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Abstract. We propose a segmentation method for nuclei in glioblastoma histopathologic images based on
a sparse shape prior guided variational level set framework. By spectral clustering and sparse coding, a set
of shape priors is exploited to accommodate complicated shape variations. We automate the object contour
initialization by a seed detection algorithm and deform contours by minimizing an energy functional that incor-
porates a shape term in a sparse shape prior representation, an adaptive contour occlusion penalty term, and
a boundary term encouraging contours to converge to strong edges. As a result, our approach is able to deal
with mutual occlusions and detect contours of multiple intersected nuclei simultaneously. Our method is applied
to several whole-slide histopathologic image datasets for nuclei segmentation. The proposed method is com-
pared with other state-of-the-art methods and demonstrates good accuracy for nuclei detection and segmenta-
tion, suggesting its promise to support biomedical image-based investigations. © The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JMI.6.1.017502]

Keywords: nuclei segmentation; level set; sparse representation; graph learning; spectral clustering.

Paper 18262R received Dec. 5, 2018; accepted for publication Feb. 19, 2019; published online Mar. 14, 2019.

1 Introduction
Image segmentation is a fundamental problem in computer
vision and image analysis. In the image segmentation commu-
nity, level set-based approaches are important tools, because
they are able to handle nuclei shapes and contours with complex
variations. Chan and Vese initiated a region-based active contour
model with a level set formulation based on Mumford-Shah’s
functional.1,2 This model does not depend on gradient informa-
tion and thus can detect nuclei contours with weak edges.
However, Chan–Vese model does not include prior shape
knowledge to restrain shapes in appearance and may, therefore,
detect meaningless shapes. This drawback becomes more seri-
ous when nuclei are partially occluded, corrupted, or repre-
sented in low contrast imaging data. In the literature, some
research work emerged to mitigate this problem by incorporat-
ing shape prior information into the level set formulation so
that the detected shape can be regulated by a selected reference
shape.3–5 For example, Chan and Zhu6 proposed a variational
model introducing a shape difference term with a shape prior
as the reference shape.1 With prior information in place, shapes
similar to the shape prior can be successfully segmented. Mean-
while, nuclei presenting meaningless shapes are restrained.
Based on the shape prior segmentation model, Yan et al.7 intro-
duced a geodesic length term to drive contours to nuclei edges.
Ali and Madabhushi8 proposed an active contour model to

accommodate complex shapes by learning shape priors through
principal component analysis.

Nevertheless, shape prior-based level set segmentation meth-
ods are still challenged by multiple problems. (1) It is difficult to
segment nuclei from raw images without knowing the number
and position of nuclei. Thus, one important step in this class of
segmentation approaches is to appropriately identify number
and positions of nuclei of interest for initialization purpose.
(2) Thus far, shape prior-based segmentation approaches exploit
libraries consisting of a small number of shape priors as refer-
ence to nuclei in similar shapes. However, in most real-world
scenarios, such as nuclei segmentation, it could be very complex
to model shape variations explicitly. Therefore, it is practically
difficult to find a limited number of shape priors that could re-
present all shapes reasonably well. (3) Simultaneous segmenta-
tion of mutually occluded nuclei remains challenging. Recent
development in level set methods introduced a repulsion term
to prevent two nuclei from becoming identical through evolu-
tion. However, it is common to have more than two nuclei
involved in mutual occlusion. As a result, we conceive that
larger penalties should be given to regions shared by more
nuclei.

Nuclei initialization is an important step that guides the
following modules in segmentation. The geometric centers of
nuclei, so-called seeds, are natural nuclei indicators in practice,
as nuclei contours can be appropriately initialized with them.
Parvin et al.9 proposed an iterative voting method for detect-
ing seeds of overlapping nuclei. Al-Kofahi et al.10 proposed a*Address all correspondence to Jun Kong, E-mail: jkong@gsu.edu
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multiscale Laplacian of Gaussian (LoG) filtering method for
automatic detection and segmentation of nuclei. By distance-
map-based adaptive scale selection, nuclear seed points were
detected to perform an initial segmentation. However, the multi-
scale LoG method is sensitive to minor peaks on the distance
map, resulting in oversegmentation and detection. Qi et al.11

improved the method by applying a shifted Gaussian kernel and
mean shift to a single-pass voting algorithm. The basic idea is to
search for the voting direction over a cone-shaped voting area.
The two-dimensional (2-D) Gaussian kernel was designed to
assign larger weights for area centers in the voting process.
Finally, mean shift was applied to determine the seed points.

