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Abstract. We develop neural-network-based methods for classifying plaque types in clinical intravascular opti-
cal coherence tomography (IVOCT) images of coronary arteries. A single IVOCT pullback can consist of >500
microscopic-resolution images, creating both a challenge for physician interpretation during an interventional
procedure and an opportunity for automated analysis. In the proposed method, we classify each A-line, a
datum element that better captures physics and pathophysiology than a voxel, as a fibrous layer followed
by calcification (fibrocalcific), a fibrous layer followed by a lipidous deposit (fibrolipidic), or other. For A-line clas-
sification, the usefulness of a convolutional neural network (CNN) is compared with that of a fully connected
artificial neural network (ANN). A total of 4469 image frames across 48 pullbacks that are manually labeled
using consensus labeling from two experts are used for training, evaluation, and testing. A 10-fold cross-val-
idation using held-out pullbacks is applied to assess classifier performance. Noisy A-line classifications are
cleaned by applying a conditional random field (CRF) and morphological processing to pullbacks in the en-
face view. With CNN (ANN) approaches, we achieve an accuracy of 77.7%� 4.1% (79.4%� 2.9%) for fibro-
calcific, 86.5%� 2.3% (83.4%� 2.6%) for fibrolipidic, and 85.3%� 2.5% (82.4%� 2.2%) for other, across all
folds following CRF noise cleaning. The results without CRF cleaning are typically reduced by 10% to 15%. The
enhanced performance of the CNNwas likely due to spatial invariance of the convolution operation over the input
A-line. The predicted en-face classification maps of entire pullbacks agree favorably to the annotated counter-
parts. In some instances, small error regions are actually hard to call when re-examined by human experts. Even
in worst-case pullbacks, it can be argued that the results will not negatively impact usage by physicians, as there
is a preponderance of correct calls. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JMI
.5.4.044504]
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1 Introduction
Cardiovascular disease is the leading cause of death globally,
accounting for more than 15% of all deaths in 2015. Coronary
atherosclerosis is the process of plaque buildup in the coronary
arteries. To relieve narrowing of an obstructed coronary artery,
physicians often perform percutaneous coronary interventions
(PCIs), which involve revascularization procedures, such as bal-
loon angioplasty and stent treatment. Although x-ray angiogra-
phy is commonly used to guide such interventions, this imaging
technique can only indicate luminal narrowing due to the
presence of calcium deposits but does not render any further
information about the vessel wall. Nonetheless, intravascular
imaging techniques can aid cardiologists in treatment planning
for the majority of PCI cases. To aid the physician in such a
scenario, we developed a coronary plaque classification system
based on intravascular optical coherence tomography (IVOCT)
images.

IVOCT is a high-contrast, high-resolution, imaging tech-
nique that can be used to characterize various atherosclerotic
plaque types and guide stent placement.1 As compared with

intravascular ultrasound, IVOCT has higher resolution,
improved imaging through a calcification, and better visual dis-
crimination between fibrous and lipid tissues.2 In addition,
IVOCT is currently the only imaging technique that allows iden-
tification of vulnerable thin-cap fibroatheromas, which have
been identified as the most susceptible to rupture.3 IVOCT is
also useful for the planning of stent interventions in the presence
of significant calcium or lipid deposits.4 Despite these obvious
advantages of IVOCT for treatment planning, physician enthu-
siasm has been tempered by the need for specialized training to
interpret IVOCT images and the overload of image data gener-
ated from a single pullback, which often results in >500 images
from a single 2- to 5-s scan.

Buoyed by the success and interest in human expert evalu-
ation, research on the machine identification of plaque types has
achieved considerable success with the development of both
voxel- and A-line-based classification techniques. For example,
Ughi et al.5 developed a voxel-based classification scheme that
combined geometric and textural features along with a sliding
window approach to estimate the attenuation coefficient value
of each voxel directly from IVOCT images. This method
has achieved an overall classification accuracy of 81.5%.
Athanasiou et al.6 used a K-means algorithm to obtain an initial*Address all correspondence to: David Wilson, E-mail: dlw@case.edu
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clustering of pixels within an image and then extracted various
textural and intensity features to classify individual clusters into
one of four plaque types, namely, fibrous tissue, lipid tissue, cal-
cium, and mixed tissue. They report a computation time of 40 s
per image frame, prohibiting real-time use. Rico-Jimenez et al.7

