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Abstract. Differentiation between benign and malignant nodules is a problem encountered by radiologists when
visualizing computed tomography (CT) scans. Adenocarcinomas and granulomas have a characteristic spicu-
lated appearance andmay be fluorodeoxyglucose avid, making them difficult to distinguish for human readers. In
this retrospective study, we aimed to evaluate whether a combination of radiomic texture and shape features
from noncontrast CT scans can enable discrimination between granulomas and adenocarcinomas. Our study is
composed of CT scans of 195 patients from two institutions, one cohort for training (N ¼ 139) and the other
(N ¼ 56) for independent validation. A set of 645 three-dimensional texture and 24 shape features were
extracted from CT scans in the training cohort. Feature selection was employed to identify the most informative
features using this set. The top ranked features were also assessed in terms of their stability and reproducibility
across the training and testing cohorts and between scans of different slice thickness. Three different classifiers
were constructed using the top ranked features identified from the training set. These classifiers were then vali-
dated on the test set and the best classifier (support vector machine) yielded an area under the receiver operat-
ing characteristic curve of 77.8%. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.2.024501]
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1 Introduction
The vast majority of malignant peripheral lung nodules are
adenocarcinomas.1 Granulomas, which represent small areas
of inflammation in tissue as response to infections or foreign
agents, represent one of the major confounders to cancer on
computed tomography (CT).2 Most granulomas, which have
a characteristic CT spiculated appearance, are also fluorodeox-
yglucose avid and, thus, are indistinguishable from carcinomas
based upon the current noninvasive modalities.3,4

Over one million people in the US are annually subjected to
a CT guided or bronchoscopic biopsy, and over 60,000 are sub-
jected to a surgical wedge resection for pathologic confirmation
of a pulmonary nodule found on a CT scan.5 However, more
than 26% of the suspicious pulmonary nodules on a CT scan
that are biopsied or resected are identified as benign, translating
to nearly $600M being spent annually on unnecessary and inva-
sive surgical procedures.5,6 Some patients with a nodule on a
CT scan may not undergo a surgical procedure for diagnostic
confirmation and may be followed up with repeat CT scans
to evaluate whether the nodule is increasing in size. However,
granulomas and slow growing cancers may increase at the

same rate, thus rendering the follow-up CT scans largely
noninformative.7

Employing machine learning technologies for the analysis
of pulmonary nodules dates back to the early 1990s,8–10

and the benefits of computer-aided diagnosis algorithms in
localization and characterization of lung lesions on CT are
well investigated.11–15 While a number of papers have looked
at radiomic or computerized feature-based analysis of lung
CT to distinguish between benign and malignant nodules,16,17

there has not been much work done to distinguish granulomas
from malignancies. Dennie et al.18 explored the role of texture
features for distinguishing granulomas from malignancies on
a single cohort of 55 cases. While they looked at the role of
image texture for nodule characterization, we are not aware
of any work that has attempted to jointly explore the role of
computer-extracted features of nodule texture and shape to dis-
tinguish granulomas from adenocarcinomas.

In this work, for the first time, we explore the role of a com-
bination of radiomic texture and shape features derived from
routine noncontrast CT scans to distinguish granulomas from
adenocarcinomas. We used the top discriminating features and
combined them with a machine learning classifier, which was
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optimized on a training set to assign a probability of a nodule
being an adenocarcinoma. The classifier was then independently
validated on a separate test set from a different institution.
Furthermore, we compared this classifier with the manual inter-
pretations of two expert human readers.

The rest of the paper is organized as follows. In Sec. 2, the
methods and materials including the patient selection criteria
and the description of the employed radiomics is described. The
results of the paper are presented in Sec. 3 and they are dis-
cussed in Sec. 4. Finally, the concluding remarks are presented
in Sec. 5.

2 Methods

2.1 Patient Selection, Annotation, and Chest
Computed Tomography Acquisition

In this retrospective study, we included patients from two sites,
who had a suspicious lung nodule on CT scan and underwent
surgical resection. All scans acquired for this study were
collected as part of an Institutional Review Board-approved,
HIPAA-compliant protocol. These scans were obtained as part
of standard of care clinical management for these patients, all of
whom subsequently went on to have a surgical wedge resection
for excision of a suspicious nodule. All the information provided
was deidentified and the need for an informed consent was
waived. Histology was confirmed by an anatomical pathologist
based off visual interrogation of the surgical specimen.

One hunderd and thirty-nine solitary nodules were obtained
from site 1 (70 carcinomas and 69 granulomas) and were used as
the training set. Fifty six solitary nodules (34 carcinomas and 22
granulomas) were acquired from site 2 and composed of the in-
dependent test set. Patients with multiple solitary nodules were

excluded. Figure 1 illustrates the inclusion and exclusion
criteria.

