 individual ResNet-18 models. The ensembles
were created by training 20 models on the same training data, each with a different random state.
The output score for each sample was obtained by averaging the output scores of all models in the
ensemble. This ensemble approach was used to produce more consistent decision region com-
position estimations by reducing the effects of epistemic uncertainty.26 The decision space cre-
ated by the ResNet-18 architecture has been previously explored21 and was found to be relatively
consistent between different random initializations when compared with other modern architec-
tures, such as DenseNet-121. Each model in the ensemble was trained until the model converged
to a loss of <0.2 and a standard deviation of ≤0.05 across five sequential epochs.

The models used in this study were pretrained using contrastive self-supervised learning
(CSL), which has been shown to perform better than ImageNet pretraining for CXR
classification.27 Specifically, an approach called MoCo-CXR28 was used; it is an adaptation
of the momentum contrast (MoCo)29 approach for use with CXR data. MoCo maximizes the
agreement between positive pairs of images (an image and augmentations thereof) while min-
imizing the agreement between negative pairs (any other pair of images). This allows for the
learning of visual representations without class labels. Following CSL pretraining, an additional

Fig. 2 Data partition subgroup information. Patients are separated into represented or unrepre-
sented, depending on subgroup (Sec. 3.1.1). Patient subgroups for represented patients are
defined by the combination of the patient attributes of sex [female (F) or male (M)], race [black
(B) or white (W)], COVID status [positive (P) or negative (N)], and age group [40s (4) or 60s (6)].
Unrepresented patients are withheld for evaluation of the proposed generalizability assessment
(Sec. 3.4). Due to the selection of a single image per patient, the numbers shown represent both
the number of patients and images included in the study.
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dense layer was added to the models. This pretrained model was used for all simulations per-
formed in this study.

Output score thresholds were determined separately for each classification task by selecting
the operating point at which the false positive rate (FPR) and false negative rate (FNR) were
approximately equal between the binary outputs in the validation-1 set. This ensured that
imbalances in the decision region composition were not due to the threshold favoring prediction
of certain classes.

3.3 Decision Region Generation
All decision regions used for analysis were generated using a triplet of patient images that were
randomly selected from patients who belonged to the same subgroup, as defined by the combi-
nation of patient COVID status, sex, race, and age group. This ensured that there was a proper
reference class for every task and reduced the likelihood that the virtual samples contained
unrealistic combinations of patient characteristics. Fifty sample triplets were used for each of
the sixteen represented patient subgroups. The composition of the decision region was deter-
mined for each sample triplet. The decision region compositions were then aggregated by deter-
mining the average decision region composition for each patient subgroup, producing a single
estimate of the composition of the decision space surrounding each patient subgroup. Increasing
the number of triplets did not have a substantial effect on the measured decision region compo-
sitions beyond fifty triplets (Appendix C).

3.4 Evaluation
As described in Sec. 3.1, the patient subgroups used during model development were limited to
sixteen subgroups, and the remaining subgroups were withheld for the evaluation of the decision
region composition-based assessment of model generalizability. The limited number of repre-
sented patient subgroups simulates a situation in which the data available for model development
is an imperfect representation of the intended population. As the four patient attributes used to
denote subgroup are also the attributes by which the model classifies samples, two different
methods of evaluation are utilized. The evaluation methods, cross-reactivity (Sec. 3.4.1) and
population shift (Sec. 3.4.2), are distinguished by whether the class of the sample is unrepre-
sented with respect to a specific classification task. The type of evaluation used for each task
and the attribute(s) by which a sample is considered unrepresented are shown in Table 2 and
described in the following sections.

3.4.1 Cross-reactivity

Cross-reactivity occurs when two classes appear similar to the classification model.30 The par-
ticular form of cross-reactivity considered in this study is when a sample whose class is not under
consideration for classification, i.e., a patient who is unrepresented with respect to the specific
classification task, is classified into one of the classes under consideration. For example, as the
model development data did not contain any patients who are 70 or older, a patient who is
70 years old would be considered a case of cross-reactivity for the classification of patient age

Table 2 Evaluation approach used depending on the specific classification task and the patient
attribute(s) by which a patient is considered unrepresented.