devised an A-line-based classification technique by modeling an
A-line as a linear combination of a number of depth profiles with
the use of morphological features to perform the classification.
This approach is useful for plaque classification because physi-
cians are primarily interested in determining the location and
length of the stent for a particular case. We believe that the
A-line-based classification technique provides sufficient infor-
mation for the clinician to make both of these decisions simul-
taneously with ease. However, the method described in this prior
report was applied only to fibrotic and lipid plaques without
consideration of calcium plaques. In addition to fully automated
methods, such as those described already, semiautomated
approaches for calcified plaque segmentation have also been
developed. For example, Wang et al.8 described a semiautomatic
algorithm that requires user input of start and stop frames within
the pullback. Again, A-line-based classification would allow
seamless integration into such semiautomatic segmentation
methods.

A recent survey conducted by Boi et al.9 described the large
potential of leveraging deep learning techniques for athero-
sclerotic plaque characterization and subsequent risk stratifica-
tion using IVOCT. The use of deep neural networks was recently
reported by Abdolmanafi et al.10 for the identification of layers
within the coronary artery wall. Although this was the first study
to use deep learning in the context of tissue characterization in
IVOCT, the analysis was limited to the detection of the coronary
artery layers without plaque classification.

In this study, a learning system [convolutional neural net-
work (CNN) and fully connected artificial neural network
(ANN)] was applied for the classification of coronary plaques.
Rather than using voxel-based classification, A-lines were used
as the fundamental unit because the many attributes within an A-
line (e.g., sharp transitions at the edge of a calcification and the
large signal decay with depth in a lipid region) will likely con-
tribute to the classification of coronary plaques. Because clinical
interest is expected to extend to larger regions and classification
can be noisy, a fully connected conditional random field (CRF)
method11 was employed to standardize classification over larger
regions. The proposed system was trained and tested on a care-
fully labeled dataset from 48 IVOCT pullbacks, containing
nearly 4500 images and more than two million A-lines.

2 Image Analysis Methods
Image processing and learning techniques, either an ANN or
deep CNN, were applied to classify A-lines in IVOCT images
as fibrocalcific, fibrolipidic, or other. The naming convention
that we will use for the rest of this paper is as follows: fibrocal-
cific A-line refers to an A-line with a fibrous layer followed by
calcification, and fibrolipidic A-line refers to a fibrous layer fol-
lowed by a lipidous deposit. The algorithm can be broken down
into three main steps: (1) preprocessing, which includes lumen
boundary detection, alignment of tissues via pixel shifting, and
noise reduction; (2) deep neural network for classification of
individual A-lines; and (3) classification noise cleaning using
a CRF and morphological processing in the en-face (θ; z)
classification view.

2.1 Preprocessing

Preprocessing steps were applied to raw IVOCT images
obtained in the polar (r; θ) domain. First, the lumen boundary
was located on the image using a dynamic programming
approach previously developed by our group.8 Briefly, the
edges along the radial direction were identified by filtering
the image, and then, dynamic programming was used to identify
the contour with the greatest cumulative edge strength along the
angular direction θ, as the lumen boundary. Second, the position
of the guidewire shadow was located using a previously
described method,12 and the A-line values within the guidewire
region were set to zero. Third, A-lines were pixel shifted along
the radial direction so that the first pixel in each row corre-
sponded to the first pixel after the lumen boundary on the origi-
nal image. This step was added to properly align tissues in
images acquired with an eccentrically located catheter. Fourth,
only the first 200 pixels (∼1 mm) of the vessel wall for each A-
line were used, and the others were cropped, because IVOCT
has limited penetration into tissue. Fifth, a log transformation
was applied to convert multiplicative speckle into an additive
form. Sixth, speckle was reduced by filtering with a Gaussian
kernel with a size of (7, 7) and standard deviation of 1. The base-
line subtraction and roll-off correction step as described in
Ref. 13 was not performed because the goal of this method
was to classify A-lines rather than estimate the attenuation
coefficients of tissues.

