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Abstract. This paper proposes a digital image analysis method to support quantitative pathology by automati-
cally segmenting the hepatocyte structure and quantifying its morphological features. To structurally analyze
histopathological hepatic images, we isolate the trabeculae by extracting the sinusoids, fat droplets, and stro-
mata. We then measure the morphological features of the extracted trabeculae, divide the image into cords, and
calculate the feature values of the local cords. We propose amethod of calculating the nuclear–cytoplasmic ratio,
nuclear density, and number of layers using the local cords. Furthermore, we evaluate the effectiveness of the
proposed method using surgical specimens. The proposed method was found to be an effective method for the
quantification of the Edmondson grade. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
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1 Introduction
Recently, digital image technologies have been introduced to
pathology diagnosis, especially because of the great progress
of whole slide imaging (WSI) systems.1 WSI enables the obser-
vation of a microscopic image on a computer display while
interactively changing the viewing field and magnification.
Histopathology samples can then be handled as digital data
instead of glass slides. As a result, image analysis-based appli-
cations are expected to support diagnosis in pathology.
Although image analysis and pattern recognition techniques
have been applied to histopathology before now, their clinical
application was difficult because the diagnosis was done
using the microscopic observation of glass slides, and digital
image analysis required an additional digitizing process. How-
ever, because of the introduction of WSI technology, it is now
possible to deploy image analysis tools in clinical use. This will
allow quantitative evaluation rather than the qualitative or semi-
quantitative analyses that have been done in conventional visual
assessment. Digital image analysis will support a pathologists’
decision with quantitative information obtained from the histo-
pathology samples, enhancing the objectivity and reproducibil-
ity of the diagnosis.

In this paper, computer image analysis is applied to the quan-
titative assessment of hepatocellular carcinoma (HCC)—the
most common histological type of primary liver cancer. The

histologic grade of HCC is usually assessed by the Edmondson–
Steiner grading (Edmondson grading) system, which classifies
cancers as groups 1–4 (G1, G2, G3, and G4). Categories G1
through G4 indicate the most and least differentiated neoplastic
tissue, respectively. A higher grade indicates a higher malig-
nancy of the cancer. As the morphology of low-grade cancer
resembles noncancer tissue, its identification is a difficult
task, and quantitative measurement would be helpful for objec-
tive and reproducible diagnosis. The modern histopathology
practice mainly comprises the morphological assessment of
cells and tissues and molecular analyses. Morphological assess-
ment is primarily important in diagnostic pathology, and it is
carried out using tissue sections stained with hematoxylin
and eosin (HE). HE staining is a routinely used method for mor-
phological assessment; it stains nuclei blue and cytoplasm, fiber,
and other extracellular substances pink. Other special stains are
also used for specific purposes. On the other hand, immunohis-
tochemistry (IHC) staining is a technique especially valuable for
molecular pathology. Digital image analysis has been applied to
HE-stained, special-stained, and IHC-stained tissues.2 In this
paper, HE-stained tissue sample images are analyzed.

In the image analysis of HE-stained sections, the cell nuclei
are extracted and their features such as area, perimeter, and ellip-
ticity are analyzed.3,4 The accuracy of nuclei extraction has been
considerably improved5 in recent years and it has been shown
that the nuclear features automatically extracted by the image
analysis are meaningful for grading and prognosis. In addition
to the morphology of nuclei, tissue structure features are impor-
tant in histopathology diagnosis. Structural features such as the
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gland or lumen are used in the automated image analysis of
prostate and breast cancers;6–8 however, they are also important
in the diagnosis of liver cancer.9,10

In HCC diagnosis,11,12 the cord-like structure of the hepato-
cytes called the trabecula is of high importance. Normal trabecu-
lae are one to two cells thick. Cancer cells mimic the normal
hepatocytes and can arrange themselves into trabecular patterns
that simulate normal liver trabeculae. While normal liver tra-
beculae radially extend from the central veins of the liver, the
trabecular patterns of HCC become disordered and form a multi-
layered structure as the trabeculae become thicker. However, as
the color and texture of liver tissue widely varies among spec-
imens, the cellular area containing the trabeculae is difficult to
extract. Very few studies have been reported on the quantifica-
tion of trabeculae. Kiyuna et al.13 calculated six statistical dis-
tributions to serve as trabecular thickness features, which
consisted of 10, 30, 50, 70, and 90 percentiles as well as the
standard deviation. Although they quantified the thickness of
trabeculae, they were not able to quantify the number of layers.