Classification task

Unrepresented patient attribute(s)

Race Race and age group Age group

Sex Population shift

Race Cross-reactivity Population shift

COVID status Population shift

Age group Population shift Cross-reactivity
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group. Furthermore, the model could not make a correct age group classification for this patient
as the only two potential outputs for age group classification are 40s and 60s. Cross-reactivity
does not directly consider how well the model generalizes to its intended population but rather
the way in which the model will behave when used beyond its intended scope. Due to the similar
presentation of different diseases, it is likely that AI-enabled medical devices will be used for
patients who fall outside the device’s intended use scope. For patient race and age group clas-
sification tasks, there are classes that were not represented in the training and validation data or
in the potential model classification outputs. For these tasks, the models can be evaluated in the
context of cross-reactivity, in which the model must make a classification despite the model
output classes not including the correct class.

3.4.2 Population shift

Population shift refers to a situation in which the patient is represented with respect to the clas-
sification task in question but has other unrepresented attributes. For example, as the model
development data contained female patients but did not contain patients who were 70 or older,
a female patient who is 70 years old would be considered a case of a population shift in regards to
the classification of patient sex but a case of cross-reactivity for the classification of patient age
group. This method of evaluation provides insight into how well the decision region-based
assessment of generalizability captures the behavior of the model when the data used during
model development lacked the diversity of the intended population. For the classification of
patient sex and COVID status, all classes present in the dataset were represented in the training
and validation data. Therefore, all unrepresented patient subgroups are considered part of a pop-
ulation shift for the classification of patient sex and COVID status. A population shift also occurs
for race and age classification, when a patient belongs to an unrepresented subgroup but the
attribute that is being classified was represented in the model development data.

4 Results

4.1 Decision Region-Based Assessment of Generalizability
The composition of the decision regions was aggregated for each class to obtain the average
portion of the decision space belonging to the same class as the sample triplet. Each classifi-
cation task shows a disproportionately large portion of the decision space belonging to one pre-
ferred output class despite comparable performance on the original samples of the validation-2
partition from which the triplets were sampled, as shown in Fig. 3. The preferred classes are
60s (patient age group), negative (patient COVID status), white (patient race) and female
(patient sex).

Fig. 3 (a) Portion of the decision region classified as belonging to the same class as the input
triplet, separated by the classification task. (b) Portion of samples in the validation-2 subset that
were correctly identified, separated by classification task.
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4.2 Performance under Population Shift
The overall area under the receiver operating characteristic curve (AUROC) did not decrease
substantially on the unrepresented subgroups for each task (Fig. 4). However, the false positive
rates of each class are no longer comparable (Fig. 5). This shows that, even though the model’s
performance did not decrease, the type of mistakes changed, with the model being much more
likely to make an incorrect classification on the non-preferred class than on the preferred class.
The tendency to overpredict the model’s preferred class in the event of a population shift is
stronger for the classification of patient COVID status and sex than for patient race or age group,
as seen in Fig. 5.

Fig. 4 Classification performance by task on the validation-2 dataset and unrepresented
subgroups.

Fig. 5 (a)–(d) Population shift classification performance. The percentage of unrepresented
patients correctly classified with respect to each classification task. For example, for the COVID
detection task, the population shift in the “negative” column represents the percentage of COVID
negative patients that were correctly identified in the unrepresented set shown in Fig. 2. Please
refer to the “unrepresented groups” column in Table 1.
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4.3 Cross-reactivity Performance
The model’s race classification behavior shows the cross-reactivity performance when presented
with patients whose race was represented in neither the model development data nor the available
classification outputs. Figure 6(a) shows that the model has an increased tendency to classify
patients as the preferred race classification: white.

Evaluating the model’s patient age group classification in the event of cross-reactivity
reveals that patients under 40 and 70 or older are more likely to be classified as being in their
40s and 60s, respectively [Fig. 5(b)]. However, there is still a slight tendency to over-predict the
preferred class (60s), with more patients under 40 being classified as in their 60s than patients 70
or older being classified as in their 40s. Additionally, patients whose age is between the repre-
sented subgroups, i.e., patients who are in their 50s, are more likely to be classified as being in
their 60s than in their 40s.

5 Discussion and Conclusion
In this study, we focus on a generalizability assessment from the perspective of assessing sce-
narios in which the model may likely fail. Such scenarios are unpredictable and difficult to
detect; however, understanding how the model is likely to behave is important to ensuring safe
usage. Our proposed approach of the decision region composition analysis provides an enhanced
assessment of model generalizability by leveraging the available variability in the data to predict
how the model will likely behave on unrepresented subgroups. The decision region analysis
for assessing generalizability in this study consistently indicated that a disproportionately large
portion of the decision space belongs to a single preferred class for each classification task. These
preferred classes could not be inferred from the performance on the validation-2 dataset (Fig. 3)
or the test dataset for represented subgroups (Appendix B), necessitating the use of vicinal dis-
tributions of virtual samples.