2.2 Convolutional Neural Network and Artificial
Neural Network Systems

The deep CNN used individual A-lines as input and output prob-
ability values for each class. The architecture contained seven
layers, as shown in Fig. 1. Layer 1 padded the front and
back edges of the input A-line (along r) by 5 pixels by replicat-
ing the first and last pixel. Such padding allows for the sub-
sequent convolution operation to generate a feature map of
the same size as the input A-line, which is important because
the fibrous caps of a vulnerable plaque can be thin (<65 μm
or 13 pixels). In layer 2, a convolutional layer was employed
that learns 32 filters, each with a length of 11 pixels. Layer 3
performs a maximum pooling operation with a pool size of 2
pixels and stride of 2 pixels. Layer 4 uses another convolutional
layer that learns 64 filters, each with a length of 9 pixels. Layer 5

Fig. 1 CNN architecture. The network consists of seven layers
excluding the input layer. The details regarding the individual layers
in this network are described in the table within the figure and in text.
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consisted of another maximum pooling operation with a pool
size of 2 pixels and stride of 2 pixels. Layer 6 consists of a
fully connected network of 100 units with the rectified linear
unit as the nonlinear activation function. Layer 7 is a fully con-
nected layer of three units with a softmax activation function to
generate probability values for each class that sum to 1.

In addition, a fully connected ANN was applied, and its per-
formance was compared with that of the CNN. The ANN takes
each individual pixel in an A-line as input. Two hidden layers of
100 and 50 units were connected to a fully connected output
layer of three units corresponding to the three classes of interest.
The rectified linear unit function is used as the activation func-
tion for both hidden layers. The final output layer uses softmax
activation. The architecture of the ANN is described in Table 1.
As described in Sec. 3.2, some modifications were made to these
basic networks and standard methods were utilized to aid in
training.

To better understand the most important features for classi-
fication, saliency maps were created using the guided backpro-
pagation method described by Springenberg et al.14 to identify
the pixels in an A-line that were most responsible for the output
for a specific class. The reconstructed saliency map is thus both
class and image specific. Briefly, the method computes a for-
ward pass of the image (A-line in this case) through the trained
classification network and then performs a backward pass, that
is, computes the gradient of the class activation with respect to
the input image. A large magnitude of the gradient indicates that
a small change to such pixels would have a large impact on the
class activation value and, therefore, the network prediction.
Maps were created for individual A-lines and grouped across
all A-lines in an image to create a visualization over a full
two-dimensional (2-D) IVOCT image.

2.3 Classification Noise Cleaning

Because individual A-line classification results are noisy when
viewed across a pullback, cleaning of classification noise was
employed as a postprocessing step. A method to integrate net-
work outputs to a fully connected CRF is described in Ref. 15.
Here, a set of classified A-lines across consecutive frames within
an IVOCT pullback is defined as a lesion segment. For each
lesion segment, an en-face 2-D “image” of classification results
in (θ; z) was constructed where each pixel contains the vector of
class probabilities for the corresponding A-line. The task of the
CRF is to reduce noise by generating a new labeling that favors
assigning the same label to pixels that are closer to each other
spatially (both in θ and z) using the probability estimates gen-
erated by the neural network.

A CRF is an undirected graphical model that encodes a con-
ditional distribution over the target variable Y given a set of the
observed variable X. This method maximizes the distribution
PðYjXÞ, which is expressed as a Gibbs distribution over a ran-
dom field. The fully connected CRF described in Ref. 11 com-
putes the maximum a posteriori label by minimizing the energy
function as follows:

EQ-TARGET;temp:intralink-;sec2.3;326;675EðlÞ ¼
X
i

θiðliÞ þ
X
i

θi;jðli; ljÞ;

where l is a particular label assignment for all pixels in the
image; θiðliÞ ¼ − log PðliÞ is the unary potential, where PðliÞ
is the probability estimate of label l at pixel i computed by the
neural network; θi;jðli; ljÞ is the pairwise edge potential that
connects all pixel pairs in the image i, j and is defined as a linear
combination of Gaussian kernels as shown as follows:

EQ-TARGET;temp:intralink-;sec2.3;326;567

θi;jðli; ljÞ ¼ μðli; ljÞ
�
w1 exp

�
−
kpi − p2

jk
2σ2α

−
kIi − I2jk

2σ2β

�

þ w2 exp

�
−
kpi − p2

jk
2σ2γ

��
;

where the label compatibility function μðli; ljÞ ¼ 1 if li ≠ lj and
zero otherwise; pi and pj refer to the spatial positions of pixels i
and j, respectively; Ii and Ij indicate the intensity vectors of
pixels i and j, respectively; w1 and w2 are the weights of the
appearance and smoothness terms, respectively; and σα, σβ,
and σγ control the degree of interaction either in the spatial
or intensity dimensions. Because pixels in the en-face image
do not have a specific intensity value, this pairwise potential
was modified by dropping the appearance kernel term (w1 is
set to zero), which then leaves the smoothness kernel, yielding
the following pairwise potential term:

