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Abstract. The registration of two-dimensional histology images to reference images from other modalities is an
important preprocessing step in the reconstruction of three-dimensional histology volumes. This is a challenging
problem because of the differences in the appearances of histology images and other modalities, and the pres-
ence of large nonrigid deformations which occur during slide preparation. This paper shows the feasibility of
using densely sampled scale-invariant feature transform (SIFT) features and a SIFTFlow deformable registration
algorithm for coregistering whole-mount histology images with blockface optical images. We present a method
for jointly optimizing the regularization parameters used by the SIFTFlow objective function and use it to deter-
mine the most appropriate values for the registration of breast lumpectomy specimens. We demonstrate that
tuning the regularization parameters results in significant improvements in accuracy and we also show that
SIFTFlow outperforms a previously described edge-based registration method. The accuracy of the histology
images to blockface images registration using the optimized SIFTFlow method was assessed using an inde-
pendent test set of images from five different lumpectomy specimens and the mean registration error was
0.32� 0.22 mm. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction
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1 Introduction
Breast cancer is the most common cancer in women worldwide,
the second leading cause of cancer death among women in
developed countries following lung cancer, and the second most
common cancer overall after skin cancer. The incidence rate of
breast cancer is rising, and early diagnosis and accurate treat-
ment planning play important roles in prolonging life expect-
ancy with higher quality of life for patients. Medical imaging
is the primary method for both detecting breast cancer and stag-
ing the disease, while pathology plays a vital role in diagnosis,
prognosis, and prediction. The development of scanners that are
capable of generating high-quality digital microscopy images of
whole slides (WSIs) has led to increased research activity in
the area of pathology image analysis. Although most research
is focused on pathology as a two-dimensional (2-D) imaging
modality, there is growing interest in exploring the additional
information that can be obtained by reconstructing three-dimen-
sional (3-D) histology images from stacks of 2-D WSIs.

The 3-D reconstructions generated from histology images
have two main applications. First, they can provide structural
information at the microscopic resolution. For example, biolo-
gists have used this approach to study the morphology of
embryonic development,1 the coronary system,2 and mammary
glands3 in murine models, and 3-D histology reconstruction
has also been applied to human breast cancer in the study of
ductal carcinoma in situ (DCIS).4 A 3-D reconstruction also
has the potential to improve our understanding of heterogeneity
in tumors by allowing us to visualize the spatial distribution

of different tumor markers. Second, 3-D histology volume
reconstruction is an important intermediate step in the coregis-
tration of WSI histology images to in vivo imaging techniques
such as magnetic resonance imaging (MRI), optical coherence
tomography (OCT), and ultrasound. Coregistration of medical
images with histology provides a better understanding of how
image appearances correlate with pathology and it allows in vivo
imaging contrast mechanisms to be explored and validated
using histology as the “gold standard.”

In most cases, WSI histopathology images are obtained for
standard 25 mm × 75 mm glass microscope slides, and tissue
specimens that are too large to fit on these slides must be cut
into smaller blocks before sectioning. This means that regular
WSIs cannot be used to generate 3-D volumes of larger clinical
specimens such as whole prostate glands or breast lumpectomy
specimens. Advances in digital scanner technology and speci-
men preparation and staining have made it possible for much
larger slides of up to 150 mm × 200 mm to be prepared and
digitized in a process known as whole-mount histopathology.5

Whole-mount histopathology has been used to acquire cross-
sectional images of complete breast6 and prostate7,8 specimens,
and several semiautomated methods for reconstructing 3-D
prostate histology volumes have been proposed.9–11 We are
particularly interested in generating 3-D volumes from breast
tumor specimens as it is known that 3-D features such as tumor
margin, focality, and extent all have prognostic significance.5

This is, however, a significantly more challenging task than in
the prostate for two main reasons. First, the breast tissue is com-
posed largely of fat which means that the tissue sections are
much more deformable and vulnerable to tearing. The second
problem is that there are no clear boundaries to help guide
the registration; this is especially true of lumpectomy specimens
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where the surgeon removes the tumor together with as little
of the surrounding breast tissue as possible. Manual methods
of reconstructing 3-D lumpectomy specimens have been
described12,13 but they are very time-consuming and inaccurate.