Here, we propose a technique that extracts the trabecular
regions with high accuracy and quantifies the structural features
such as the trabecular thickness using HE-stained liver speci-
mens. We focus on the features useful for discriminating grades
G1 and G2 cancers from noncancer because of the difficulty in
identifying well-differentiated HCCs. After an overview of the
methodology for the quantitative analysis of HCC tissue sam-
ples in Sec. 2, Sec. 3 describes the improved method for trabecu-
lar extraction that was originally proposed in Ref. 14. In Sec. 4,
the method for quantifying trabecular regions is presented. The
effectiveness of the proposed method is experimentally demon-
strated in Sec. 5, and Sec. 6 presents the conclusions.

2 Overview of Hepatocellular Carcinoma
Quantitative Analysis

An HE-stained image of a liver tissue specimen is shown in
Fig. 1(a). The hepatocyte nuclei are stained violet-blue by hema-
toxylin, and the cytoplasm is stained pink. Lymphocytes are also
stained blue by hematoxylin; however, they are distinguishable
from the hepatocyte nuclei by their darker shade. Fibers are
stained pink by eosin; however, the staining is a lighter
shade than that of the cytoplasms. Sinusoids and fat droplets
generally appear as white areas. A trabecula is a series of
cells segmented by sinusoids and stromata. A manual extraction
of the trabecula in Fig. 1(a) is shown in Fig. 1(c). In this figure,

the white pixels indicate the trabecula regions and the black pix-
els indicate the other regions.

Figure 2 shows examples of trabecular differentiation in tis-
sues of noncancer tissue and HCCs of different grades. In the
tissues of higher grade HCC, the trabeculae thickness increases
and the nuclei display various shapes. The trabecular thickness
is known as a morphological feature that characterizes HCC. To
quantitatively measure trabecular structure, it is necessary to
segment the hepatocytes. However, as cytoplasm texture
depends on the conditions of the cells (e.g., fatty metamorphosis
or cancerous change) and specimens (staining time or specimen
fixation), the extraction of trabeculae is a difficult task.

Figure 3 shows an overview of the proposed method for the
extraction and quantification of trabecular structure. We previ-
ously reported that trabeculae can be extracted using the struc-
tures outside liver cells (sinusoids and stromata),14,15 which can
be extracted more easily than liver cells themselves. The method
introduced in this paper also follows the same approach: the
sinusoid and stroma regions are segmented first, and then we
extract the trabeculae regions by excluding those regions. In
addition, fat droplets are extracted and regarded as part of
the liver cells16 because fat droplets reside inside the cytoplasm.
This process improves the trabeculae extraction results. Further-
more, the nuclei of liver cells are extracted because we use infor-
mation about the nuclei when quantifying the trabeculae.

The proposed method addresses the problems that remained
in the previous report:14 (1) the erroneous extraction of fat drop-
lets in the sinusoid extraction and (2) the erroneous extraction of
lymphocytes in the nuclei extraction. The extraction accuracy of
trabeculae is improved by solving problems (1) and (2). The
extraction of fat droplets has been reported only in a few studies.
Among these studies, Katoh et al.17 extracted fat droplets to
evaluate the risk HCC, but the average accuracy of their extrac-
tion was relatively low (77%). Turlin et al.18 proposed an
assessment of shepatic steatosis; however, this method is a semi-
quantitative method. Lee et al.19 proposed that HCC risk indexes
could be established from fat droplets; however, they did not
clarify the details. In addition, to solve the problem (1), we
applied the fat droplet extraction method developed in one of
our earlier studies.16

In addition, we also propose a quantification method for tra-
becular structure and verify its effectiveness. To quantify tra-
becular structure, it is necessary to consider the fact that the
trabecular thickness varies locally. Hence, we propose a method

Fig. 1 (a) HE-stained specimen of liver tissue (20×magnification), (b) normal tissue image, and (c) man-
ually extracted trabeculae image.
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to split a cell cord into small areas and quantify the structural
features of the trabecular thickness to determine the local tra-
becular thickness. In the method in this paper, we target grades
G1 and G2, since the diagnosis of G3 and G4 HCCs is rela-
tively easy.