2.2 Lesion Segmentation and Computer-Extracted
Texture and Shape Features

The region of interest (RoI) containing the lesion was manually
segmented across contiguous slices by an expert cardiothoracic
radiologist with 20 years of experience in interpreting chest CT
scans via a hand-annotation tool in 3D-Slicer® software.19 To
evaluate the interobserver variability in the lesion segmentation
and also to show the effect of it on the stability of the top radio-
mics, a subset of 10 adenocarcinoma and 10 granuloma lesions
is randomly picked and resegmented by an expert radiologist
with 14 years of experience in cardiothoracic radiology. Note
that the second reader was completely blinded to the segmen-
tation of the first reader. A total of 645 two-dimensional (2-D)
texture and 24 three-dimensional (3-D) shape features were
extracted from the lesion area. Texture features were extracted
in 2-D instead of 3-D, since the available retrospective CT vol-
umes were all anisotropic. After extracting per-voxel based fea-
tures within the nodule of interest, five statistics (mean,
variance, minimum, maximum, and entropy) were calculated
for each nodule. All feature calculations were implemented
using MATLAB® 2014b platform (Mathworks, Natick,
Massachusetts). The description of the extracted features is
given in the following subsections.

2.2.1 Haralick texture features

Haralick features are based on quantifying the spatial gray-level
co-occurrence matrix (GLCM) within local neighborhoods
around each pixel in an image.20 A total of 13 Haralick texture
descriptors were calculated from every lesion by computing the
median of the statistics derived from the corresponding co-
occurrence matrices. The GLCM is calculated within 5 × 5 win-
dows, and to avoid the sparse a GLCM, the gray-level images
were uniformly quantized to 64 intensity levels.

2.2.2 Laws texture features

Laws features use 5 × 5 separable masks21 that are symmetric or
antisymmetric to extract level (L), edge (E), spot (S), wave (W),
and ripple (R) patterns on an image. The convolution of these
masks with the image resulted in a total of 25 distinct Laws fea-
ture representations.

2.2.3 Laws–Laplacian pyramids, level 2

Laplacian pyramids allow for capturing multiscale edge repre-
sentations via a set of band-pass filters.22 First, the original
image is convolved with a Gaussian kernel. The Laplacian is
then computed as the difference between the original image
and the low-pass filtered image. The resulting image is then sub-
sampled by a factor of 2, and the filter subsample operation is
repeated recursively. This process is continued to obtain a set of
band-pass filtered images (since each is the difference between
two levels of the Gaussian pyramid). The output of the second
level of the pyramid was then subjected to feature extraction via
the Laws operators and to obtain the corresponding Laws–
Laplacian feature. Similar to Laws features, and corresponding
to level, edge, spot, wave, and ripple patterns, a total of 25 dis-
tinct Laws–Laplacian pyramid features were extracted for each
representative slice that contained the lesion.

Fig. 1 Inclusion and exclusion criteria for patient selection in two
cohorts.
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2.2.4 Gray-level features

This feature class is composed of four voxel-level intensity-based
features, including mean, median, range, and standard deviation.23

2.2.5 Gabor filter features

The Gabor function is obtained as a convolution of a sinusoidal-
modulated Gaussian kernel function.24 These multiscale, steer-
able filters enable extraction of dominant oriented textures within
the nodule. A total of 48 Gabor filters were extracted across dif-
ferent frequencies and scales were extracted for each image.

2.2.6 Gradient features

These features represent the directional change in the intensity
values of pixels within the RoI.25 These gradient features are

obtained via the Sobel edge kernel across each direction (X
and Y) and diagonal directions (XY and YX).

2.2.7 Local binary pattern

These features involve comparing the intensity of a pixel under
consideration with the pixels within its neighborhood and creat-
ing a binary vector based off whether the intensity of the center
pixels is greater or less than each of the neighborhood pixels.26

Thus, the local binary pattern (LBP) operation results in an 8-bit
code-word describing local neighborhood around every pixel.
Table 1 describes the texture features employed in this work.

2.2.8 3-D shape features

Since irregularities in tumors shape can result from its internal
heterogeneity and differences in the growth pattern, we described

Table 1 Texture features evaluated in this work.

Feature category Descriptor Intuitive description

Haralick features (repeated occurrence of gray level
configuration in the texture represented via the GLCM,
which varies rapidly with distance in fine textures and
slowly in large textures; total of 65 features)

Inverse difference
moment (IDM)

IDM is a reflection of the presence or absence
of uniformity, and hence is a measure of local
regions of homogeneity

High IDM: higher presence of locally uniform
windows in GLCM

Low IDM: Higher presence of locally
heterogeneous windows in GLCM

Correlation Quantifies the linear patterns in an image
based on the distance parameter.