To accommodate the variation in nuclei shapes, a large set of
shape priors can be used as a reference library. However, it is
challenging to model the relationship between the nuclei of
interest to be segmented and the shape priors. Representation
learning methods, such as graph learning and sparse coding,
were successfully applied in many areas of computer vision
research, such as face recognition,12 image restoration,13 graph
learning,14 and medical image analysis.15 Wright et al.12 pro-
posed a robust face recognition algorithm based on sparse
representation. The method can effectively handle occlusion and
corruption errors by enforcing sparse distribution with respect
to the pixel/sample basis. Zhang et al.15 proposed a sparse shape
composition model to incorporate shape prior information for
detection and segmentation tasks in radiologic images. Cheng
et al.14 introduced a process to build L1 graph and multiple
algorithms for data clustering, subspace learning, and semi-
supervised learning based on L1 graph. Inspired by theories
in graph learning, spectral clustering, and sparse representation,
an L1 graph-based shape proximity was learned to cluster the
shape priors with which a compact dictionary was created for
sparse coding. Given a shape of interest, it can be approximated
by a sparse representation based on the compact dictionary
within the level set framework. The resulting reconstruction
error can be included as a shape penalty term in the variational
level set model.

To date, numerous investigators have devised methods to
segment overlapping nuclei. These methods extended the shape
prior segmentation approaches to segment multiple similar
nuclei under mutual occlusion. In Refs. 16–18, various repulsive
force terms were proposed and included in the cost functional to
penalize two overlapping nuclei contours and prevent them from
becoming identical. In our approach, we extend this idea by
introducing an adaptive occlusion penalty term that penalizes
regions occupied by multiple nuclei based on the scope of occlu-
sion. Following this principle, we assign a larger penalty to a
region overlapped by more nuclei.

Recently, deep learning-based approaches greatly improved
the state-of-the-art in research fields, such as computer vision,
speech recognition, and natural language processing. Deep
learning methods require large-scale annotated data to preserve
generative power and prevent overfitting. However, collecting
both data and annotation for medical imaging tasks is time-
consuming and requires much domain expertise. Specifically,
a large number of bounding boxes or shape masks of nuclei
are required to train the network for deep learning-based nuclei
detection and segmentation methods. Compared to the formi-
dable data scale required by deep learning methods, the only
prior information used in our method is a set of representative
shapes in vector representations with only nuclei contour co-
ordinates.

In this paper, we propose a level set-based variational model
that allows simultaneous segmentation of multiple nuclei with
mutual occlusion. The main contributions of our work are
summarized as follows:

• A seed detection algorithm is proposed to automate nuclei
identification and contour initialization. The proposed
seed detection algorithm utilizes joint information of
spatial connectivity, distance constraint, image edge map,
and a shape-based voting map derived from eigenvalue
analysis of Hessian matrix across multiple scales.

• We use a list of contour co-ordinates to represent each
annotated nuclei contour. The resulting shape annotation
representations are then clustered with an L1 graph-based
manifold learning method to establish a concise and rep-
resentative shape prior library.

• A sparse representation-based shape term is introduced to
better guide nuclei contour convergence with shape prior
information from the shape library.

• A dynamic nuclei occlusion term is proposed to dynami-
cally deal with occlusion events involving a variable num-
ber of nuclei.

• We learn and address the nuclei detection and segmenta-
tion problem in an unsupervised manner with no explicit
training process in our approach. The only prior informa-
tion we used is the shape library consisting of shape priors
from other glioblastoma histopathology images.

• Our approach is successfully applied to two datasets of
glioblastoma histopathology images for nuclei segmenta-
tion task. Our extensive experiments demonstrate that the
proposed method can appropriately handle nuclei mutual
occlusions and accurately differentiate nuclei from other
structures.

As shown in Fig. 1, our method framework consists of a
seed detection algorithm for nuclei contour initialization, and an
integrated contour deformable model that incorporates region,
shape, and boundary information. The final nuclei contours are
converged through an iterative contour evolution process.

This journal paper extends our earlier work19,20 through sub-
stantial method improvement on shape prior library generation,
more comprehensive experiments, more in-depth parameter sen-
sitivity analysis. In detail, these important extensions include:

• We include an extensive set of annotated nuclei shapes
to include more shape variation information. We propose
a way to dynamically construct shape prior dictionary by
applying an L1 graph-based manifold learning method.
With the approach, representative shape priors covering
most shape variations can be automatically produced in
a data-driven manner.

• We provide an in-detail theoretical derivation for level set
functional optimization and offer a solution to optimize
the loss function.

• The proposed method is evaluated on two datasets, namely
GBM40 dataset and TCGA dataset. The GBM40 dataset
consists of glioblastoma tissues from Emory University
Hospital archive and TCGA dataset is a publicly avail-
able dataset used for method robustness test and efficacy
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validation. Therefore, we significantly extend our dataset
scale for testing and validating the robustness and accuracy
of our proposed method in this journal work.

• We present results from our method for seed detection
and nuclei segmentation in different image regions and
compare our method with other state-of-the-art methods.
In addition, we design multiple analyses with various
parameter settings to investigate behaviors of individual
terms included in our method. Demonstrated by these
extensive tests, the proposed method has manifested
promising robustness and accuracy for nuclei detection
and segmentation.