3 Automatic Segmentation of Trabecular
Regions

The proposed method illustrated in Fig. 3 is composed of two
main steps: trabecular segmentation and trabecular feature
measurement. This section presents the trabecular segmentation
steps: stroma and sinusoid extraction14,15 are presented in
Sec. 3.1, the methods for extracting of fat droplets are described
in Sec. 3.2, and trabecular extraction is explained in Sec. 3.3.

3.1 Trabeculae Extraction

Trabecula extraction is thought to be difficult because liver cells
take on various colors and appearances depending on tissue con-
ditions. Therefore, we propose an approach to extract trabeculae
from an HE-stained liver tissue slide by extracting the rest of the
tissue, i.e., the sinusoids and stromal areas.

3.1.1 Sinusoid extraction

We first apply an orientation-selective (OS) filter to improve the
contrast of the sinusoid boundaries. We then apply the expect-
ation–maximization (EM) algorithm to cluster bright pixels.
Figure 4(a) shows the original image, and Fig. 4(b) shows
the result of sinusoid extraction. The effectiveness of the OS

Fig. 2 Differentiation of trabeculae in Edmondson-graded tissues: (a) noncancerous and (b)–(e) Grade
1–4 tumors, respectively.

Fig. 3 Overview of the proposed method.
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filter is shown in Ishikawa et al.,15 where details of this step can
be found.

3.1.2 Stroma extraction

Stroma extraction consists of two steps. In the first step, we cal-
culate the fiber probability of each pixel using color and texture
features. The color and texture features are calculated over the
surrounding 64 × 64 region of each pixel. Color features consist
of the (1) average, (2) variance, (3) skewness, and (4) kurtosis
acquired from the histogram of each color channel, which cor-
responds to 4 features × 3 color channels ¼ 12 features. The
texture features consist of the (1) angular second moment,
(2) contrast, (3) correlation, and (4) homogeneity of Hararick’s
texture features, calculated from the gray-level co-occurrence
matrix (GLCM). The pixel brightness values are normalized
to the range of 0 to 1 and are quantized into eight levels.

For the GLCM-based features, extraction was performed
using a four-direction GLCM (0, 45, 90, and 135 deg) with a
distance of 1. The four statistical quantities, calculated from
the four co-occurrence matrices using different direction offsets,
are summarized by two quantities, the mean and variance. Thus,
the final texture feature is a 24-dimensional feature (mean ×
variance × 4 statistical features × 3 color channel ¼ 24 features).
The fiber probability is calculated for each pixel using a linear
support vector machine based on the 36-dimensional color and
texture features. We constructed our learning data set using 4000
image patches of 64 × 64 pixels, half of which were fiber
regions. The remaining half included no fiber at all. An example
of pixel-wise fiber probability indicated by pseudocolor is
shown in Fig. 5(a). Figure 5(b) shows the stroma area in green,
extracted by a threshold of 0.3. Basically, we have successfully
extracted the stroma area. However, overdetection has occurred
in the cytoplasm and underdetection has occurred in the stroma.
A larger amount of stroma has been detected in the border
between the stroma and the cytoplasm, and hence the border
is not accurate. To solve this problem, we apply the next step.

In the second step, we extract stroma based on the “super-
pixel” image processing technique. We generated superpixels
using simple linear iterative clustering (SLIC). SLIC is a fast
and memory-efficient adaptation of the K-means algorithm to

generate superpixels. Details can be found in Ref. 20.
Figure 5(c) shows the SLIC result. Stroma identification is per-
formed per superpixel using fiber probability and the number of
lymphocytes. We empirically determined the thresholds for fiber
probability and number of lymphocytes. Specifically, we deter-
mined the optimal threshold by applying various thresholds to a
large number of images. The purpose of stroma extraction is to
improve the trabeculae extraction. Overdetection in stroma
extraction is a bigger problem than underdetection. There-
fore, superpixels with a mean fiber probability of more than
0.3 are extracted as stroma. Additionally, superpixels contain-
ing more than seven lymphocytes are extracted as stroma.
Lymphocytes can be extracted by template matching. In this
paper, we prepared a circle template with a diameter of 7.3 μm.
Figure 5(d) shows a pseudocolor representation of the number of
lymphocytes per superpixel, and Fig. 5(e) shows the pseudo-
color representation of mean fiber probability per superpixel.
Higher probability is indicated by warm colors, and lower
probability is indicated by cool shades. Figure 5(f) shows the
extracted stroma area in green. Compared with Fig. 5(b), the
errors of Fig. 5(f) with respect to overdetection and the boun-
daries of the stroma and cytoplasm are reduced.