Sum entropy Measure of GLCM relationship to distribution of
intensity with respect to entropy. Entropy is the
measure of disorder.

Sum variance Measure of GLCM relationship to distribution of
intensity with respect to variance

High sum variance: greater standard deviation
of sum average

Low sum variance: low standard deviation of
sum average

Laws features (total of 125 features) E5, L5, S5,W5,R5
(combination in both
X and Y directions)

E-Edges

L-Level

S-Spots

W-Wave

R-Ripple

Laplacian pyramids (total of 125 features) Multiresolution filters capture edges at different levels

Gray level features (total of 20 features) The basic intensity-based features including mean,
median, range, and standard deviation.

Gabor features (total of 240 features) Oriented textures via changes in direction
and scale; capture microarchitectures

Gradient features (total of 65 features) Represent the directional change in the intensity
values of pixels in the RoI

Local binary pattern (total of 5 features) Thresolding the window with the center pixel value.
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tumors shape with the following radiomic features. The convex-
ity of the tumor border was calculated as the ratio of the volumes
contained within the tumor border to its convex hull (i.e., the
smallest convex polygon enclosing a planar tumor region). We
also computed the following shape features: width, height,
depth, perimeter, area, eccentricity, compactness, radial dis-
tance, roughness, elongation equivalent diameter, and 3-D sphe-
ricity of the nodule. Note that the width, height, depth as well as
sphericity features were calculated in 3-D space. The remaining
features were computed in 2-D on a slice by slice basis. The
mean and standard deviation of each feature were computed
across all the pixels and over all slices containing the tumor.
A description of the shape features is presented in Table 2.

2.3 Stability Evaluation of Radiomic Features

While feature discriminability is critical to be able to distinguish
the two pathologies of interest, an important consideration in
constructing generalizable and stable classifiers is to ensure
that the features invoked in constructing the machine learning
classifier are relatively robust across sites and slice thickness
for a specific pathology (i.e., granulomas or adenocarcinomas).
The criticality of invoking stable features has been well docu-
mented in the radiology domain,27–29 however, relatively little
attention has to be paid to this issue in the context of radio-
mics.30,31 In this work, we also investigated the sensitivity of
radiomic feature expression to variations in slice thickness and
across the different acquisition sites and scanners. In this paper,
we use the preparation-induced instability (PI) score defined by
Leo et al.30 to measure robustness of the feature value. The PI

value is a number between 0 and 1 and calculated per radiomics.
The PI closer to 0 implies that the corresponding radiomics is
more stable between two cohorts of interests.

In this paper, the PI score was calculated between the testing
cohort and the training cohort to quantitatively demonstrate the
robustness of the top radiomic features. Additionally, the PI
score was calculated for a subset of the training data to inves-
tigate the variance in radiomic features between scans with
a slice thickness of less than 3 mm versus those scans with
a slice thickness more than 3 mm.

To provide a better evaluation and more valid conclusion,
a subset of 20 lesions (10 from each pathology) is randomly
selected and segmented by an independent cardiothoracic radi-
ologist. The Dice coefficient,32 undersegmentation error, and
oversegmentation error between the segmentation of the readers,
and also the area under the curve (AUC) of diagnostics of each
one, was reported as a measure of inter-reader variability. In
addition, the PI value of top radiomics, from the segmentation
of two experts, is expressed as a measure of radiomics stability
versus interreader variability.

2.4 Statistical Analysis

We employed a consensus clustering approach to graphically
compare the within-class and between-classes correlation for
the features identified as discriminatory by feature selection
within the training set.33 To perform the consensus clustering,
the similarity between different nodules, assessed according
to a distance in the space of the top ranked features, was
first determined. The closer two nodules were to each other,
the higher the likelihood that they both belong to the same
cluster. Clusters were determined by invoking the idea that nod-
ules within a cluster should have a high intraclass correlation,
whereas nodules belonging to different clusters should have
minimal correlation. Figure 2(a) shows the consensus clustering
result generated for the nodules in the training set within the
space of the top ranked radiomic features. Figure 2(b) shows
the corresponding consensus clustering obtained for the nodules
in the training set when only invoking the Haralick texture
features.

2.5 Features-Based Classification and Validation on
Independent Test Set

Following feature extraction, sequential forward feature selec-
tion was employed to identify the most discriminating subset
of features.34 To mitigate bias in feature selection and classifier
training, a threefold (onefold held-out for testing), patient-
stratified, cross-validation scheme was used for classifier con-
structing using the instances within the training set, and cross
validation was repeated a 1000 times.