The generated virtual samples do not represent realistic patients themselves; however, they
are created using combinations of characteristics already present in the available data, allowing
for increased sample diversity compared with the finite available evaluation set. In this study,

Fig. 6 (a) and (b) Cross-reactivity classification performance. The percentage of unrepresented
patients classified as each represented class.

Burgon et al.: Decision region analysis for generalizability of artificial intelligence. . .

Journal of Medical Imaging 014501-10 Jan∕Feb 2024 • Vol. 11(1)



the emphasis is on assessing the model’s ability to generalize to its intended population, rather
than creating deliberately adversarial samples or observing how the model behaves on samples
far beyond its intended scope, which should be detected by quality control. The results indicate
each classification task had one preferred class despite comparable performances across classes
on the evaluation (validation-2) dataset. This was also confirmed on the test set, the results of
which are shown in Appendix B. Furthermore, the models showed a tendency to overpredict
samples as belonging to the preferred class when presented with data that was not represented
in the model development dataset.

In evaluating the model performance under a population shift (Sec. 3.4.2), the model showed
a tendency to overpredict samples as belonging to the preferred classes for certain tasks and not
others. The classification tasks of patient race and age group only experienced a population shift
with respect to one patient attribute (age attribute for race classification task and race attribute
for age classification task). For these tasks, the tendency to prefer one class was minor or non-
existent. As such, the model was not more likely to correctly classify the age of patients in their
60s (78.6%� 4.3%) than patients in their 40s (75.6%� 7.1%) under a distribution shift in their
race. Additionally, the model was not substantially more likely to correctly classify the race of
patients who were either black (78.6%� 4.0%) or white (76.8%� 3.7%) under a distribution
shift in their age. For the classification of patient sex and COVID status, however, the model
experienced a population shift with respect to up to two attributes. Consequently, the model was
more likely to correctly classify the sex of patients who were female (91.5%� 4.7%) than those
who were male (80.4%� 5.5%). A similar trend is observed for the classification of patient
COVID status, which was more likely to correctly classify patients belonging to the preferred
class of negative (75.7%� 9.1%) than patients belonging to the positive class (57.2%� 6.1%).
This may indicate that, for our dataset, the model can continue to generalize well if only one of
the patient attributes is unrepresented but begins to struggle when more than one patient attribute
is unrepresented.

As with a population shift, in the case of cross-reactivity, the model overpredicts samples as
belonging to preferred classes. 71.0%� 5.0% of the patients whose race was not represented
in the model development data were classified as white. This behavior was predicted by
the decision region analysis, which indicated that white was the preferred class for classifi-
cation of patient race. For age group classification, unlike the classification of patient race,
there are inherent connections between the represented and unrepresented. It can be assumed
that patients would be most similar to the represented age group closest to their true age.
Despite this inherent connection, the model displayed a slight tendency to overpredict the
preferred class. 12.9%� 3.2% of patients under the age of 40 were classified as 60 to 69,
and only 5.5%� 3.5% of patients older than 70 were classified as 40 to 49. Furthermore,
56.2%� 5.9% of the patients whose true age was between the represented age groups were
classified as 60 to 69.

Together, the population shift and cross-reactivity simulate the different non-optimal sce-
narios in which we can reasonably expect that the model may be used. The results of the decision
region analysis can help us predict the model’s behavior in such scenarios, even when such
behavior is not evident from a performance assessment of the original data.

The observed preferred classes were consistent across different data partition combina-
tions (Sec. 3.1.2), and the preferred classes for patient sex, race, and COVID status were the
same in the extended trials (Appendix D). As mentioned in Sec. 3.2, the output score thresholds
were determined separately for each class based on the threshold at which the FPR and
FNR were equal for the validation-1 dataset. This ensured that the preferred class behavior
observed in the decision region analysis was not the result of the score threshold favoring
a specific class.