3.2 Fat Droplet Extraction

The storage of excess glycogen in the liver cytoplasm is a patho-
logical condition known as fatty liver. The fat droplets in an
HE-stained liver specimen are shown in Fig. 6(a). However,
liver tissue contains many structures that resemble fat droplets
such as clear cells [Fig. 6(b)], hepatic arteries [Fig. 6(c)], pseu-
doglandular patterns [Fig. 6(d)], and sinusoids [Fig. 6(e)].
Generally, fat droplets reside inside the liver cytoplasm and
should be regarded as cytoplasm when quantifying trabeculae.
In this study, fat droplets were extracted and classified into the
same region as the cytoplasm. Figure 4(a) shows a trabeculae
image that includes fat droplets. The extracted result using
the method of Sec. 3.1 are shown in Fig. 4(b). In this image,
even fat droplets have been extracted as sinusoid areas, causing
the trabeculae extraction to fail. This is because it is difficult to
distinguish sinusoids, which are circular [as shown in Fig. 2(e)],
from fat droplets. In addition, the sinusoid extraction method

Fig. 4 (a) Original HE-stained liver tissue image (1024 × 1024) and (b) result of sinusoid extraction. In
(b), the white pixels indicate the sinusoid regions and the black pixels indicate the other regions.
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discussed in Sec. 3.1.1 has a problem in that sinusoids and fat
droplets are combined, as shown in Fig. 4(b), because this
method classifies a red-green-blue (RGB) image into three
classes and extracts the area of the brightest class. Therefore,
we extracted fat droplets to reduce such detection errors. The
fat droplet extraction was carried out by a method proposed
for fatty metamorphosis quantification in Ref. 15. Fat droplet
extraction consists of four steps: (1) smoothing of the fat droplet
boundaries using an OS filter, (2) extraction of candidate fat
droplet regions, (3) fat droplet discrimination, and (4) modifica-
tion of the trabeculae extraction results using fat droplet regions.

3.2.1 Preprocessing

The lower-left boundary of the large fat droplet shown in the
center of Fig. 7(a) has interrupted parts on its boundary.
Such an interrupted boundary, which occurs on some droplets,
affects the results of the circularity calculation. OS filtering is a
sinusoid extraction preprocessing step because it connects the
boundaries of a sinusoid. For the same reason, the OS filter
is effective for fat droplet extraction. Therefore, we adopt an
OS filter to smooth the fat droplet boundaries (step 1). The result
of the OS filter is shown in Fig. 7(b). To clarify its effects,

Fig. 5 (a) Fiber probability, (b) extraction result using fiber probability (threshold ¼ 0.3), (c) SLIC result,
(d) number of lymphocytes per superpixel, (e) mean fiber probability per superpixel, and (f) automatically
extracted stroma region (indicated by green). For images (a), (d), and (e), higher values are represented
by warm colors, and lower probabilities are represented by cool shades.

Fig. 6 Typical appearance of fat droplets and similar structures in HE-stained liver specimens: (a) fat
droplets, (b) clear cells, (c) an arterial vein, (d) a pseudoglandular structure, and (e) sinusoids.
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Figs. 7(a) and 7(b) were binarized at a threshold of 175 and the
results are shown in Figs. 7(c) and 7(d), respectively. It can be
observed that the boundaries are clear when the OS filter is
applied.

3.2.2 Extracting candidate fat droplet regions

We next extract the candidate fat droplet regions using an EM
algorithm (step 2). The fat droplet basically looks whiter than
the sinusoid because its fat and lipids liquidate during the proc-
ess of creating a paraffin section for the slide, leaving a com-
pletely hollow space inside. Therefore, we classify the RGB
image into 10 classes using the EM algorithm and extract
images in the brightest class as fat droplet candidate regions.