The top six features identified by the feature selection
approach were then used to train and lock down linear discrimi-
nant analysis (LDA), quadratic discriminant analysis (QDA),
and support vector machine (SVM) classifiers. These classifiers
were then applied to predict the class labels of the nodules in the
validation set. Each nodule was assigned a probability of being
an adenocarcinoma. Area under the receiver operating character-
istic (AUC) curve was used to evaluate the performance for
each of the SVM, LDA, and QDA classifiers on the validation
set. A Bayesian cross-validation extensive search on the normal-
ized data was employed to find the best box constraint and
the sigma value of radial basis function (RBF) kernel of SVM

Table 2 Shape features evaluated in this work.

Features Description

Size (three features) Including width, height, and depth of
bounding box

Area (two features) From 2-D slices of each nodule

Perimeter (two features) From 2-D slices of each nodule

Eccentricity
(two features)

Foci of the ellipse and to major axis
length

Extend (two features) Ratio of pixels in the region to pixels
in the total bounding box

Compactness
(two features)

Ratio of the perimeter squared to the
product of 4π and area

Radial distance
(two features)

Distances from center of each slice to
contour points

Roughness
(two features)

Perimeter of slices divided by convex
perimeter

Elongation (two features) From major and minor axis

Convexity (two features) From convex hull

Equivalent diameter
(two features)

Diameter of circle with same area of
slices

Sphericity (one feature) 3-D compactness
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classifier. The employed box constraint and sigma are 0.431 and
14.07, respectively.

2.6 Human–Machine Comparison

The classification performance of our SVM classifier was com-
pared against the diagnosis of two experts, one a board certified
attending radiologist with 12 years of experience in thoracic
radiology and a pulmonologist with 2 years of experience in
reading chest CT scans. Both experts were blinded to the
true histopathologic diagnosis of the 56 cases, which comprised
the test set. Each reader was asked to assign a score between 1
and 5 to each nodule, with 1 referring to a high confidence that
the nodule is “benign,” 2 referring to a diagnosis of “mostly
benign,” 3 being “not sure,” 4 being “mostly malignant,” and
5 being “malignant.” To evaluate the performance of the experts,
the classifier probability output was compared to diagnostic
ground truth determined from the pathology reports. From

these comparisons, a receiver operating characteristic (ROC)
curve was obtained and the AUC was calculated. The AUC
for the human readers on the test set was then compared against
the corresponding values for the SVM classifiers.

3 Results

3.1 Patient Characteristics

Table 3 illustrates the patient characteristics in the two patient
cohorts considered in this study.

A single- and double-tailed paired student’s t-test was
applied between the lesion size of adenocarcinoma and granu-
loma in the testing set and the training set. The results of this
comparison are reported in Table 4. With the double-tailed test,
no significant difference between the lesion size of two classes
across the two cohorts was observed, though a weak correlation
(p ¼ 0.03) was observed for the single-tailed paired student’s
t-test.

Fig. 2 Consensus clustering of the cases in the training set when the data were clustered into six par-
titions. The clustering was done (a) on the most predictive shape and texture features identified during
feature selection and (b) for Haralick texture features alone. While the result of clustering in panel
(a) reveals two primarily distinct clusters of adenocarcinomas and granulomas and (b) reveals multiple
disjointed clusters of varying sizes. The comparison of (a) and (b) shows good inherent discriminability
between adenocarcinoma and granuloma when a combination of the most predictive shape and texture
features is considered, as opposed to Haralick features alone.

Table 3 The patient characteristics in the two cohorts.

Parameters Site-1 Site-2

Histology Adenocarcinoma Granuloma Adenocarcinoma Granuloma

No. of patients (n ¼ 196) 70 69 34 23

Gender (male, %) 28, 40% 36, 52% 14, 41% 13, 57%

Nodule size� SD (mm) 13.33� 6.65 11.15� 4.45 11.91� 4.36 12.19� 6.48

CT acquisition parameters Siemens, Philips Siemens

Exposure 120 to 140 kVp 120 kVp

Slice thickness 1 to 5 mm 1 to 5 mm

X-ray tube current 150 mAs 41 to 200 mAs
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3.2 Top Features Identified by Feature Selection

The top features selected during the cross-validation process in
the training phase of cohort-1 and three different classifiers
(LDA, QDA, and SVM) are shown in Table 5. Based on empiri-
cal evaluation, the RBF kernel was considered the optimal

kernel for use in conjunction with the SVM, and polynomial
kernels of degrees 1, 2, and 3 were also evaluated. The Table
suggests that among texture features, “skewness of Laws fea-
tures (L5 × E5) and (L5 × R5),” “skewness of gradient features
(Sobel in both direction and diagonal),” and “Gabor texture

Table 4 Results of performing a one-tail and two-tail paired student’s t -test between the lesion diameters of two classes in testing and training
cohort.