1.1 Related Work

The first step in generating a 3-D histology volume is to cut a
series of very thin sections from tissue that has been embedded
in a paraffin wax block. These sections are placed on glass
slides, stained, and then scanned to generate digital WSIs.
The placement of the tissue section onto the slide is not a precise
process and the resulting image is affected by random in-plane
translations and rotations, which have to be corrected for using
rigid 2-D registration. In addition to this misalignment, folds,
tears, and nonrigid deformations often occur during cutting,
mounting, and staining the tissue sections and these must be
corrected for using 2-D deformable registration. The final step
in 3-D histology reconstruction involves stacking the 2-D
images with the appropriate slice separation to form a volume
and, in some cases, correcting for through-plane misalignment.

Several approaches for correcting the 2-D misalignment and
deformations have been described. Some groups have used
extrinsic fiducial markers to align the slices,8,14 however, this
is an invasive procedure, which has the potential to affect the
pathologists’ ability to interpret the histological sections, and
is frequently not permitted on clinical specimens.

Both intensity- and landmark-based registration methods
have the advantage that they do not interfere with the appearance
of the tissue sections. Intensity-based methods have been shown
to be very effective in medical image registration but they may
fail in histology, where the intensities across histology images
are not constant.15–17 Bağci et al.18,19 have demonstrated that
intensity variations across images can lead to registration errors
and this problem cannot be fixed through a simple intensity
normalization approach. Feature-based image registration
techniques20,21 rely on identifying corresponding features
such as points and lines in both images, and the choice of
a feature space plays a significant role in registration quality.
Scale-invariant feature transform (SIFT) features22 take into
account the spatial information obtained from the gradient of
the pixel intensities and are invariant to brightness, rotation,
and scale making them a suitable choice for use in histology.

Many 3-D reconstruction methods rely solely on the infor-
mation from the series of 2-D histology sections and either regis-
ter slices one to another,15,23,24 or to a single reference section.
16,18,25 These methods assume that structures visible on one slice
are still present in the adjacent slices but this may not be true if
the separation between them is too great. Also local distortions
of the histology sections, such as shrinkage, expansion, tears,
and folds, which occur during the histological preparation pro-
cedures, reduce the similarities between consecutive sections
and consequently make the alignment of the 2-D images much
more challenging. To overcome this problem, some groups
have made use of in vivo image, acquired before the tissue is
removed, to constrain the 3-D reconstruction of the histology
slices.10,11 This, however, is only possible if medical images
are available and if it is possible to identify corresponding
structures in both the histology and the in vivo images.

In our previous work,3,26 we developed a pipeline for
histology volume reconstruction, which used optical blockface
images as reference images. Blockface images were obtained
by photographing the surface of the tissue block before each

section was cut, and the image of each histology section was
then registered to its correspondent blockface image using
2-D rigid and deformable registration techniques. This is a prac-
tical solution when it is not feasible to densely sample the tissue
using a small interslice separation and reference 3-D volumetric
images of the specimen are not available. An edge-based regis-
tration method made use of points at the boundary between the
tissue specimen and the surrounding paraffin block to carry out a
rigid registration followed by a nonrigid deformation. We used
implanted fiducial markers27 to measure the registration accu-
racy in mouse xenograft specimens and found that the deform-
able registration generated using the boundary points actually
degraded the accuracy of the global rigid registration.26 This
highlights the need to improve the deformable registration
step in the pipeline.

As mentioned earlier, the goal of our work is to generate 3-D
histology volume reconstructions from whole-mount breast
lumpectomy images, where the highly deformable nature of
breast tissue and the lack of clear boundaries and anatomical
structure make this a particularly difficult problem. Clarke
et al.13 demonstrated that manually identified landmarks can
be used to align a whole-mount lumpectomy histology image
with a specimen cone-beam computed tomography slice and
used this manual alignment to compare 3-D with 2-D tumor
measurements,12 but this is a laborious and imprecise
process. Booth et al.4 investigated the use of automated 3-D
reconstruction of small breast tissue WSIs in the study of the
biology of DCIS. They reconstructed the histology volume by
selecting the middle section as the reference image and register-
ing the neighboring sections to this reference image using the
sum of squared differences of the neighboring pixel intensities.28

This registration proceeded from the center out with subsequent
sections aligned to their neighbors and it relied on having
sequential 4-μm-thick sections making it impractical for use
with whole-mount images. Reis et al.29 investigated the maxi-
mum spacing between breast histology sections required for
3-D histology reconstruction to a specific tolerance, focusing
on the accuracy of reconstruction of individual ductal structures
that were extracted from the WSI. They also selected the section
at the center of the block as the reference image and used a pair-
wise rigid or affine registration approach to align the sections to
the reference image. They concluded that a spacing of 41 μm
between sections was sufficient to assess ductal structures.
However, in the clinical setting, the spacing between the breast
sections is about 4 mm and methods that rely on slice-to-slice
registration will likely fail.