3.2.3 Specific of fat droplets

We next label the results of extraction and distinguish fat drop-
lets from sinusoids and other structure in each labeled area. Fat
candidate areas are classified by a random forest (step 3). As to
feature values, circularity, eccentricity, area, complexity, clock-
wise turning ratio, outline concentration ratio, turning angle
median value, derivative matching feature, fractal dimension,
number of edge pixels, contrast, intensity mean, intensity vari-
ance, outside intensity mean, outside variance of intensity,

outside contrast, number of nuclei, area change ratio, and out-
side number of nuclei were used.

Figure 8(a) shows the final detected fat droplet regions.
Finally, we modify trabeculae extraction results using the fat
extraction results (step 4). We correct the cytoplasm results
by excluding the fat droplet areas extracted from the sinusoidal
areas. To be more specific, the fat areas of Fig. 8(a) are used
to exclude the detected fat droplets in the sinusoidal area of
Fig. 8(b). The corrected results using this proposed method is
shown in Fig. 8(c).

3.3 Trabecular Extraction

The trabecular area is extracted as the regions that remain after
the sinusoids, stroma, and glass regions have been excluded, and
the regions of fat droplets are included. Figure 9 shows the result
of trabecular extraction. Figure 9 shows the extracted stroma
area in green and the extracted sinusoidal area in blue. In the
proposed system shown in Fig. 3, nuclear extraction is required.
The proposed method adopts the method proposed by Kiyuna
et al.13 Figure 9 shows the extracted nucleus areas in yellow. The
proposed method effectively reduces false nucleus detection by
excluding the extracted fiber and sinusoidal areas. As a result, it
becomes possible to quantify trabeculae.

Fig. 7 Results of OS filter: (a) fat droplets, (b) result of OS filter, (c) binary image of (a), and (d) binary
image of (b).

Fig. 8 Sinusoid extraction in tissue that includes fat droplets: (a) result of fat droplet extraction, (b) result
of trabecular extraction after extracting the fibers and sinusoids, and (c) result of trabecular extraction
after extracting the fibers, sinusoids, and fat droplets. In (a)–(c), the white pixels indicate the target
regions (fat droplets and trabeculae) and the black pixels indicate the other regions.
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4 Automatic Quantification of Trabecular
Features

This section describes the method for trabecula quantification;
the morphological features of the trabecular structure are mea-
sured using the hepatic trabeculae segmented by the method of
the previous section. These features include the number of layers
(number of cells in thickness) containing the trabeculae of a
local shape and the nuclear–cytoplasmic (N/C) ratio, which is
a histological feature of the tissue. Measurements are taken
along the centerline of the segmented trabeculae, as explained
in the following sections.

4.1 Extraction and Division of Trabeculae
Centerlines

To compute the features related to the trabecular structure, the
centerline of the trabeculae is extracted by a morphological

thinning operation.21 To minimize false branches during the
thinning process, branches shorter than a certain threshold (in
the following experiment, 20 pixels from their tips to the branch-
ing point) are deleted. Furthermore, to reduce the erroneous
extraction of trabeculae containing endothelial cells and fibers
within their sinusoids, the boundaries of the trabeculae areas are
smoothed by a preprocessing morphological operation. The
centerline is therefore segmented at the branches or at the end-
points. A trabecula label is assigned to each segment of the
centerline, and the features of the trabecula are measured and
associated with each cord label.

An example of centerline extraction is shown in Fig. 10(a).
Figure 10(b) shows a pattern diagram for each cord label.
Branches are marked in red and the centerlines are depicted
in colors that are randomly selected for each cord label. In
this paper, we propose to calculate the features for each cord
label. This is because the number of layers is different from
place to place even in one image.

4.2 Measurement of Trabecular Thickness

Increased trabecular thickness is one of the characteristic fea-
tures of HCC. Trabecular thickness is measured in the direction
orthogonal to the centerline of the trabeculae. The distance from
an individual centerline to the boundary of the trabecula is
derived by overlapping the distance-transformed image obtained
from the thinning results. Doubling this center–boundary dis-
tance, we obtain the trabecular thickness at each point on the
centerline.

Figure 11(a) shows a trabecular image. Figure 11(b) shows
the Euclidean-distance transformed image of Fig. 11(a), where
the intensity increases with distance from the black pixels of the
centerlines, shown in Fig. 11(c). The thickness along the center-
line between branches A and B in Fig. 11(b) is depicted in
Fig. 12. The thickness, computed by the above algorithm,
increases in the vicinity of the branching points A and B in
Fig. 11(b). Therefore, the region near point A has a large
value because it is far from outside. This is because the trabecula
is in contact with other hepatocytes, and hence this computed
thickness does not reflect the real thickness. To reduce such
effects, the pixels belonging to the centerline close to both

Fig. 9 Automatically extracted trabeculae. Green regions indicate the
fiber regions, blue regions indicate the sinusoid areas, and yellow
regions indicate the nucleus areas.