EQ-TARGET;temp:intralink-;sec2.3;326;366θi;jðli; ljÞ ¼ μðli; ljÞ
�
w2 exp

�
−
kpi − p2

jk
2σ2γ

��
;

where kpi − pjk is the spatial distance between pixels i and j,
and σγ controls the size of the smoothness kernel. A mean field
approximation was used for inference that minimizes the
Kullback-Leibler-divergence between PðYjXÞ and a fully factor-
able distribution Q. The message passing step within the itera-
tive update scheme can be expressed as a Gaussian filtering
rendering the algorithm computationally efficient. Three free
parameters are left with for the CRF: the size of the smoothness
kernel, σγ , weight of the smoothness kernel w2, and the number
of iterations, n. Overall, for each pixel in the en-face A-line clas-
sification view, the CRF takes in probability estimates of each
class as input and outputs its final class ownership.

Finally, three iterations of an area opening operation with an
area threshold of 10 pixels are performed serially on the en-face
view images. Each iteration considers one of the three classes as
the background class and the remaining two as the foreground
class. This step closes small holes within fibrocalcific and fibro-
lipidic chunks and removes small islands containing these
plaques.

Table 1 ANN architecture.

No. Layer Output shape Comments

Input (200, 1) Individual A-lines of length
200 pixels (1 mm)

1 Hidden layer 100 Fully connected, rectified linear
unit activation

2 Hidden layer 50 Fully connected, rectified linear
unit activation

3 Output layer 3 Output layer, softmax activation
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3 Experimental Methods

3.1 Labeled Image Data

A dataset of clinical in vivo IVOCT pullbacks from 48 patients
was obtained from the TRANSFORM clinical trial.16 All pull-
backs were imaged prior to the interventional procedure.
IVOCT images were collected using a frequency-domain OCT
system (Ilumien Optis; St. Jude Medical, St. Paul, Minnesota),
which consists of a tunable laser light source sweeping from
1250 to 1360 nm at a frame rate of 180 fps, a pullback speed
of 36 mm/s, and an axial resolution of about 20 μm. The pull-
backs were analyzed by two expert readers in the Cartesian (x; y)
view. In all, a total of 4469 image frames were analyzed across
48 pullbacks. Labels from (x; y) images were converted back to
the polar (r; θ) system for processing. Each polar (r; θ) image
consisted of either 448 or 496 A-lines, 968 pixels along each
A-line, and 16 bits of gray scale data per pixel.

Ground truth annotations were obtained by consensus of two
expert IVOCT readers who were trained in the Cardiovascular
Imaging Core Lab of the Harrington Heart and Vascular Institute
(Cleveland, Ohio), a laboratory that has conducted numerous
studies requiring expert reading of IVOCT images. The defini-
tions in the consensus document were used to determine the
ground truth labels, as described in Ref. 1. For example, a fibro-
calcific plaque appears as a high backscattering and relatively
homogeneous region (fibrous tissue) followed by a signal-
poor region with sharply delineated front and/or back borders
(calcium) on IVOCT images. A fibrolipidic region was defined
as fibrous tissue followed by fast signal drop-off with diffuse
borders corresponding to the presence of a necrotic core or
lipid pool. The additional class “other” was used to include
all A-lines that did not meet the criteria of the former two
categories. Some example annotations are shown in Fig. 2.

3.2 Network Training and Testing

A 10-fold cross-validation procedure was used to measure clas-
sifier performance. Of 48 annotated pullbacks, 38 were ran-
domly selected for training, 5 for validation, and 5 for testing
in each iteration. The last iteration consisted of 40 pullbacks
for training, 5 for validation, and 3 for testing. In this manner,
each pullback was assigned into the test (leave-out) set exactly
once. Mean and standard error of classification accuracy over
the 10 iterations are reported.