Although the presence of the preferred class behavior is shown, it is not clear what factors
impact which class becomes the model’s preferred class. The preferred classes for patient sex,
race, age group and COVID status were consistent across different repetitions of random data
partitioning. This suggests that the preferred class is heavily impacted by one or more of the
experimental components that were constant throughout all of our experiments: model architec-
ture, data repository, and training method. This study was performed using a single model archi-
tecture and data from a single repository; however, the approach is applicable to any image
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classification model and more work is needed to understand the effects of model architecture and
dataset on the model’s selection of the preferred class. The preferred class may be affected by the
model pretraining or utilization of different training approaches, such as active learning, few-shot
learning, or semi-supervised learning. In a prior study31 pretraining between CXR data and
ImageNet was compared, and it was found that CXR pretraining results in an improved and
more robust performance. This suggests that there is a difference in decision space composition
due to a difference in pretraining techniques. Additional studies are required to understand the
degree to which pretraining affects a model’s decision space. Our approach uses a finite test set to
infer how the model is likely to behave on a larger, more diverse population. However, we do not
currently have a way to determine how large the finite test set must be to provide useful infor-
mation. Considering that the virtual samples used for decision space characterization are created
using the samples in the finite test set, the virtual sample diversity is dependent on the diversity in
the original test set. The quality of the decision space characterization is also affected by the
number of triplets generated from the test set. This was explored in Appendix C, where it is
shown that the composition of the decision region did not change substantially as a result of
increasing the number of triplets per subgroup above fifty. This number is likely affected by
the existing diversity in the finite test set and does not explore the effects of the evaluation set
size itself but the number of triplets generated from the evaluation set. Additionally, the virtual
samples are evaluated with respect to the class of the triplet samples from which they are gen-
erated, following the assumption that the characteristics of the virtual samples are most similar
to the characteristics associated with the triplet’s subgroup. The virtual sample characteristics
should be explored further to ensure that they remain most similar to the subgroup characteristics
of the source triplet. Furthermore, in this work, data diversity regarding only patient subgroups
was considered; it did not consider diversity relating to other factors that can impact model gen-
eralizability, such as institutional or image variability. As mentioned in Sec. 3.1, only patients
with CR imaging studies were included. Although the differences between CR and DX imaging
studies are a substantial source of image variability, considering image acquisition as an addi-
tional attribute for the determination of patient subgroups would have decreased the size of our
data such that there would be fewer than three patients per subgroup in the validation-2 dataset,
making the selection of triplets impossible. As image acquisition could not feasibly be consid-
ered while determining the patient subgroup, using both imaging acquisition methods could have
introduced bias. Thus, to avoid bias due to image acquisition, DX imaging studies were not used.
Although our current approach can indicate how a model is likely to behave when used on data
for which it cannot generalize, we do not currently have a method of determining the extent to
which a model can generalize from the decision region analysis. In other words, we can say that a
model is likely to overpredict a certain class when presented with patients for whom it cannot
generalize, but we cannot make any quantitative assessment on the models’ relative generaliz-
ability by comparing the decision region analysis of two different models. The extent of a mod-
el’s generalizability can theoretically be assessed from the decision space by determining how far
the decision boundaries extend beyond the manifold (as mentioned in Sec. 2.1). However, this
assessment would rely on having accurate measures of the distance in the decision space as well
as a method to determine how far beyond the manifold the intended population extends.

Although previous methods of characterizing the decision space have investigated the geo-
metric and topological properties of the decision space18 or attempted to characterize the model’s
robustness to adversarial examples based on the distance between natural images and decision
boundaries,32 this is, to our knowledge, the first work connecting the analysis of the decision
space to model generalizability to other medical images, rather than in the context of robustness
to adversarial examples. A robust assessment of model generalizability is essential to ensuring
the safe and effective use of AI in medical devices. With the perpetual limited availability of large
datasets in medical imaging, it is important to utilize the available data to the fullest extent pos-
sible. To this end, our approach leverages the limited diversity of the available data to provide
additional information about model generalizability, and it can be performed during traditional
performance assessment. An enhanced generalizability assessment of the model through decision
region analysis may allow for a more accurate evaluation of the model safety and effectiveness
prior to clinical implementation.
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6 Appendix A: Patient Subgroup Information
As described in 3.1, a limited number of patient subgroups were used during model development
to simulate an extremely limited dataset. The subgroups that were represented in the model devel-
opment data were determined by the number of available patients in each subgroup. Table 3
shows the number of patients per subgroup as defined by patient sex, race, COVID status,
and age group. Of the 188 available patient subgroups, only forty contain fifty or more patients.
The represented patient races were limited to black and white as they were the only patient
races with fifty or more patients in each of the age groups. Patient age was similarly restricted
by selecting the age groups with the largest number of patients.

7 Appendix B: Test Partition Classification Performance
As introduced in Sec. 3.1.2, 20% of the patients belonging to the represented subgroups
were withheld for further evaluation in the form of the test partition. The model classification
performance on this partition can be seen in Fig. 7. For each class, the percent of samples
that were correctly classified is comparable to the model performance on the validation-2 set,
as shown in Table 4.

