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Abstract. Deep learning methods have been shown to improve breast cancer diagnostic and prognostic
decisions based on selected slices of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).
However, incorporation of volumetric and temporal components into DCE-MRIs has not been well studied.
We propose maximum intensity projection (MIP) images of subtraction MRI as a way to simultaneously include
four-dimensional (4-D) images into lesion classification using convolutional neural networks (CNN). The study
was performed on a dataset of 690 cases. Regions of interest were selected around each lesion on three MRI
presentations: (i) the MIP image generated on the second postcontrast subtraction MRI, (ii) the central slice of
the second postcontrast MRI, and (iii) the central slice of the second postcontrast subtraction MRI. CNN features
were extracted from the ROIs using pretrained VGGNet. The features were utilized in the training of three
support vector machine classifiers to characterize lesions as malignant or benign. Classifier performances
were evaluated with fivefold cross-validation and compared based on area under the ROC curve (AUC). The
approach using MIPs ½AUC ¼ 0.88ðse ¼ 0.01Þ� outperformed that using central-slices of either second postcon-
trast MRIs ½0.80ðse ¼ 0.02Þ� or second postcontrast subtraction MRIs ½AUC ¼ 0.84ðse ¼ 0.02Þ�, at statistically
significant levels. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.1.014503]
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1 Introduction
Magnetic resonance imaging (MRI) is one of the imaging
modalities for clinical diagnosis and monitoring of breast
cancer. Its use has been established for screening of patients
with high risk of breast cancer, cancer staging, and monitoring
cancer’s response to therapies.1–3 In comparison with more
commonly used clinical modalities, such as mammography and
ultrasound, MRI offers much higher sensitivity to breast cancer
diagnosis.4,5 Despite high sensitivity in breast cancer diagnosis,
DCE-MRI has lower specificity, which has room for the future
improvements.6 Additionally, dynamic contrast-enhanced
MRI (DCE-MRI) provides high-resolution volumetric lesion
visualization as well as lesion’s temporal enhancement patterns,
the information that carries clinical value for breast cancer
management.1 DCE-MRI’s superior diagnostic and prognostic
characterization of disease leads to its continuingly increasing
use rates.2,7 However, long imaging and image interpretation
times in combination with few MRI reading experts make it
an expensive clinical procedure.

Automated CAD/radiomics systems are being developed to
overcome challenges associated with the image reading time
and expertise deficiency. Radiomics systems automatically
locate and characterize lesions based on medical images, aiding
human readers, reducing image interpretation time, and errors.8,9

Conventional radiomics systems extract predefined features,

which characterize lesions in terms of intuitive characteristics,
such as size, shape, and morphology.8

Recently, deep learning methods have showed success in
various vision tasks, such as image classification, image
segmentation, and image generation.9 These techniques have
been also adapted to improve diagnostic and prognostic perfor-
mance based on medical scans.10 However, accurate training of
deep models requires large amounts of medical images, which
are generally difficult to acquire. To overcome this challenge,
pretrained deep convolutional neural networks (CNNs) are
often used for medical image classification.9,10–12 Such CNNs
can be trained on a large natural image dataset and then, through
transfer learning, be applied as feature extractors on medical
images. CNN features have achieved state-of-art results across
various imaging modalities and clinical questions. However,
pretrained CNNs require two-dimensional (2-D) inputs, limiting
the amount of 3D–4D image information that can contribute to
CNN-based lesion classification.11–14

The goal of this research is to incorporate the dynamic and
volumetric components of DCE-MRIs into breast lesion classi-
fication with deep learning methods using maximum intensity
projection (MIP) images. The classification task in this study is
distinguishing benign and malignant lesions. MIP images allow
us to collapse the image volumes of postcontrast subtraction
MRIs for input to the pretrained CNNs for feature extraction.
Our MIPS-CNN methodology demonstrates that incorporating
both volumetric and dynamic DCE-MRI components signifi-
cantly improves CNN-based lesion classification.
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2 Methods

2.1 Dynamic Contrast-Enhanced Magnetic
Resonance Imaging Dataset

This study was performed on a DCE-MRI dataset, retrospec-
tively collected under an HIPAA-compliant Institutional Review
Board protocol. The dataset was collected at the University
of Chicago over a 10-year-period, from 2006 till 2016, and
includes 690 breast cases, annotated as benign (212 cases)
or malignant (478 cases) based on pathology and radiology
reports. All of the lesions were clinically biopsy-confirmed,
thus, resulting in radiologist’s sensitivity and specificity of
100% based on their BI-RADS. Both primary and secondary
lesions were utilized in the study.