We used the categorical cross-entropy function as the loss
function that was minimized during network training. For a
given example, categorical cross entropy was evaluated as
L ¼ −

P
i∈C yi logðŷiÞ, where y is a one hot vector representa-

tion of the ground truth labels and ŷ is the vector of probabilities
computed by the neural network overC different classes. A class

weighting scheme was employed during network training to
account for class imbalance. Class weights were computed as
the inverse of the class proportions in the training set and
were used to weight the loss function. The weights are usually
around 4, 4, and 1 for the fibrocalcific, fibrolipidic, and other
classes, respectively. Network optimization was performed
using the Adam optimizer17 with a learning rate of 1 × 10−4.
In addition, because deep networks tend to overfit when trained
for a large number of epochs, a validation set was used. Training
was stopped when the loss of the validation dataset did not
improve by more than 0.01% for 5 consecutive epochs or
when the network was trained for 100 epochs, whichever
occurred first. The model with the least validation loss during
training was used to make predictions on the test set.

Preprocessing steps were performed using MATLAB®

R2016a software (MathWorks, Natick, Massachusetts). The
Keras functional application programming interface with the
TensorFlow machine learning framework as backend was
used to implement, train, and test the neural networks with
the given dataset. Network training was performed using two
NVIDIA Tesla P100 graphics processing unit (GPU) cards.

The neural network architectures described in Sec. 2.2,
namely, CNNb and ANNb, were used as baseline architectures.
Changes in the classifier performance for no data standardiza-
tion, sample-wise standardization, and feature-wise standardiza-
tion were analyzed using the baseline architectures. The sample-
and feature-wise standardization methods involved subtraction
of the mean followed by division of the standard deviation cal-
culated either per sample or feature, respectively. Additionally,
we modified network parameters, such as kernel size, in the con-
volutional layer of the CNN and number of hidden units in the
hidden layer of ANN to visualize impact on classifier perfor-
mance. We finally used the best performing neural network
in both cases and applied CRF postprocessing. Parameters
for the CRF algorithm included the size of the smoothness ker-
nel, σγ , weight of the smoothness kernel, w2, and the number of
iterations, n, which were optimized in an ad hoc fashion.

4 Results
The steps in the preprocessing procedure of a representative
IVOCT frame are described in Fig. 3. All images are shown
after loge compression for improved visualization. Pixel shifting
successfully aligned the subsurface tissue regions, which
improved the subsequent noise reduction filtering, as it reduced
filtering across edges of tissue regions.

Next, the role of neural network processing parameters on
classifier performance was investigated using the baseline clas-
sifiers ANNb and CNNb, and the following three different data
standardization schemes were applied: no data standardization,
sample-wise standardization, and feature-wise standardization
(Fig. 4). Although there were no large effects, feature-wise
standardization worked best for the ANN, whereas eliminating
the standardization step was equivalent to feature-wise stand-
ardization for CNN. The CNN also tended to have a higher clas-
sification accuracy than the ANN for any class and any data
standardization method. To determine the potential sensitivity
of the network design, experiments were performed with vary-
ing network parameters for the ANN and CNN (Figs. 5 and 6,
respectively). In the case of the ANN, the number of hidden
units in the two hidden layers hidden1 and hidden2 was modi-
fied. We also experimented with the addition of another hidden
layer hidden3. There was no consistent trend, and the results of

Fig. 2 Example IVOCT images with A-line labels. The color code is
red (fibrocalcific), green (fibrolipidic), blue (other), and black (guide-
wire shadow). Labels were created by consensus between two expert
IVOCT readers.
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ANNb were as good as those of the other configurations.
In the case of the CNN, the baseline kernel size of the first
convolutional layer of 11 pixels was increased and decreased
to determine the effect on classification accuracy. There was
no consistent trend, and the results of CNNb were reasonable.
In general, changes in network design had relatively little effect
on class-wise accuracy. Hence, the baseline networksANNb and
CNNb were used for all subsequent processing.

It was highly desirable to clean the A-line classification from
both networks (Fig. 7). Following noise cleaning, the classifi-
cation results compared favorably with the annotated labels.
We optimized CRF parameters (figure legend) in an ad hoc fash-
ion. In general, the CRF results were not very sensitive to
parameter optimization. Importantly, despite some remaining
errors following noise cleaning, this 7.6-mm vessel segment
was clearly dominated by a fibrolipidic lesion, which would
be of interest to the clinician. Similar results were obtained
using ANNb (not shown).