Table 3 Demographics of the patients included in the Open-A1 repository. Only patients with sex,
race, age, and COVID status attribute information and CR imaging studies are included.

COVID
status Sex Race

Age group

<40
40 to
49

50 to
59

60 to
69 70þ Total

Negative Female American Indian or Alaska Native 0 1 1 1 1 4

Asian 7 10 10 21 16 64

Black or African American 152 94 140 147 146 679

Native Hawaiian or Other Pacific Islander 1 0 1 0 1 3

White 278 188 308 363 778 1915

Male American Indian or Alaska Native 0 0 1 1 1 3

Asian 17 10 9 11 16 63

Black or African American 170 87 146 151 99 653

Native Hawaiian or Other Pacific Islander 1 0 0 1 0 2

White 279 156 331 385 692 1843

Positive Female American Indian or Alaska Native 4 3 1 2 4 14

Asian 11 14 12 10 12 59

Black or African American 503 308 405 356 333 1905

Native Hawaiian or Other Pacific Islander 2 1 0 1 0 4

White 213 181 237 231 358 1220

Male American Indian or Alaska Native 2 1 1 2 0 6

Asian 15 13 14 16 21 79

Black or African American 435 258 387 347 253 1680

Native Hawaiian or Other Pacific Islander 1 2 1 1 0 5

White 249 177 237 299 351 1313
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8 Appendix C: Effect of Number of Triplets on Decision Region
Composition

The preferred classes in this study were determined using the aggregation of the compositions of
decision regions created from triplets of images selected at the test time. Fifty triplets were
selected per patient subgroup. Additional triplets were generated for one of the ensembles to
ensure that this number of triplets was sufficient for properly characterizing the composition
of the decision space surrounding the available samples. The additional generated triplets were
randomly sampled and aggregated to simulate the use of different numbers of triplets per sub-
group. As shown in Fig. 8, for the dataset used in this study, the number of triplets does not have a
significant effect on the determined composition of the decision regions, provided at least fifty
triplets are selected per patient subgroup.

Fig. 7 Percent of patients correctly classified in the test partition.

Table 4 Percent of patients correctly classified in the test and validation-2 partitions, divided by
task and class.

Task Class
Percent correct

(test)
Percent correct
(validation-2)

Sex Female 92.3ð�2.9Þ 89.9ð�4.3Þ

Male 87.1ð�4.0Þ 86.6ð�4.5Þ

Race Black 78.9ð�5.3Þ 80.0ð�4.3Þ

White 81.5ð�4.1Þ 79.2ð�4.8Þ

COVID status Negative 63.3ð�4.5Þ 64.1ð�4.8Þ

Positive 62.4ð�5.2Þ 63.8ð�4.0Þ

Age group 40–49 72.1ð�4.8Þ 73.6ð�4.2Þ

60–69 77.1ð�4.1Þ 79.9ð�5.9Þ
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9 Appendix D: Effect of Size of the Model Development Data
to Identify the Preferred Class

To determine the effect of the size of the data used during model development on the applicability
of the decision region-based assessment of generalizability, an additional experiment was per-
formed using a larger dataset during model development. The same Open-A1 data were used
with fewer subgroups with larger sizes. In this experiment, the patient attributes used for both
subgroup determination and model classification tasks were limited to sex, race, and COVID
status. This resulted in a larger represented portion of the data.

As previously observed in Sec. 4.1, the decision region analysis indicated the existence of a
preferred class for each classification task despite similar performances across classes in the
validation-2 original distribution. This trend is also observed in these additional trials, as shown
in Fig. 9. Furthermore, the preferred classes (female, white, negative) are the same preferred

Fig. 8 Effect of the number of triplets on the decision region composition. The composition of
the decision region is consistent provided at least fifty triplets are selected per subgroup. Repeated
random sampling of each number of triplets per subgroup provides the standard deviation.

Fig. 9 (a) Portion of the decision region classified as belonging to the same class as the input
triplet, separated by classification task. (b) Portion of samples in the validation-2 subset that were
correctly identified, separated by classification task.
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classes observed in the analysis of the smaller dataset. The model’s behavior in the cases of a
population shift and cross-reactivity (Fig. 10) is similar to that of the models trained on a smaller
dataset: a tendency to overpredict samples as belonging to the preferred class.
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represented in the training data). (a) Population shift: performance of the sex and COVID status
classification tasks. (b) Cross-reactivity: performance of the race classification task.
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