1.2 Our Approach

Our goal, therefore, is to develop an automated method for
generating 3-D histology volumes that can be applied to whole-
mount breast lumpectomy or mastectomy specimens without
manual intervention and without relying on closely spaced serial
sections. This paper focuses on the first step in a 3-D volume
reconstruction pipeline, which is the correction of deformations
in the whole-mount images using a reference blockface image.
In our previous work, we automatically identified points at
the boundary between the tissue specimen and the surrounding
paraffin block in both histology and blockface images and used
these to generate a deformation field,26 but the results were dis-
appointing. Here, we propose the use of an automatic feature-
based image registration method, SIFTFlow, developed by Liu
et al.,30,31 to align the whole-mount and blockface images. Using
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SIFT features which are invariant to brightness, rotation, and
scale eliminates the shortcoming of the intensity-based methods,
and by establishing a very dense set of corresponding points we
hope to improve on our previous method which only used
sparsely sampled edge points. We investigate the accuracy of
the SIFTFlow algorithm as a function of the parameter settings
used and then optimize these parameters for our specific
application using fiducial markers implanted in a lumpectomy
specimen to assess registration errors. Finally, we compare the
performance of the proposed deformable registration method
with the edge-based method described previously.

Further processing steps to align the blockface images are
required to complete the 3-D volume reconstruction once the
deformations in the whole-mount images have been corrected.
Large breast tissue specimens have to be cut into 4-mm-thick
slices before paraffin embedding is carried out to facilitate tissue
processing, which means that each whole-mount section is cut
from a different block and additional tissue processing steps are
required to realign the blockface images. We will report on the
results of 3-D volume reconstruction in future work as a descrip-
tion of the full reconstruction pipeline is beyond the scope of
this paper.

2 Materials and Methods
This section describes the methods used to acquire whole-mount
histology images and their corresponding blockface images and
the pipeline for coregistration of these images using densely
sampled SIFT features.22,30 We also propose an iterative method
for optimizing the parameters used by the SIFTFlow algorithm.

2.1 Image Data

Two sets of image data were acquired which we will refer to as
the training set and the test set. The training set of 10 whole-
mount/blockface image pairs came from a single specimen and
was used to determine an optimum set of parameters for the
SIFTFlow algorithm and to carry out the comparison with the
edge-based approach. The test dataset, comprising five image
pairs from five different patients, was used to test the registration
accuracy obtained using the optimized SIFTFlow method.

For the training data, we were able to obtain Institutional
Research Ethics Board approval to implant multimodality
fiducial markers into part of a lumpectomy specimen from a
patient with invasive ductal carcinoma (the rest of the specimen
was retained in the anatomic pathology laboratory for routine
clinical assessment). Four multimodality fiducial markers were

implanted in the fresh tissue using a biopsy needle.27 The speci-
men was suspended in 3.5% agar gel and four additional fiducial
markers were placed in the agar gel close to the specimen; these
markers could not be used for the histology to blockface regis-
tration as the gel tended to become detached from the tissue dur-
ing sectioning. The fresh tissue was sliced at 4 mm. Figure 1(a)
shows one slice of the fresh tissue with the fiducial markers both
in agar gel and the specimen. The tissue slices were then
formalin fixed, processed, and embedded in paraffin6

to produce 10 blocks. One 4-μm-thick whole mount section
was obtained from each paraffin block.