Confusion matrices for both networks with and without noise
cleaning are reported in Tables 2 and 3, respectively. The noise

cleaning step improved the class-wise classification accuracy by
10% to 15%. For the fibrocalcific, fibrolipidic, and other classes,
the CNN had comparable or better sensitivity and specificity
than the ANN (0.80 versus 0.78, 0.85 versus 0.85, and 0.84 ver-
sus 0.81, respectively, and 0.95 versus 0.93, 0.92 versus 0.91,
and 0.92 versus 0.92, respectively). The types of errors are
important. For example, a lipidous lesion should not be misin-
terpreted as a calcification because it would be undesirable to
perform a procedure to modify a calcification (e.g., atherec-
tomy) on a lipidous lesion. As compared with ANN, CNN
reduced this type of error by 40%.

Overall, we found that the CNN performs statistically
significantly better than the ANN for this task. A two-tailed
paired t-test was conducted with the null hypothesis that the
means of the error rates of both learning algorithms are
equal. A p-value of 0.00027 was obtained, allowing us to reject
the null hypothesis. This test was conducted on the classifica-
tion results prior to noise cleaning by the CRF. We also found
that the ANN had higher error rate as compared to the CNN
across all folds.

Fig. 3 Preprocessing steps on (r ; θ) image. (a) Lumen border (red curve) detected using our dynamic
programming approach. (b) A-lines were pixel shifted along r to align tissues, with the lumen border on
the left-hand side. (c) Pixel-shifted image was filtered with a 2-D Gaussian kernel.

Fig. 4 Role of standardization methods on classification accuracy of ANNb and CNNb. Results are from
10-fold cross validation without classification noise cleaning. In the case of the ANN, feature-wise stand-
ardization gives somewhat better results than other methods. For the CNN, not performing a data stand-
ardization step was just as good as performing a feature-wise standardization. See text for details on
standardization methods.
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As shown by the classification results in Fig. 8, both ANN
and CNN perform well, but close examination showed that the
CNN agreed more favorably to the annotated labels. The large
calcification [Figs. 8(a) and 8(d)] demonstrates the visual char-
acteristics described in the consensus document,1 that is, the
calcium plaque had sharp front and back edges and appears as
a signal-poor region. Similarly, the fibrolipidic region [Figs. 8(b)
and 8(e)] had clear characteristics of lipids, that is, diffuse bor-
ders with high absorption. The results of the CNN classifier on a
few erroneous frames are shown in Fig. 9. Class saliency maps

show regions most discriminative for lipid and calcium
(Fig. 10). The characteristic edges of the calcification are high-
lighted in Fig. 10(b), and the diffuse signal decay due to lipids is
shown Fig. 10(e).

5 Discussion
Although overall A-line classification accuracy is about 82%,
the learning methods applied to IVOCT could lead to clinically
useful results. During an intervention, a cardiologist is interested
in plaque deposits much larger than single A-lines. For example,

Fig. 6 Sensitivity of classification accuracy on CNN design. The baseline kernel size of the first convolu-
tional layer (11 pixels) was increased and decreased to determine the effect on classification accuracy.
The results shown are prior to noise cleaning. There is no consistent trend, and CNNb gives good results.

Fig. 5 Sensitivity of classification accuracy on ANN design. Starting with the base line architecture
(ANNb: hidden1 ¼ 100, hidden2 ¼ 50), we doubled and halved the number of hidden units and
added an additional hidden layer in each new design. The results shown are prior to classification
noise cleaning. There is no consistent trend, and ANNb gives good results.
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the interventional cardiologist must identify large circumferen-
tial calcifications that might hamper stent deployment so that
she can apply an appropriate plaque modification strategy.
Alternatively, the presence of a large lipidous plaque requires
the use of a longer stent that does not end in a lipidous lesion.
Neither of these scenarios require high-resolution accuracy,
motivating us to use CRF noise cleaning on the neural network
results. Typically, results similar to those in Fig. 7 are obtained
where there is no ambiguity in a fibrolipidic segment even
though the A-line accuracy of this segment was 87.31%.
Processing time suggests that live-time clinical usage is pos-
sible. Computation time per frame was 0.3 s (preprocessing),
0.02 s (classification), and 0.002 s (classification noise clean-
ing). Thus, the total processing time was <1 s using a standard

laptop with a GPU (HP Pavilion 15t, NVIDIA GTX 950M).
Therefore, the overall computation time for a 500-frame pull-
back will be completed within a few seconds with the use of
a more powerful computer system.