Testing set Training set

Adenocarcinoma Granuloma Adenocarcinoma Granuloma

Mean 13.333 11.408 11.915 12.190

Variance 44.232 17.821 18.981 42.014

Pooled variance 31.993 27.938

t stat 1.89799883 −0.1901731

P (T ≤ t ) one-tail 0.0300199 0.42494329

t critical one-tail 1.6573364 1.67356491

P (T ≤ t ) two-tail 0.0600398 0.84988659

t critical two-tail 1.97943869 2.00487929

Table 5 The most discriminative texture and shape features (based off AUC) when training the LDA, QDA, and SVM classifiers with cohort-1
(N ¼ 139) and testing on cohort-2.

LDA classifier QDA classifier SVM classifier

Features AUC%� SD Features AUC%� SD Features AUC%� SD

Texture Skewness of
Law L5 × E5

81.2� 1.37 Skewness of
Law L5 × E5

78.9� 1.29 Skewness of
Law L5 × E5

81.9� 0.89

Skewness of
Law L5 × R5

79.4� 0.95 Variance of Gabor,
S ¼ 1∕4, ϴ ¼ 3Π∕8

77.8� 1.26 Skewness of
Law L5 × R5

81.4� 1.15

Sum of standard
deviation

79.0� 1.41 Variance of energy 77.6� 2.01 Variance of Gabor,
S ¼ 1∕4, ϴ ¼ 3Π∕8

80.2� 1.33

Variance of energy 78.8� 2.10 Skewness of Law
L5 × R5

77.4� 1.76 Variance of sum variance 79.3� 2.02

Skewness of Sobel
(X -direction)

78.5� 1.24 Sum of standard
deviation

76.8� 1.35 Skewness of Gabor,
S ¼ 1∕4, ϴ ¼ Π∕4

78.9� 1.57

Variance of Gabor,
S ¼ 1∕4, ϴ ¼ 3Π∕8

78.3� 1.44 Skewness of
diagonal gradient

76.1� 1.88 Skewness of Sobel
(X -direction)

78.3� 2.10

Skewness of Sobel
(Y -direction)

77.8� 1.73 Mean of sum
variance

75.1� 1.34 Skewness of Sobel
(XY -direction)

78.2� 1.43

Shape Mean of extend 67.9� 1.57 Variance of
eccentricity

67.7� 3.16 Mean of extend 69.3� 0.92

Variance of
eccentricity

67.7� 1.58 Mean of convexity 62.8� 3.12 Mean of convexity 68.8� 1.61

Mean of
convexity

67.6� 1.75 Mean of extend 62.5� 4.35 Mean of roughness 67.9� 2.11
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features” were the most consistent and top performing texture
features across the three different classifiers. The top performing
shape features were identified as “mean of extend,” “mean of
convexity,” and “variance of eccentricity,” though the texture
features substantially outperformed the shape features. The most
informative statistics were skewness and variance, and none of
the top features include kurtosis or entropy of texture features.

As a new experiment, without causing any contamination to the
validation set for subsequent experiments, we swapped the train-
ing and the testing cohorts. In this new experiment, three clas-
sifiers—SVM, LDA, and QDA—were trained on the new
training (previously validation) and testing (previously training)
sets. The top features for this experiment are listed in Table 6.
While the top features for this experiment are not identical to the

Table 6 The most discriminative texture and shape features (based off AUC) when training the LDA, QDA, and SVM classifiers with cohort-2
(N ¼ 56) and testing on cohort-1.

LDA classifier QDA classifier SVM classifier

Features AUC%� SD Features AUC%� SD Features AUC%� SD

Texture Variance of correlation 84.24� 1.41 Variance of correlation 83.27� 1.47 Variance of correlation 83.69� 1.52

Kurtosis of correlation 76.42� 1.61 Mean of Gabor,
S ¼ p

2∕8, ϴ ¼ 7Π∕8
73.96� 1.52 Kurtosis of correlation 74.89� 1.97

Skewness of measure
of correlation

72.63� 1.95 Kurtosis of Gabor,
S ¼ p

2∕4, ? ¼ Π∕4
73.02� 2.04 Skewness of measure

of correlation
71.1� 1.37

Variance of Laws–
Laplacian W5 × S5

72.49� 0.99 Skewness of measure
of correlation

71.47� 1.92 Variance of Laws–
Laplacian W5 × S5

69.6� 0.89

Variance of sum average 71.28� 1.22 Skewness of difference
entropy

71.31� 1.43 Mean of Gabor,
S ¼ p

2∕2, ? ¼ 3Π∕8
69.44� 1.92

Variance of Gabor,
S ¼ 1∕2, ϴ ¼ Π∕8

71.25� 1.66 Mean of Gabor,
S ¼ 1∕4, ? ¼ 5Π∕8

71.14� 1.86 Variance of Gabor,
S ¼ 1∕2, ? ¼ 7Π∕8

68.93� 1.25

Variance of sum variance 70.9� 1.07 Mean of Gabor,
S ¼ 1∕2, ? ¼ 3Π∕4

70.77� 1.06 Variance of Gabor,
S ¼ 1∕2, ? ¼ Π∕8

68.67� 1.74

Shape Variance of roughness 67.9� 1.19 Variance of compactness 63.8� 1.23 Variance of convexity 66.51� 1.66