Fig. 10 Results of trabecular centerline extraction: (a) centerlines of the trabecular regions and (b) states
of the cord labels.
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ends of A and B are excluded if the distance along the centerline
to a branching point or an endpoint is smaller than the average
thickness. For example, the ranges indicated by the gray seg-
ments in Fig. 12 are excluded from the calculation of the tra-
becular thickness representative value. The median thickness
is then considered as the thickness of the cord. The trabecular
thickness feature in a region of interest (ROI) is the average
thickness of the trabeculae in the ROI.

4.3 Nuclear Density and Nuclear–Cytoplasmic Ratio

Nuclear density and N/C ratio are two important features in the
diagnosis of cancer. While nuclear density defines the number of
hepatocyte nuclei per unit area, the N/C ratio specifies the ratio
of the areas occupied by hepatocyte nuclei and cytoplasms. In
this study, the nuclear density and N/C ratio were computed for
every cord label. Therefore, we extracted the cytoplasm around
each cord label from the consecutive cytoplasm region.
Figure 13 illustrates how to achieve this. Figure 13(a) illustrates
the cytoplasm extracted from Fig. 13(b) using the technique
explained in Sec. 3. The centerline is expanded proportionally
to the thickness of the cytoplasm, as shown in Fig. 13(b),
by morphological dilation operations. Moreover, because
Fig. 13(b) differs from actual trabecular regions, its convex
hull is calculated [see Fig. 13(c)], and the cytoplasm region
of the trabecula is then extracted from Fig. 13(a), limited by
the extraction of the convex hull region shown in Fig. 13(c).
The final result is shown in Fig. 13(d). In this image, the
gray spots are the extracted cell nuclei. The nuclear density
and the N/C ratio are then, respectively, computed by

Fig. 11 Thickness of individual elements along a branch: (a) original image of a trabecular region, (b) a
branch along which the thickness is computed, and (c) thinning image of a distance image.

Fig. 12 Thickness along the branch depicted in Fig. 11(b).

Fig. 13 Cytoplasm segmentation: (a) cytoplasm, (b) dilation image of the trabecular centerline, (c) convex
hull of the dilated image (b), and (d) result of trabecular extraction.
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EQ-TARGET;temp:intralink-;e001;63;752Nuclear density ¼ Number of nuclei

Per unit area
; (1)

EQ-TARGET;temp:intralink-;e002;63;721N∕C ratio ¼ Area of nuclear

Area of cytoplasm
: (2)

4.4 Calculation of the Number of Layers

The trabecular thickness is often counted as the number of
layers,22 which is considered to be the number of cells aligned
orthogonally to the centerline of the trabeculae. For example, the
cytoplasm depicted in Fig. 13(d) has one or two layers.

To numerate the number of layers for individual cord labels,
a simple model is used in which the cell arrangement is approxi-
mated by a rectangular box of thickness t and length l
(see Fig. 14).

The area occupied by a single cell is estimated as follows:

EQ-TARGET;temp:intralink-;e003;63;562a2 ¼ t × l
m

; (3)

where a is the cell diameter, and m is the number of hepatocyte
nuclei, respectively. The number of layers Nlay is, therefore,
given by

EQ-TARGET;temp:intralink-;e004;63;487Nlay ¼ t
a
¼

ffiffiffiffiffiffiffiffiffiffiffi
m × t
l

r
: (4)

Figure 15 shows examples of determining the number of
layers. The results are almost identical to those obtained by vis-
ual inspection.

4.5 Feature Set for the Tissue in an Image

Using the methods described from Sec. 4.1 to Sec. 4.4, the fea-
tures are calculated for each cord in a tissue. The feature set
includes N/C ratio, nuclear density, and the number of layers.
It is then possible to calculate the distributions of those tissue
features in an image. As a feature descriptor for the image, we
consider the median of each feature in the image. A feature vec-
tor for the tissue structure is derived for an image along with a
feature vector for the nuclear morphology.23 The features of N/C
ratio and nuclear density have previously been used in conven-
tional histopathology image analysis research;9,13 however, their
accuracy can be enhanced by aggregating them over all cords in
the tissue image, because the sinusoid and stromal regions are
excluded from the calculation.