Immediately prior to cutting each section, a blockface image
was captured using a telecentric lens. Imaging the blocks at
a 90-deg angle provides an image with low contrast between
the tissue at the surface of the block and the surrounding paraffin
and also between different tissue types [Fig. 1(b)]. Positioning
both the lens and light source at an oblique angle (≈15- deg from
90-deg angle) produces a high-contrast image [Fig. 1(c)], but
introduces a horizontal scaling artifact. We correct this by
calculating a scaling factor based on the horizontal distances
between the fiducial markers in the gel. After applying the
scaling correction, the oblique blockface images are used as
reference images. The pixel size of the blockface images was
186 μm and the corrected blockface images were cropped to
340 × 410 pixels to remove excessive background.

The tissue sections were stained with hematoxylin and eosin
(H&E), which provides good contrast between fibroglandular
tissue (purple), stroma (pink), and fatty tissue (mostly white),
and is the most commonly used histological stain. They were
then digitized at 2-μm resolution, downsampled to the resolution
of the blockface images, and padded with the average back-
ground pixel values to the size of blockface images [Fig. 1(d)].

For validation, a testing set of five pairs of blockface and
histology images were also acquired from lumpectomy speci-
mens from five different patients with the Institutional Research
Ethics Board approval. It was not possible to get approval to
implant fiducial markers in these specimens and only a single
section was used from each specimen. A smaller lens was used
to obtain the blockface images for these testing images, there-
fore, the resolution of blockface images and the downsampled
whole-mount images was 55 μm.

2.2 Registration Using Scale-Invariant Feature
Transform Features

Dense SIFT features22,31 are used, in this work, to find the rota-
tion and translation of the histology images with respect to their

Fig. 1 (a) 4-mm slice of the fresh tissue, (b) blockface image (90-deg angle), (c) blockface image (oblique
angle), and (d) H&E-stained whole-mount image.
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correspondent blockface images. For each pixel, an eight-bin
histogram of gradient orientations is calculated for 16
4 × 4 pixels neighboring blocks, which results in 8 × 16 ¼
128 features. Therefore, for each w × h image, we have a 3-D
SIFT image of dimension (w × h × 128).30

2.2.1 Affine registration

The image pairs are first aligned using an affine registration.
To find the rotation angle, shift parameters, and scaling factors,
we minimized the Euclidean distance between the SIFT features
of the histology and blockface images as follows:
EQ-TARGET;temp:intralink-;e001;63;623

Erðθ; tx; ty; Sx; SyÞ ¼
X
p∈R2

kS1ðpÞ − S2ðp 0Þk

p ¼ ðx; yÞ
p 0 ¼ ðxSx cos θ − y sin θ þ tx; x sin θ þ ySy cos θ þ tyÞ;

(1)

where S1 and S2 are the SIFT features of the blockface and the
histology images, respectively, variable θ is the rotation angle,
tx and ty are the shift values in the x- and y-directions, and Sx
and Sy are the scale factors, which correct for any shrinkage
and expansion of the tissue sections during processing. In the
interest of speed, affine registration using fewer dense SIFT
features was also investigated. Reducing the number of features
to 10, i.e., w × h × 10, demonstrates results similar to those
for w × h × 128. Therefore, the only first 10 features were used
for rigid registration. Minimizing this objective function is an
unconstrained multivariable optimization problem; therefore,
the Nelder–Mead algorithm32 is used to find the registration
parameters.

2.2.2 Deformable registration

After the images have been roughly aligned using a similarity
transformation, we use a deformable image registration to
further improve the correspondence between the two images.
Finding the pixel-wise displacement field is typically achieved
by solving an optimization problem. Liu et al.30,31 showed that
the SIFTFlow objective function works well for deformable
registration of different scenes containing similar objects.
They adopted a discrete, discontinuity preserving, flow estima-
tion algorithm to match the dense SIFT features, instead of raw
pixels. The SIFTFlow objective function [Eq. (2)] comprises
three terms: a data term, a small displacement term, and
a smoothness term
EQ-TARGET;temp:intralink-;e002;63;223

Minimize∶EðωÞ ¼
�X

p

kS1ðpÞ − S2½p − ωðpÞ�k1

þ
X
p

η½juðpÞj þ jυðpÞj�

þ
X

ðp;qÞ∈ε
fmin½αjuðpÞ − uðqÞj; d�

þmin½αjυðpÞ − υðqÞj; d�g
�
; (2)

where S1 and S2 are the dense SIFT features of the source
and target images, and variable wðpÞ ¼ ½uðpÞ; vðpÞ� is the

displacement of pixel p ¼ ðx; yÞ. Parameter η controls the dis-
placement of the pixels and α controls the smoothness of this
displacement with respect to the neighboring pixels. Small
values for these parameters allow for high deformations while
higher values allow for milder deformations. The smoothness
term, which encourages pairwise smoothness in the pixel dis-
placements, is controlled by α and is bounded by a threshold
parameter d. The use of a truncated L1-norm for the smoothness
term accounts for outliers in the deformation field such as the
presence of large tears, where neighboring pixels may be sub-
jected to very different deformations.