Variance of compactness 65.3� 1.71 Variance of roughness 63.4� 0.85 Variance of compactness 65.49� 1.79

Mean of radial distance 62.4� 1.88 Variance of convexity 62.7� 1.74 Variance of roughness 65.17� 2.14

Fig. 3 An illustration of the discriminability of the texture features. Despite the homogeneity of HU in CT
of the adenocarcinoma and granuloma, the texture features demonstrate informative heterogeneity in
adenocarcinoma in comparison to the granuloma.
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top features identified using the original training set, the same
feature classes (Gabor and Haralick) and statistics (skewness
and kurtosis) were again represented.

Figure 3 visually illustrates the discriminability of the top
two features, i.e., “energy” and “Gabor S ¼ 1∕4, ϴ ¼ 3π∕8” for
a granuloma and an adenocarcinoma. The texture heat maps of
the nodule in Fig. 3 appear to suggest more heterogeneity in
adenocarcinomas compared to granulomas, patterns not
immediately obvious on the original CT scans in Fig. 3. This
trend also appears reflected in the box and whisker plots shown
in Fig. 4, where the average Hounsfield units of the nodules
within the CT scans do not appear to show any clear separation

Fig. 4 Box and whisker plots corresponding to the mean of (a) CT Hounsfield units, (b) variance of
energy, and (c) variance of Gabor texture features extracted from within the nodules in the training set.

Fig. 5 The AUC values (with the standard deviation bars) for three
different machine learning classifiers (LDA, QDA, and SVM) versus
the cardinality of the top features subset achieved via sequential fea-
ture selection method on the training set (N ¼ 139).

Fig. 6 A 2-D scatter plot of adenocarcinomas (red dots) and granu-
lomas (black dots) in the training set plotted in the space of the top two
texture features (Laws L5 × E5 and sum of standard deviation) iden-
tified by the feature selection algorithm. The green line was identified
as the optimal linear boundary separating the granulomas from the
adenocarcinomas in the training set.

Table 7 The values of PI instability measure for top ranked
radiomics.

Features

Training
versus
testing

Less than 3 mm
versus greater
than 3 mm

Skewness of Law L5 × E5 0.654 0.288

Skewness of Law L5 × R5 0.431 0.155

Variance of Gabor,
S ¼ 1∕4, ? ¼ 3Π∕8

0.145 0.23

Variance of sum variance 0.963 0.792

Skewness of Gabor,
S ¼ 1∕4, ? ¼ Π∕4

0.113 0.214

Skewness of Sobel
(X -direction)

0.541 0.785

Skewness of Sobel
(XY -direction)

0.781 0.627

Mean of extend 0.851 0.923

Mean of convexity 0.42 0.783

Mean of roughness 0.379 0.51
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between granulomas and adenocarcinomas. Note that the corre-
sponding texture features shown in Fig. 3 do appear to show
statistically significant separation on the validation set.

Figure 5 shows the AUC values for the top features identified
by the sequential feed-forward feature selection algorithm for
the cases in the training set. As the number of employed features
increases, the AUC value increases. However, to avoid overfit-
ting,35 the cardinality of the feature set was restricted to 10 fea-
tures. Figure 6 illustrates the 2-D scatter plot of top features, sum
of standard deviation and skewness of Laws L5 × E5 texture
features for the adenocarcinomas and granulomas on the train-
ing set. The green line suggests the false-negative free domain
for adenocarcinoma (equivalent to false omission rate = 0) in the
training set. In this scenario, the classifier can achieve a positive
predictive value as high as 72%.

3.3 PI Stability Evaluation of Top Radiomic
Features

As a measure of segmentation agreements, the Dice coefficient
between the segmentation of two radiologists, R1 and R2, is
defined as follows:

EQ-TARGET;temp:intralink-;sec3.3;326;752S ¼ 2 ×
jR1 ∩ R2j
jR1j þ jR2j ;

where |.| is the cardinality of a set (the number of voxel in the
current context). The Dice coefficient and the corresponding
overestimation and underestimation error of two segmentations
are 0.79� 0.12, 0.19� 0.16, and 0.18� 0.08, respectively.