5 Experiment
The experiment was performed on a collection of histopathol-
ogy images supplied by the Department of Pathology, Keio
University, Japan. This study was approved by the ethics com-
mittee of Keio University School of Medicine. To evaluate the
feature values derived in the proposed method, we calculated
them using a number of images of HE-stained liver specimens.
The ROI images were 2174 × 2174 pixels in size, which is
equivalent to a 1 × 1-mm area. All slide images were captured
using the NanoZoomer 2.0HT slide scanner (Hamamatsu
Photonics K. K., Hamamatsu, Japan) at 20× (equivalent to
0.46 μm∕pixel) as NanoZoomer Digital Pathology Images. In
this experiment, 551 images were used, comprising 225 images
from background (BG) tissues as noncancer samples, and 326
images of HCC. Based on the Edmondson grading, 80 and 246
of these images were graded as G1 and G2, respectively. The
grades were annotated by a consensus of expert pathologists.
The features described in Sec. 4 were calculated for each

Fig. 14 Schematic of cell arrangement in local cytoplasm.

Fig. 15 Layer number calculation using the extracted trabecula images.
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cord in the image and the median was used as the representa-
tive value.

5.1 Relationship Between the Feature Values and
Edmondson Grading

5.1.1 Nuclear–cytoplasmic ratio for each cord label

Figure 16(a) shows a boxplot of the “mean nucleus-to-cyto-
plasm ratio” of Huang et al.,9 and Fig. 16(b) shows a boxplot
of the N/C ratio distribution calculated using the method
explained in Sec. 4. To calculate the result shown in Fig. 16(b),
the N/C ratio of the per-unit area (2174 × 2174 pixels) was
derived. The median N/C ratio for each cord label (p-value
<0.01) and mean nucleus-to-cytoplasm ratio (p-value <0.01)
were evaluated by the Kruskal–Wallis test. Figures 16(a) and
16(b) present the result of a multiple comparison test, which
shows that the difference between the cancer and noncancer
labels was significant. To verify the separation of BG and G1
by the proposed method, we computed the receiver operating
characteristic (ROC) curve for classification by a logistic regres-
sion of the N/C ratio and proposed method [see Fig. 16(c)]. The
area under the curve (AUC) was significantly higher for the
median N/C ratio for each cord label than it was for the
mean nucleus-to-cytoplasm ratio (p-value <0.05). The median
of the N/C ratio calculated for all cords is more clearly separated
than the mean nucleus-to-cytoplasm ratio calculated using the
total areas of nuclear and cytoplasmic regions. This indicates

that the proposed method improves the separation of well-differ-
entiated HCC from noncancer tissue. Table 1 shows the AUC of
the N/C ratio and median of N/C ratio for each cord label.

5.1.2 Nuclear density for each cord label

Figure 17(a) shows a boxplot of the median nuclear density
method of Kiyuna et al.,13 and Fig. 17(b) shows a boxplot of
the nuclear density distribution calculated using the method
explained in Sec. 4. The median nuclear density of each cord
label (p-value <0.01) and nuclear density of Kiyuna et al.
(p-value <0.01) were evaluated by the Kruskal–Wallis test.
Figures 17(a) and 17(b) present the result of a multiple compari-
son test, which shows that the difference between the cancer and
noncancer labels was significant. To verify the separation of BG
and G1 by the proposed method, we computed the ROC curve
for classification using a logistic regression of the nuclear den-
sity and proposed methods [see Fig. 17(c)]. An ROC curve was
obtained for the median nuclear density and median nuclear
density distribution for each cord label threshold. In this figure,
the true positive rate is plotted on the y-axis versus the false
positive rate on the x-axis. There was no significant difference
between nuclear density of the proposed method and Kiyuna
et al.’s method (P ¼ 0.836). Table 1 shows the AUCs of the
nuclear density and median of nuclear density of each cord
label. The method of Kiyuna et al. calculates nuclear density
per unit area. The proposed method calculates nuclear density
per unit trabeculae. Therefore, if the image includes substances
other than cells, like stroma or regions of glass, the results of the
proposed and conventional methods would be different. No sig-
nificant difference was observed in this experiment because an
image whose entire space was occupied by cells was used.