2.2.3 SIFTFlow parameter optimization

Liu et al.30,31 do not discuss their choice of regularization param-
eter values in their papers, suggesting that the default parameter
settings of η ¼ 0.005, α ¼ 2, and d ¼ 40 used in their software
implementation33 were suitable for the many image types used
in Ref. 31 to illustrate the SIFTFlow method. Our task of regis-
tering breast histology images to blockface images, however, is
very different from that of registering natural images due to
the presence of tears, folds, and other artifacts in the histology
slices and it is necessary to determine what effect the parameter
settings have on registration accuracy and also to identify the
most appropriate settings to use.

We developed the iterative optimization method summarized
in Fig. 2 to determine the most appropriate parameter settings
for lumpectomy specimens. In the first step, the objective func-
tion [Eq. (2)] is minimized to find the displacement field using

Fig. 2 Flow chart outlining the joint parameter optimization method.
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the initial parameter values from Ref. 33. In this step, the effi-
cient belief propagation method31,34 is used to find the deforma-
tion field. In the second step, the objective function is optimized
using the Nelder–Mead optimization algorithm to find updated
parameter estimates for the displacement field obtained from the
first step. The new estimated parameters are then used as inputs
for the first step to find a new displacement field. These two
steps iterate until either the change of the function value is
lower than an upper limit or it reaches a maximum number
of iterations.

We carried out this parameter optimization on the training
data set. Leave-one-out cross-validation (LOOCV) was adopted,
i.e., the parameters were estimated using nine pairs of images
and then tested on the image which was left out. The formulated
objective function with LOOCV is shown as follows:
EQ-TARGET;temp:intralink-;e003;63;587

Minimize∶EðωÞ ¼
X
nImage

�X
p

kS1ðpÞ − S2½p − ωðpÞ�k1

þ
X
p

η½juðpÞj þ jυðpÞj�

þ
X

ðp;qÞ∈ε
fmin½αjuðpÞ − uðqÞj; d�

þmin½αjυðpÞ − υðqÞj; d�g
�
: (3)

The summation on nImage is added for LOOCV.
To make sure that the optimization was not influenced by the

presence of the fiducial markers, the regions of the images with
fiducial markers were marked manually for each pair of histol-
ogy and blockface images after the rigid alignment of the images
and then excluded from the calculation of the objective function.

2.3 Registration Using Edge Points

In previous work, we used an edge-based registration method3,26

to align histology and blockface images from smaller murine
tissue blocks. Here, we apply the same method to the whole-
mount lumpectomy images to make a comparison with the
SIFTFlow method. For the initial affine registration step,

the segmented boundary points are aligned using Fourier
descriptors35,36 and then the registration is refined using the
iterative closest points37 algorithm. The aligned boundary points
are then used as control points to find the nonrigid deformation,
and a thin-plate spline is used to model the deformation field.

The edge-based approach is simple to apply when there is
a good contrast between the tissue and background in both
histology and blockface images. In breast histology images,
however, there is very low contrast between the fatty tissue
and the background, which makes the automatic segmentation
of the boundary points very challenging. Therefore, in this work,
we manually segmented the boundaries of the tissue in both
sets of images.

2.4 Validation

The rigid alignment of the image pairs in the training set was
assessed by measuring the mean target registration error
(TRE) based on the center of the four fiducial markers implanted
in the specimen. To measure the deformable error, we also
selected some internal landmarks in each pair of images and
calculated the mean TRE based on these internal points. We
attempted to identify an equal number of evenly distributed
landmarks in each image pair for both the training and the
testing datasets.

3 Results

3.1 Affine Registration

Rigid and affine registrations were carried out using the SIFT
feature-based method described in Sec. 2.2.1 and the edge-
based method described in Sec. 2.3. Figure 3 shows an example
of one pair of blockface and histology images together with
the aligned histology images obtained by using the edge- and
the feature-based methods, respectively. The large amount of
fatty tissue leads to very poorly defined tissue boundaries,
particularly in the histology images, and it was necessary to
manually define boundaries for the edge-based approach.