Malignant cases included masses and nonmass enhance-
ments; benign cases included masses and foci. Detailed clinical
characteristics of the dataset are shown in Table 1. The same
population was previously analyzed using CNN features
extracted from MRI central slices of each tumor but including
precontrast and two postcontrast images.11 The current work
builds upon and advances the analysis by incorporating both
temporal and volumetric components of DCE-MRIs into the
classification by the use of MIP images.

A part of the contrast-enhanced MR images, 454 cases, was
acquired on Philips Achieva 1.5 Tesla (T) scanner. The rest of
236 cases were acquired with Philips Achieva-TX 3T Philips
system. A T1-weighted spoiled gradient sequence was utilized
during image acquisition. To perform dynamic imaging, patients
were injected with the following Gadolinium-based contrast
agents: Ominscan was used for patients with GFR over
60 ml∕min prior to November 25, 2012, and Multihance was
used for the patients with GFR <60 ml∕min and for all patients
imaged after November 25, 2012. Each sequence included a pre-
contrast image followed by multiple postcontrast images, with
the first postcontrast image obtained 55 to 60 s following the
contrast injection. The database consisted of DCE-MRI images
of various slice thickness, with two-third cases having slice
thickness of 2 mm and one-third cases having slice thickness
1.5 or 1.6 mm.

2.2 Image Preprocessing

Prior to applying pretrained CNN for feature extraction, regions
of interest (ROIs) were selected surrounding each lesion on three
MRI presentations: (i) the MIP image generated on the second
postcontrast subtraction (second postcontrast–precontrast) MRI,
(ii) the central slice image of the second postcontrast MRI,
and (iii) the central slice image of the second postcontrast sub-
traction (second postcontrast—precontrast) MRI. To generate
an MIP image, a subtracted 3-D MR image is collapsed into
a single 2-D image by selecting the voxel having the maximum
intensity along the projection through all transverse slices con-
taining the lesion.5,15

Each lesion was located in the center of its ROI. Each ROI
size was selected to be a few pixels greater than the maximum
dimension of its lesion, thus insuring that each ROI contained
not only a lesion, but also some of the surrounding breast paren-
chyma. Figures 1 and 2 show examples of the three types of
MRI representations with selected ROIs for malignant and
benign cases.

2.3 Convolutional Neural Networks Feature
Extraction

Following ROI selection, CNN features were extracted from
each type of ROI using a pretrained ConvNet VGGNet (Fig. 3).16

The network had been previously trained on ImageNet, a large
database on everyday images, and was used as a feature extrac-
tor for DCE-MRIs.17,14,15 To extract features from an ROI,
we replicated the ROI across the three-color channels of the
network. The architecture of the network contains five blocks,
each of which consists of two or four convolutional layers and
a max-pooling layer, and three fully connected layers. In our
methods, CNN features were extracted from the five max-pool-
ing layers, average-pooled, normalized with Euclidean norm,18

Table 1 Clinical characteristics of the clinical DCE-MRI dataset.