The results of the stability experiments for the top ranked
radiomic features are illustrated in Table 7. Table 7 suggests
that the top discriminating features are not necessarily the most
stable and reproducible features across the different sites and
between scans with greater than and less than 3-mm slice thick-
ness. Interestingly, the shape feature “mean of extend” appeared
to be the most stable feature while the “variance of sum vari-
ance” feature was the most stable texture feature.

The stability of the top radiomics features across the segmen-
tation of two radiologists is also measured by PI values. The PI
values of the most stable shape feature and the most stable tex-
ture feature are 0.891 and 0.924, respectively. The comparison
between the PI values of the most stable radiomics in the differ-
ent sites and thickness with the PI values for different readers

Fig. 7 (a) Receiver operating characteristic curves and corresponding AUC values for the LDA, QDA,
and SVM classifiers for discriminating adenocarcinoma from granulomas on the training set on cohort-1
(n ¼ 139). The left panel shows a zoomed in version of the ROC curves for the different classifiers in the
specificity and sensitivity range of 60% to 100%. (b) Receiver operating characteristic curves and cor-
responding AUC values for the training set on cohort-2.
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reveals that the stable features across sites and thickness were
remained stable across different readers.

3.4 Statistical Analysis

Figure 2 shows the consensus clustering for radiomic features
extracted from the cases in the training set. This figure suggests

that the combination of top texture and shape features yields two
distinct clusters, the individual clusters corresponding almost
exclusively to either granulomas or adenocarcinomas. However,
the corresponding consensus clustering results obtained using
the Haralick features employed by Dennie et al.18 yield multiple
disjointed clusters of varying sizes.

Figure 7(a) illustrates the discriminability of the combination
of texture and shape features for the LDA, QDA, and SVM clas-
sifiers in the training set. Results for these three different clas-
sifiers on the testing set are shown in Fig. 8. The best AUC,
corresponding to the SVM classifier, on the training set for a
combination of four texture and two shape features was
92.9%� 1.14%. On the independent test set, the resulting AUC
of the locked down SVM classifier was 77.8%. When the train-
ing and testing sets were swapped, the QDA classifier was iden-
tified as the top ranked classifier with an AUC ¼ 82.5% on
the test set. To extend the generalizability of the most inform-
ative radiomics, their stability between the training and testing
cohorts and between different slice thicknesses was evaluated.

For the human–machine comparison in the same holdout set,
the AUCs for an attending radiologist with over 12 years of
experience and a pulmonology fellow were found to be 69.72%
and 72.39%, respectively. Pearson’s correlation and single- and
double-tailed paired student’s t-test were performed between the
prediction results on the test set of the SVM classifier and reader
1 (radiologist). However, no statistically significant differences
were found. The results of this comparison are reported in
Table 8.

4 Discussion
Differentiating adenocarcinomas from granulomas is one of the
most challenging dilemmas faced by thoracic radiologists, due
to the similar appearance of the two conditions on CT. Nonin-
vasive differentiation of benign granulomas versus malignant
pulmonary nodules could potentially allow for (1) early inter-
ventions in patients identified with a high likelihood of having
a malignant nodule like adenocarcinoma and (2) prevent unnec-
essary invasive interventions, such as surgical resection in
patients with benign infection.

In this study, we investigated the role of computerized image
analysis to identify a set of image texture and shape features that
best distinguish adenocarcinomas from granulomas on noncon-
trast CT scans of the chest. Our study revealed that the Laws
features (L5 × E5), (L5 × R5), gradient features (Sobel in
both direction, and diagonal), and Gabor texture features
were the most predictive and discriminating texture features.
The adenocarcinomas tend to have a more chaotic microarchi-
tecture and, hence, substantially more heterogeneity compared

Fig. 8 (a) Receiver operating characteristic curves and correspond-
ing AUC values using the LDA, QDA, and SVM classifiers for discrimi-
nating adenocarcinomas from granulomas on the test set (n ¼ 56).
(b) Receiver operating characteristic curves and corresponding
AUC values for training on cohort-2 and testing on cohort-1.

Table 8 Results of performing a Pearson correlation and one-tail and two-tail paired student’s t -test between the prediction results of the machine
classifier (support vector machine) with the two human readers (radiologist and pulmonology fellow) on the test set (n ¼ 56).

Machine and radiologist Machine and pulmonology fellow Radiologist and pulmonology fellow

Pearson’s correlation 0.106933025 0.429644601 0.360786475

t stat −0.94185815 1.992253037 0.771795225

P (T ≤ t ) one-tail 0.175191999 0.025658181 0.221769651

t critical one-tail 1.673033965 1.673033965 1.673033965

P (T ≤ t ) two-tail 0.350383998 0.051316363 0.443539302
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to granulomas, which is what the Gabor and Sobel features (both
gradient related features) might have been capturing. Laws fea-
tures tend to capture patterns, such as speckle and ripples, which
are most likely reflective of the differences in microarchitecture
and heterogeneity between the adenocarcinomas and granulomas.