The TRE calculated using the center of the implanted fiducial
markers in the tissue is reported in Table 1. The improvement in
TRE when using dense SIFT feature-based method is small with

Fig. 3 Rigid registration of a histology image to the corresponding blockface image: (a) blockface image
with boundary in blue (figure best viewed in color) and (b) histology image with manually defined boun-
dary shown in red and blockface boundary in blue. Aligned histology images: (c) using edge-based
method and (d) using dense SIFT features. The boundary of the blockface image is overlaid on both
aligned histology images for comparison.
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respect to the edge-based method, but the feature-based method
has the advantage that it is not dependent on image segmenta-
tion. The results in Table 1 also show that using a similarity
transformation, which allows for scaling, improves the align-
ment compared with a simple rigid transformation.

3.2 Deformable Registration

3.2.1 Effect of regularization parameters on SIFTFlow
registration

Figure 4 illustrates the effect of changing the parameters
controlling the magnitude of the displacement of the pixels η
and the smoothness of this displacement α. White areas on
the images represent regions where compression has occurred.

The effect of changing each of the regularization parameters
was assessed by holding two of the parameters fixed at the
default values and then varying the third parameter. The plots in
Fig. 5 show the mean TRE calculated using the fiducial markers
in all 10 training image pairs as each parameter is varied over
a range of values. We see that the largest variation is caused by
changes in α, the smoothness parameter, and Fig. 5(c) suggests
that changing d has very little effect once d > 20. We, therefore,
kept d fixed at the default value of 40 when carrying out the
multivariate optimization outlined in Sec. 2.2.3.

3.2.2 Identifying paired landmarks for the assessment of
deformable registration

Most of the landmarks were selected at the corners of the fibro-
glandular tissue and a few at the cross section of the blood ves-
sels, where the correspondence of the points in histology and
blockface images could be determined. It was not possible to
identify landmarks in the fatty tissue with confidence. Figure 6
shows two pairs of blockface and histology images. The smaller
section contains mostly fat, while the larger section has more
fibroglandular tissue making it possible for more landmarks
to be identified. The number of manually selected landmarks
varied for different sections in the training dataset as there
was a wide variation in section size and composition and,

Table 1 TREs for rigid and affine registration. Values are the mean
TREs (± stdev) based on implanted fiducial markers.

Rigid registration Affine registration

Edge based Feature based Edge based Feature based

3.88� 0.87 mm 3.55� 0.5 mm 2.93� 1.82 2.88� 0.24

Fig. 4 The deformation fields calculated with different settings for η and α are applied to a grid image to
visualize the effects of changing the regularization parameters. Increasing α results in smoother displace-
ment: (a) η ¼ 0.005, α ¼ 1 and (b) η ¼ 0.005, α ¼ 2. Increasing η results in smaller displacements:
(c) η ¼ 0.0005, α ¼ 2 and (d) η ¼ 0.1, α ¼ 2. Parameter d was fixed at the default value of 40 in all cases.

Fig. 5 Sensitivity of TRE (measured using the implanted fiducial markers) to the SIFTFlow parameters:
(a) η, (b) α, and (c) d .
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although we attempted to evenly distribute landmarks through-
out the images, this was not always possible as can be seen in
Fig. 6. The number of landmarks in the 10 training sections
varied from 4 to 10.

The five sections taken from five different patients were
all selected through the center of the specimens and as well
as being larger, they also contained more fibroglandular tissue
allowing us to identify 10 landmarks in each test image pair.

3.2.3 Comparing edge-based deformable registration with
SIFTFlow

The procedure outlined in Fig. 2 was used to estimate the opti-
mum parameters η and α in the SIFTFlow objective function
(d was fixed at 40 throughout). The optimized parameters
and the associated mean TREs (calculated using both the
implanted fiducials and the manually defined landmarks) from
the LOOCV experiment using 10 pairs of images are reported
in Table 2.

In case no. 02, the error is very high; this is because a part of
the tissue section is missing on the histology slide leading to a
large discordance between the stained section and the corre-
sponding blockface image.