Benign/malignant
prevalence:
no. cases (%)

Benign 212 (30.7)

Malignant 478 (69.3)

Age: mean (STD) 54.9 (13.3)
Unidentified cases: 103

Benign tumor characteristics

Tumor subtypes: Fibroadenoma 87

Fibrocystic change 77

Papilloma 12

Unidentified 36

Malignant tumor characteristics

Tumor subtypes: Invasive ductal carcinoma 135

Ductal carcinoma in situ 19

Invasive ductal carcinoma +
ductal carcinoma in situ

263

Invasive lobular carcinoma 18

Invasive lobular carcinoma
mixed

19

Unidentified 24

Estrogen receptor
status: no. of cases

Positive 328

Negative 108

Unidentified 42

Progesterone receptor
status: no. of cases

Positive 274

Negative 159

Unidentified 45

HER2 status:
no. of cases

Positive 72

Negative 349

Equivocal 3

Unidentified 54

Journal of Medical Imaging 014503-2 Jan–Mar 2018 • Vol. 5(1)

Antropova, Abe, and Giger: Use of clinical MRI maximum intensity projections for improved breast lesion. . .



and concatenated to form lesion’s CNN feature vector, as
described in the previous work.11 Even though, a more common
way of applying a pretrained CNN to medical images is to
extract features from fully connected layers, the method requires
image preprocessing to transform the images to a fixed size.
By extracting features from max-pooling layers and average-
pooling them, our method allows using images of various
sizes, corresponding to enclosed lesion sizes. The architecture
details and the feature extraction methodology are demonstrated
in Fig. 4.

2.4 Classification

Breast lesions were classified as benign or malignant based on
the features extracted using the pretrained CNN. Linear support
vector machines were chosen as classifiers for this clinical task
(Scikit-learn package, Python Version 2.7.12, Python Software
Foundation).19 Linear SVMs require optimization of one hyper-
parameter, controlling the trade-offs between misclassification
errors and model complexity.20 The hyperparameter was opti-
mized on a grid search with nested fivefold cross validation.
For nested cross validation, each training set was further divided
into training and validation sets, which were used for training of

Fig. 1 Example of a benign lesion. Full MRI images and ROIs for (a) the MIP image of the second post-
contrast subtraction MRI, (b) the center slice of the second postcontrast MRI, and (c) the central slice of
the second postcontrast subtraction MRI.

Fig. 2 Example of a malignant lesion. Full MRI images and ROIs for (a) the MIP image of the second
postcontrast subtraction MRI, (b) the center slice of the second postcontrast MRI, and (c) the central slice
of the second postcontrast subtraction MRI.

Fig. 3 Lesion classification pipeline.
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the classifier and validation of the hyperparameter, respectively.
To evaluate classification performance in the task of distin-
guishing benign and malignant lesions, receiver operating
characteristic (ROC) analysis with fivefold cross validation
was utilized.21,22 The dataset was split with 80% for training
and 20% for testing subsets within each fold. Area under the
ROC curve (AUC) served as a figure of merit in the analysis.
AUC is a metric unaffected by class prevalence, which was
important given our unbalanced benign/malignant dataset.

Three separate SVM classifiers were trained and evaluated
on the corresponding CNN features extracted from ROIs
selected on (i) the MIP images generated on the second postcon-
trast subtraction MRIs, (ii) the central slice images of the
second postcontrast MRIs, and (iii) the central slice images of
the second postcontrast subtraction MRIs. The significance of
differences in classifier malignancy assessment performances
was assessed with DeLong tests and corrected for multiple
comparisons with Bonferroni–Holm corrections.23,24

3 Results
Clinicians often evaluate the extent of the entire tumor using
MIPs of DCE-MRIs. Our work utilized this idea and extended
it to deep-learning-based tumor evaluations. Our results demon-
strate that presenting MIP images, instead of single slices,

to a pretrained CNN leads to superior classification of lesion
malignancy. Table 2 summarizes AUC values for the perfor-
mances of the three classifiers in the task of distinguishing
benign and malignant lesions. SVMs trained on CNN features
extracted from MIP ROIs significantly outperformed classifiers
trained on CNN features extracted from ROIs from either the
central slice of the second postcontrast MRI or from the central
slice of the second postcontrast subtraction MRI. Figure 5
shows the ROC curves corresponding to the classification
performances of the three classifiers. Compared with previous
work,11 in which we integrated the temporal component of
DCE-MRIs by inputting precontrast and two postcontrast

Fig. 4 Feature extraction methodology. Lesion ROIs were input into a pretrained VGGNet and features
were extracted from five max-pooling layers. The features were then average-pooled, normalized, and
concatenated to form the CNN feature vector corresponding to the input ROI.