A-lines provide a natural way to analyze IVOCT data that
should aid the performance of a learning system. First, the
IVOCT system acquires data in a radial fashion, one A-line
at a time. Analyzing A-lines avoids the issue of spatially depen-
dent interpolation effects that arise in Cartesian (x; y) images.
Second, tissues are naturally ordered with respect to distance
from the lumen, for example, a fibrocalcific region consists
of a fibrous layer followed by calcification and a normal region
consisting of three layers: the intima, media, and adventitia. This
also provides motivation for employing an ANN for this task.

Fig. 7 Classification of a lesion with and without classification noise cleaning in en-face (θ; z) view.
Shown are ground truth labels (top), probability maps for each class from the CNNb classifier (middle),
and output of dense CRF processing (bottom). The number of pixels along θ is determined by the number
of A-lines collected by the system in one complete rotation of the light probe. The size of the smoothness
kernel used was (19, 5) in (θ; z) and the number of iterations n was set to 5. The color code is red (fibro-
calcific), green (fibrolipidic), blue (other), and black (guidewire shadow). We used 55 consecutive anno-
tated frames. In this case, CNNb classification accuracy was improved from 65.95% to 90.31% with
classification noise cleaning.

Table 2 Confusion matrix for A-line classification using the ANNb (top) and CNNb (bottom) prior to noise cleaning. Numbers in brackets indicate
the mean and standard error (in percentage) across all folds. Overall classification accuracy is 67.31% and 70.29% with the ANN and CNN
approaches, respectively.

Predicted fibrocalcific Predicted fibrolipidic Predicted other

True fibrocalcific 215859 (65.92, 2.57) 57699 (18.38, 1.90) 56167 (15.70, 1.35)

True fibrolipidic 55659 (13.92, 1.47) 306421 (71.68, 1.94) 62685 (14.40, 1.42)

True other 196848 (15.77, 0.96) 229873 (17.11, 1.31) 834594 (67.12, 1.72)

Predicted fibrocalcific Predicted fibrolipidic Predicted other

True fibrocalcific 227402 (66.70, 4.18) 57567 (19.31, 3.13) 44756 (13.99, 1.82)

True fibrolipidic 54504 (11.39, 0.93) 314583 (75.04, 1.55) 55678 (13.56, 1.25)

True other 153874 (11.81, 1.23) 232479 (17.25, 1.69) 874962 (70.94, 2.28)
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Third, the order of an A-line captures the reduction of backscat-
tered light due to absorption of light in tissue structures. Fourth,
classifying A-lines simplifies the learning task to categorize an
A-line into one of three classes, which should reduce the number
of required training samples as compared with that of a more
complex learning problem, for example, semantic segmentation
of all voxels in a pullback. Fifth, A-line classification is useful to
identify the extent of a lesion across the pullback volume. It will
be interesting to join this classification scheme with traditional
image segmentation methods.

A cross-validation procedure over held-out pullbacks was
adopted to assess classifier performance. This method is
much superior to grouping all images together and leaving
out images from the dataset for testing. The latter method
gives unnaturally good performance as there can be considerable
correlation between images of a single lesion. Additionally, a

Fig. 8 Classification with ANNb [in (a), (b), and (c)] and CNNb [in (d),
(e), and (f)] following classification noise cleaning. In this (x; y ) view,
classification (inner ring) is compared to ground truth labels (outer
ring). The color code is red (fibrocalcific), green (fibrolipidic), blue
(other), and black (guidewire shadow).

Fig. 9 Example frames where the CNNb classifier mispredicts class
ownership for a group of A-lines. Experts identified that there are
labeling errors in (a), i.e., A-lines from 8 o’clock to 11 o’clock in
(a) are indeed fibrocalcific. Additionally, they have identified that A-
lines from 9 o’clock to 12 o’clock in (b) are hard to call between fibro-
calcific and fibrolipidic classes and could be better labeled as a mixed
class. Finally, an example of a true error (classifying other A-lines as
fibrolipidic) is shown in (c). In this (x; y ) view, classification (inner ring)
is compared to ground truth labels (outer ring). The color code is red
(fibrocalcific), green (fibrolipidic), blue (other), and black (guidewire
shadow).