For the TREs measured using fiducial markers, the results
confirm that optimizing the regularization parameters signifi-
cantly improves registration accuracy (p ¼ 0.0088 using a

paired two tailed t-test, normal distribution of TREs was con-
firmed using a Kolmogorov–Smirnov test). The average differ-
ence between the TRE obtained from the optimized and default
parameters is 0.67 mm, which corresponds to ∼4 pixels at
186-μm resolution.

The results of the deformable registration using the edge-
based method are also shown in Table 2. Errors were signifi-
cantly higher than those obtained with the SIFTFlow method.

Figure 7 shows one of the blockface images and the corre-
sponding histology image after registration with each of the
methods tested. The circle in Figs. 7(a) and 7(b) highlights
an area of tissue that is missing on the histology slides. In
Fig. 7(b), a part of the tissue is missing and the segmented
tissue boundaries are different in the histology and blockface
images, resulting in poorer performance of the edge-based
registration method compared to the feature-based method.
It has also been noticed that with the edge-based method,
as expected, the structures closer to the edge of the tissue
are generally better aligned than the structures further away
from the boundary points. In Figs. 7(c) and 7(d), arrows point
out areas of difference in the default and optimized SIFTFlow
results.

To obtain a single set of SIFTFlow parameters to use in
the test dataset, we repeated the optimization procedure using
all 10 image pairs and obtained values of η ¼ 4.9 × 10−3 and
α ¼ 1.169.

Fig. 6 Two pairs of blockface and histology images with different sizes and composition. Top row shows
the (a) blockface and (b) histology images of a small section, which mostly contains fat. Bottom row
shows the (c) blockface and (d) histology images of a larger section with more fibroglandular tissue
and higher number of selected landmarks. The arrows on the blockface images show the selected
landmarks.
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3.2.4 Accuracy of optimized SIFTFlow on an independent
test dataset

To confirm that parameters optimized using the training dataset
are suitable for different breast specimens, we applied both these
parameters and the default parameters to five pairs of blockface
and histology images from five different patients and the results
are presented in Table 3. The edge-based method was not
applied to this data as the results from the training data clearly
indicated that it is inferior to the SIFTFlow method.

TREs were comparable with those obtained in the training
set and the optimized parameters resulted in an improvement
over the default parameters. The mean registration error was
calculated as 0.32� 0.22 mm for this independent test set.

4 Discussion
In this work, we have demonstrated that SIFTFlow is successful
in aligning blockface and histology images and we have devel-
oped a method of tuning the regularization parameters used by
this approach.

SIFTFlow removes the need for image segmentation and
is more accurate than our previously described edge-based
approach. Another advantage is that it uses SIFT features, which
are relatively robust to variations in illumination and intensity
in different images. This means the same technique could be
used for registration of histology with other imaging modalities
such as ex vivo MRI or OCT or for the alignment of histology
images with different complementary stains.

Table 2 Average TREs for LOOCV experiment using edge-based SIFTFlow with default parameters, and SIFTFlow with optimized parameters
measured using both fiducial markers and manually selected landmarks. Values are given as mean (stdev) in mm.

Mean TRE (mm) Fiducial markers Mean TRE (mm) Manual landmarks

Case no. η (10−3) α
No. of

landmarks Edge based
Default

SIFTFlow
Optimized
SIFTFlow Edge based

Default
SIFTFlow

Optimized
SIFTFlow

02 5.185 1.149 5 7.46 (0.00) 8.09 (0.00) 7.56 (0.00) 6.82 (0.00) 7.83 (1.80) 6.24 (1.50)

03 5.397 1.129 5 3.1 (0.00) 3.03 (0.00) 0.41 (0.00) 2.97 (0.00) 3.86 (0.95) 0.43 (0.07)

04 5.283 1.137 8 5.39 (0.57) 1.56 (1.78) 0.27 (0.05) 5.13 (1.10) 1.50 (1.53) 0.71 (0.93)

05 5.279 1.137 10 1.22 (0.63) 0.44 (0.49) 0.36 (0.54) 1.09 (0.74) 0.80 (0.88) 0.79 (0.90)

06 5.080 0.913 10 0.54 (0.28) 0.46 (0.25) 0.17 (0.16) 0.98 (0.31) 1.17 (1.60) 0.79 (1.12)