Fig. 5 ROC curves showing the performance of three classifiers.
The classifiers were trained on CNN features extracted from ROIs
selected on: (a) the MIP images of second postcontrast subtraction
MRIs, AUCMIP, (b) the central slices of the second postcontrast
MRIs, AUCCS, and (c) the central slices of second postcontrast
subtraction MRIs, AUCSubtracted

CS .

Table 2 Classification performance of classifiers trained on CNN fea-
tures extracted from three types of ROIs in the task of distinguishing
malignant and benign lesions. P-values are computed with respect to
MIP classifiers and are corrected for multiple comparisons with
Bonferroni–Holm corrections.

ROI type AUC p-value

Central slice of second
postcontrast

0.80 (se ¼ 0.02) 0.00058

Central slice of second
postcontrast subtracted

0.83 (se ¼ 0.02) 0.048

MIP 0.88 (se ¼ 0.01) —
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MRIs in three-color channels of pretrained CNN, superior per-
formance of breast lesion malignancy assessment was achieved
with MIP images. Our results suggest that the diagnostically
useful information within MIPs images can be successfully
utilized by CNN-based classification methods.

4 Discussion and Conclusions
Recently, deep learning methods have been successfully adapted
in clinical decision making based on medical images. One
common deep learning-based method involves applying publi-
cally available deep CNNs, pretrained on large natural image
datasets, to medical images. This can be conducted due to a
CNN’s ability to capture image characteristics/features general-
izable to various types of images, medical and nonmedical.
These features extracted from medical images can be further
used to perform automated diagnostic and prognostic tasks.
However, most pretrained CNN models demand a 2-D color
image as an input, making it challenging to incorporate
clinically rich information contained in 4-D medical images.
Thus, in this work, we proposed a method to incorporate
both volumetric and temporal components of DCE-MRI for
classifying lesions as benign or malignant using MIP images
with pretrained CNNs.

One of the straightforward ways of classifying 3-D and 4-D
MRI images is individually classifying each slice of the full
image and averaging the output of the classifiers to attain the
final clinical conclusion. However, some DCE-MRI sequences
may have over 500 slices. With such a high number of slices,
feature extraction and classifier training for each slice might be
computationally very expensive, which would greatly increase
clinical evaluation time. Our work reports on using MIP images
to form a 2-D image from a 4-D DCE-MRI for input into
pretrained CNN for the task of classifying lesions as benign
or malignant. Specifically, the method involves subtracting
a precontrast MRI from the second postcontrast MRI, and then
calculating the MIP of the subtraction image. As a result, the
MIP image contains information about enhancement changes
throughout the lesion volume. This method can be easily
adopted in clinical practice since MIP images are already com-
monly used in the evaluation of breast tumors.

Other works have trained neural networks from scratch on
the medical image datasets with prior image augmentation.
We leave training a 3-D CNN on DCE-MRIs for the future
work, as we acquire more images.

For the task of distinguishing malignant and benign lesions,
we demonstrated that lesion classification based on MIP images
significantly outperforms lesion classification based on either a
single slice second postcontrast MRI or a single slice second
postcontrast subtraction MRI. Our results also suggest that
integration of enhancement changes between precontrast and
second postcontrast time-points, without a volumetric compo-
nent, results in better classification performance compared
with single slice MRI at a single time-point. Further explorations
are necessary to understand the utility of MIP images in the
benign versus malignant lesion classification with pretrained
neural networks. One of the directions is controlling for the
slice thickness of MRIs. Our DCE-MRI dataset contains two-
thirds of the images with a slice thickness of 2 mm and one-
third with a slice thickness of 1.5 or 1.6 mm. Therefore, the
MIPs are taken over variable depth resolutions. In future work,
larger databases need to be collected to perform studies on the
effect of the slice thickness.

In summary, DCE-MRI MIPs incorporate clinically useful
information about the entire lesion volume as well as the con-
trast enhancement and can be utilized for malignancy classifi-
cation with deep CNNs, pretrained on a nonmedical image
dataset.
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