Fig. 10 Class saliency maps showing image regions most discrimi-
native for fibrocalcific (a, b, and c) and fibrolipidic (d, e, and f) plaques
to the CNNb classifier. Images shown here are raw IVOCT image in
(x; y ) view (a, d), saliency maps overlaid in red on the IVOCT images
(b, e), and final algorithm predictions and ground truth labels overlaid
as inner ring and outer ring, respectively, on the image (c, f). Note high
saliency at telltale edges of calcification and diffuse edges of lipidous
lesion.

Table 3 Confusion matrix for A-line classification using the ANNb (top) and CNNb (bottom) after noise cleaning. Numbers in brackets indicate the
mean and standard error (in percentage) across all folds. The F1 scores for fibrocalcific, fibrolipidic, and other classes were 0.72, 0.77, and 0.86 for
the ANN and 0.76, 0.78, and 0.89 for the CNN. Prior to classification noise cleaning, accuracy was 67.31% and 70.29% for the ANN and CNN,
respectively.

Predicted fibrocalcific Predicted fibrolipidic Predicted other

True fibrocalcific 259039 (79.37, 2.88) 29870 (9.14, 1.50) 40816 (11.49, 1.91)

True fibrolipidic 20174 (4.99, 1.28) 360646 (83.36, 2.57) 43405 (11.64, 2.27)

True other 110605 (8.39, 1.37) 125106 (9.19, 1.13) 1025604 (82.42, 2.23)

Predicted fibrocalcific Predicted fibrolipidic Predicted other

True fibrocalcific 262548 (77.69, 4.06) 30573 (11.63, 3.80) 36604 (10.67, 2.15)

True fibrolipidic 19740 (2.96, 0.78) 363593 (86.49, 2.31) 41432 (10.55, 2.28)

True other 80148 (5.82, 1.62) 114219 (8.86, 1.21) 1066948 (85.31, 2.50)
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cross-validation procedure gives a better approximation of
generalization error than with a single held-out test dataset.

Few motivations exist for comparing an ANN and CNN at
this task. First, since our method classified one A-line at a time,
the number of input pixels was reasonable to use a fully con-
nected ANN. Second, and as mentioned earlier, tissues have
a natural order along the depth of an A-line. We anticipated
that an ANN would capture this order by considering individual
pixel values as features. Third, since the thickness of the fibrous
layer in plaques was variable within the dataset, we hypoth-
esized that a CNN would perform well, due to the spatial invari-
ance property of the convolution operator.

There were some interesting observations regarding the
learning system structure, processing, and types of errors.
Changes in the design of the CNN or ANN did not largely
impact the performance (Figs. 5 and 6), indicating that the initial
architectures were relatively stable on this dataset. Because the
dataset was obtained from the same site and IVOCT system, the
standardization step was unnecessary. However, when working
with datasets from different sites and systems, it might be useful
to standardize the datasets separately. In regard to the type of
errors made by the classifier, it is clinically desirable to have
fewer false positive calls for the fibrocalcific class. The reason
is that the treatment strategy for fibrocalcific plaques is to use an
atherectomy device that grinds through plaque, potentially dam-
aging fibrolipidic and other regions. We found that the CNN
made fewer such false positive calls as compared to the ANN.

Saliency maps for calcium and lipid plaques show that the
network learns features that are consistent with those described
in the consensus document1 for IVOCT image interpretation.
Qualitatively, a calcium plaque has a signal-poor region with
sharp front and/or back edges, whereas lipid plaques have highly
attenuating regions with diffuse borders. The saliency map for
fibrocalcific plaque shows that the pixels belonging to the front
and back edges of a calcium plaque were most responsible for
calling the A-line as fibrocalcific. Similarly, the pixels belonging
to the blurred edge of the lipid plaque along with pixels far away
from the plaque boundary contribute the most to calling an A-
line as fibrolipidic. Although IVOCT can delineate regions of
the vessel wall into several other categories, such as macrophage
accumulation, intimal vasculature, and thrombus, this analysis
was restricted to the above-mentioned class types. However,
it is possible to extend this methodology to class types other
than those mentioned in this paper.

Labeling is time-consuming, and some tissues are difficult
to call, likely leading to noisy A-line labeling, which would
degrade performance metrics and potentially degrade the
learned model. With this in mind, we are greatly encouraged by
these results. Interestingly, we identified cases (e.g., Fig. 9)
where the CNN results could lead experts to change their origi-
nal labels, suggesting the possibility of active learning with a
second pass of the dataset to possibly modify the labels.
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