07 5.125 1.160 10 1.38 (0.67) 0.43 (0.22) 0.22 (0.16) 1.14 (0.53) 0.44 (0.63) 0.30 (0.19)

08 5.215 1.149 8 1.56 (0.32) 1.07 (1.17) 0.24 (0.06) 1.52 (0.40) 0.79 (0.70) 0.37 (0.15)

09 5.442 0.862 5 1.89 (0.15) 0.81 (0.64) 0.25 (0.23) 1.78 (0.20) 1.10 (1.25) 0.56 (0.18)

10 5.125 1.160 4 0.81 (0.00) 0.19 (0.00) 0.19 (0.00) 0.76 (0.00) 0.21 (0.15) 0.22 (0.15)

11 5.282 1.137 4 077. (0.00) 0.45 (0.00) 0.18 (0.00) 0.68 (0.00) 0.52 (0.53) 0.51 (0.51)

Fig. 7 Images from case no. 04: (a) blockface image and (b) histology registered using edge-based
method; the circle shows a missing part of the tissue section in histology image, which can degrade
the result of the registration. c) Histology registered using default SIFTFlow parameters and (d) histology
registered using optimized SIFTFlow. The arrows point to some of the areas that are more accurately
registered when the optimized parameters are used.
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For the rigid registration step, we found that it was useful to
use a similarity transformation model rather than a rigid trans-
formation suggesting that the tissue sections may expand when
they are placed in a water bath during the mounting procedure.
We also found that a lower value of α than that suggested by
Liu et al. significantly improved the results of registration.
The mixture of highly deformable fatty tissue and less deform-
able fibroglandular tissue in breast tissue specimens, together
with the presence of folds and tears which inevitably occur when
mounting a very flexible 4-μm tissue section onto a glass slide,
leads to the presence of more complex deformation fields in
histology images than would have been present in the natural
images used to demonstrate the SIFTFlow method in Ref. 31.
Lower values for parameter α have the effect of relaxing the
smoothness constraint in the objective function and this allows
for higher variability in the deformation field. Our method for
carrying out a joint optimization of the regularization parameters
allows SIFTFlow to be tuned for specific tissue types which
could have very different biomechanical properties leading to
differences in the range of deformations.

One of the limiting factors of the proposed parameter esti-
mation approach for SIFTFlow is that it is sensitive to the initial
values. In this work, we used the parameters published by
Liu et al. as initial values for optimization. Currently, we are
working on a preoptimization fast search algorithm to find
suitable ranges for initial values to overcome this problem.

The motivation of this work was to correct for deformations
in the histology images prior to reconstructing a 3-D volume.
We make the assumption that the blockface images are free
from distortion and can, therefore, be used as a reference
image. In practice, significant distortions occur as a result of
the tissue processing steps carried out to embed the tissue
block in paraffin and these will also have to be accounted for
if the 3-D volume is to be subsequently aligned with 3-D ultra-
sound or MRI images.

Although our results are encouraging, in applications where
a region of interest in an aligned histology image needs to
be assessed at a higher resolution, even a submillimeter mis-
alignment could become very significant. For example, when
a region of interest in a medical image is correlated with the
correspondent region in a histology image, the assessment of
the region at higher resolution is required to reveal the under-
lying structures in the histology image. An average difference
of 0.67 mm corresponds to an error of 4 pixels at 186-μm
resolution and 335 pixels at 2-μm resolution, which means

that zooming in a region of interest selected at low resolution
could lead to the selection of a totally misaligned patch at a
higher resolution. The accuracy of the image registration will
be further improved by the employment of multiscale image
registration methods in future work.

5 Conclusion
In this paper, we have presented an automatic approach for
correcting for deformations in whole-mount histology images
from human breast lumpectomy specimens. The contribution
of the paper is twofold: (1) we have demonstrated that a
noninvasive, automatic, and feature-based image registration
method can be applied to the task of aligning histology images
with optical blockface images and (2) we have proposed
a method for optimizing this method and shown that this
significantly reduced TRE.

Quantitative and qualitative evaluations of the image regis-
tration results for different breast specimens demonstrate lower
registration error when optimized parameters are used. The
optimized feature-based method also outperforms a previously
described edge-based method. This method will be used as
a preprocessing step in the generation of 3-D volume recon-
structions of whole-mount histology images.
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