To date, there have been no quantitative studies on shape
differences between granulomas and adenocarcinomas. How-
ever, our study revealed that shape features, specifically nodule
convexity, eccentricity, and the extend features, were strongly
discriminative of granulomas and adenocarcinomas. Interest-
ingly, no significant differences in nodule volume or area
were found between granulomas and adenocarcinomas across
the cohorts considered in this study via a double-tailed paired
student’s t-test, though a weak correlation was observed when
invoking the single-tailed paired student’s t-test. The inclusion
of shape along with texture measurements appeared to further
improve the predictive performance of the SVM classifier com-
pared to the use of texture features alone, with an AUC of 92.9%
and 77.8% on the training and validation sets, respectively.
When the training and testing sets were swapped, the QDA clas-
sifier was identified as the top ranked classifier with an AUC ¼
82.5% on the validation set.

We also performed an initial study of the stability of the top
ranked, most discriminating radiomic features. Clearly, this was
a preliminary experiment and additional work needs to be done
to evaluate whether the combination of stability and discrimina-
bility can yield classifiers, which are predictive and robust.
Additionally, this initial experiment focused on only site varia-
tions and slice thickness. A more robust evaluation of other
parameters (e.g., reconstruction kernels) will need to be under-
taken to evaluate feature stability more comprehensively.

We also found that skewness and variance of the shape and
texture features were the most discriminating attributes. These
results are intuitive considering that a bright object increases the
mean value and results in positive skewness, whereas a dark
object decreases the mean value and produces negative skew-
ness. Given the fact that adenocarcinomas have increased
heterogeneity, the corresponding texture features tend to over-
express (see Fig. 3) resulting in positive skewness, whereas
granulomas, which tend to have a more coherent microarchitec-
ture, result in a more muted response from the texture filters and,
consequently, lower skewness values.

Dennie et al.18 employed Haralick-related texture features on
55 nodules to discriminate granulomas from primary lung
cancer (including adenocarcinoma and squamous cell cancer).
Interestingly, in our study, consensus clustering of the nodules
in the learning set within the space of Haralick features resulted
in multiple fragmented clusters. On the other hand, the combi-
nation of Laws features, gradient features, Gabor texture fea-
tures, and convexity followed by eccentricity yielded two fairly
distinct and disjointed clusters corresponding primarily to
granulomas and adenocarcinomas. While the approach by
Dennie et al.18 reported an AUC ¼ 90.2%, it was not validated
on an independent test set. Interestingly, our AUC on the learn-
ing set was 91.2%, which is marginally higher than the AUC
reported by them. Additionally, our model yielded a 0% false
negative rate on the training set with a positive predictive value
of 72%.

In addition, we compared the performance of the classifier
with a radiologist with more than 12 years of experience
and a pulmonology fellow. We found the classifier marginally
outperformed the two human readers.

Our study did have its limitations, which included using data-
sets from only two institutions. While the two sites were kept
independent of each other for training and validation, an obvious
question is the generalizability of the classifier to multiple differ-
ent sites. A second limitation was that we limited this study to
one specific type of benign and malignant pathology, namely
granulomas and adenocarcinomas. Another limitation of our
study was that we did not provide the radiologists with the
clinical history associated with the patient, which could have
negatively influenced the diagnosis of the human readers.
Additionally, a couple of recent papers36,37 have rigorously and
quantitatively investigated the influence of convolution kernels,
reconstruction algorithms, and slice thickness on radiomic fea-
tures for characterization of lung nodules on CT. We did not
explicitly consider the influence of these parameters on the
extracted texture and shape features, though our classification
results did not appear to be significantly affected by variations
in slice thickness. Clearly, one of the avenues for future work
will need to involve a more rigorous investigation of the influ-
ence of slice thickness, convolution kernels, and reconstruction
algorithms on the radiomics classifier. An additional avenue for
future work will entail evaluating the discriminability of the fea-
tures and the classifier in distinguishing other benign conditions,
such as hamartoma, fibrosis, broncholiths, and inflammation
from other types of nonsmall cell lung cancers like squamous
cell and large cell carcinomas.

5 Concluding Remarks
In this radiomics study, we investigated the role of texture and
shape features in distinguishing adenocarcinomas from granu-
lomas on routine noncontrast CT scans of the chest. Our results
suggest that computer-extracted texture and shape descriptors of
the nodule can discriminate between these two pathological con-
ditions. Following additional larger scale validation, the classi-
fier could potentially serve as a decision support tool for thoracic
radiologists.
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