5.1.3 Number of layers for each cord label

Figure 18(a) shows a boxplot of the trabecular thickness of
Kiyuna et al.,13 and Fig. 18(b) shows a boxplot of the distribu-
tion of the number of layers, calculated using the method
explained in Sec. 4. The median number of layers of each
cord label (p-value <0.01) and median trabecular thickness fea-
ture of Kiyuna et al. (p-value ¼ 0.478) were evaluated by the
Kruskal–Wallis test. Figures 18(a) and 18(b) present the result of

Fig. 16 Boxplot of the (a) N/C ratio (Huang et al.), (b) the median of N/C ratio of each cord label, and
(c) ROC curve.

Table 1 AUC and p-value for each feature.

AUC
N/C
ratio

Nuclear
density

Trabeculae
feature (BG
versus G1)

Trabeculae
feature

(BG versus
G1, G2)

Conventional
method

0.738 0.766 0.522 0.489

Proposed method 0.781 0.768 0.587 0.644

p-value p < 0.05 p ¼ 0.836 p ¼ 0.141 p < 0.01
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a multiple comparison test, which shows that the difference
between the cancer and noncancer labels was significant. To
verify the separation of BG and G1 by the proposed method,
we computed the ROC curve for classification by a logistic
regression of the trabecular thickness and proposed method
[see Fig. 18(c)]. An ROC curve was obtained for trabecular
thickness and median number of layer distributions for each
cord label threshold. In this figure, the true positive rate is plot-
ted on the y-axis versus the false positive rate on the x-axis.
There was no significant difference between the nuclear density
of the proposed method and Kiyuna et al.’s method (P ¼ 0.141).
Table 1 shows the AUCs for trabecular thickness and the median
of the number of layers of each cord label. However, the number
of layers of the Kruskal–Wallis test had a significant difference
for BG and G1 as well as for BG and G2. Therefore, to verify the
separation of BG and G1,G2 by the proposed method, we com-
puted the ROC curve for classification by a logistic regression of
the trabecular thickness and proposed method (see Fig. 19). The
AUC was significantly higher for the median N/C ratio of each
cord label than it was for the mean nucleus-to-cytoplasm ratio
(p-value <0.01).

Fig. 17 Boxplot of the (a) nuclear density, (b) median of nuclear density for each cord label, and (c) ROC
curve.

Fig. 18 Boxplot of the (a) trabecular thickness, (b) number of layers for each cord label, and (c) ROC
curve.

Fig. 19 ROC curve of trabecula thickness and number of layers of BG
and G1,G2.
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The trabecular thickness method of Kiyuna et al. is not
highly accurate. Although the trabecular thickness is a classifi-
cation feature for HCC, it is difficult to diagnose HCC using
trabecular thickness alone. Therefore, Kiyuna et al. proposed
the use of a combination of various features such as nuclear den-
sity and NC ratio. The proposed method obtains a higher accu-
racy than the trabecular thickness method. It is believed that
classification based on the number of layers alone is difficult
because the structural changes in G1 compared to normal tissue
are very small. As the proposed method is an approach that
quantifies the number of layers, which is just one part of the
diverse structural changes that occur in liver cells, it is not useful
for all situations. Therefore, it is believed that the number of
layers would be best used in combination with various other
features such as nuclear density and NC ratio. In fact, in a
study conducted by Aziz et al.,23 the accuracy of the difficult
classification of G1 was improved from 65% to 77% by com-
bining nuclear features with the proposed method.

6 Conclusion
To analyze the structure of histopathological hepatic images, we
isolated the trabeculae by extracting the sinusoids, fat droplets,
and stromata. We then measured the morphological features of
the extracted trabeculae, divided the image into cords, and cal-
culated the feature values of the local cords. We proposed a
method of calculating N/C ratio, nuclear density, and the num-
ber of layers in trabecula thickness using the local cords. The
results of the experiment clearly show that the method was
able to effectively quantify the Edmondson grade with respect
to N/C ratio, nuclear density, and the number of trabecular
layers. Quantifying the organization structure used in pathologi-
cal diagnosis is a critical technology from the viewpoint of
improving the precision of computer-aided diagnosis.
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