2 Shape Representation
Let us consider an image that contains N nuclei of interest
O1;O2; : : : ;ON , where each nuclei Oi has a closed and
bounded shape contour ∂Oi in image domainΩ ⊂ R2. The basic
idea of the level set framework is to implicitly represent ∂Oi as
a zero level set of a Lipschitz function ϕi∶Ω → R. ϕiðxÞ has
positive and negative value when x is inside and outside Oi,
respectively. Note that due to memory limit, we use image
patches instead of whole slide images in our experiments.

2.1 Distance Map Function

A distance map function Γ½ϕiðxÞ� represents the shortest dis-
tance dðx; ∂OiÞ from a current pixel x in the image domain
Ω to a given nuclei contour ∂Oi ¼ fxjϕiðxÞ ¼ 0; ∀ x ∈ Ωg:

EQ-TARGET;temp:intralink-;e001;326;521Γ½ϕiðxÞ� ¼
8<
:

0; x ∈ ∂Oi

dðx; ∂OiÞ; x ∈ Oi

−dðx; ∂OiÞ; otherwise

: (1)

In this way, any nuclei in the image domain can be represented
as a distance map or vice versa. Given a distance map, the cor-
responding nuclei contour can be recovered by searching for the
zero-valued pixel locations. As 2-D images only capture 2D pro-
jections of 3D nuclei, it is not uncommon to observe overlapped
nuclei. Instead of partitioning an image into disjoint regions, we
allow a pixel to be associated with multiple nuclei in an image
with intersecting contours. Therefore, the corresponding level
set functions of all those intersecting nuclei have positive values
over the overlapped regions.

2.2 Shape Prior Modelling

Instead of a single shape prior by previous shape prior segmen-
tation methods, we use a large set of shape priors to deal with
the complex shape variation observed in most real-world appli-
cations. Training shape priors are manually extracted from
raw images and aligned with generalized Procrustes analysis,21

as illustrated in Fig. 2. The resulting shapes are represented
by a set of vectors of uniformly sampled local landmarks:
fγ1; γ2; : : : ; γKg, where K is the size of the shape prior set.

For better computational efficiency, the shape priors are par-
titioned into M clusters, where M ≪ K. We cluster the shape
priors with a learned L1 graph learned by solving the minimi-
zation problem for each γi:

14
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Fig. 1 A schema of our proposed detection and segmentation method for nuclei in histopathologic
images.

Fig. 2 Left: illustration of representative shape priors in the shape prior library. Right: Overlaid 100
shape priors. The shape priors are manually collected by pathologist and serve as shape reference.
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EQ-TARGET;temp:intralink-;e002;63;752ẑi ¼ kγi −Bzik22 þ λkzik1; i¼ 1; : : : ;K s:t: zii ¼ 0; (2)

where B ¼ ðγ1; γ2; : : : ; γK; IÞ, I; is an identity matrix, and λ is
the parameter balancing the two terms. zi is the i’th weighting
coefficient and zij is the j’th entry of zi. LetW be a graph weight
matrix, where each entry Wij represents the similarity between
the i’th and j’th shape priors. We formulate graph matrix as
follows:

EQ-TARGET;temp:intralink-;e003;63;664Wij ¼ ðẑij þ ẑjiÞ∕2; i; j ¼ 1; : : : ; K: (3)

With the graph matrix, the un-normalized spectral clustering
method22,23 is used to partition the shape priors into M clusters.
The resulting average shape of each cluster is computed and
used as a representative shape for the cluster. For simplicity, we
denote the corresponding distance maps of the average shapes as
Ψ ¼ ðψ1;ψ2; : : : ;ψMÞ. These distance maps are normalized to
have unit Frobenius norm so that the impact of each shape prior
is balanced.

2.3 Shape Alignment

To represent a nuclei Oi with shape priors in the training set Ψ,
we first align the associated distance map Γ½ϕiðxÞ� to shape pri-
ors by rotation and translation. The transformation from a pixel
x ¼ ½x1 x2�T to the corresponding point x̃i in shape prior after
alignment is formulated as follows:

EQ-TARGET;temp:intralink-;e004;63;459x̃i ¼ si

�
cosðθiÞ sinðθiÞ
− sinðθiÞ cosðθiÞ

�
xþ ti; (4)

where θi denotes the rotation angle and ti ¼ ½ti1 ti2�T represents
the translation displacement. As we observe that all shape priors
Ψ have nearly same scales, we simply set si ¼ 1, ∀ i to achieve
better computational efficiency.

2.4 Sparse Shape Representation

Given the set of distance maps derived by mapping the i’th
nuclei to shape prior set Ψðx̃iÞ, we assume that the distance map
ΓðϕiðxÞÞ of Oi can be approximately represented as a linear
composition of shape priors in Ψðx̃iÞ. The distance maps and
shape priors are vectorized and denoted as Γ½ϕiðxÞ� andΨðx̃iÞ ¼
ðψ1;ψ2; : : : ;ψMÞ, respectively. By the linearity assumption,
Γ½ϕiðxÞ� can be represented as follows:

EQ-TARGET;temp:intralink-;e005;63;260Γ½ϕiðxÞ� ¼ Ψðx̃iÞαi þ ei; (5)

where αi is a coefficient vector representing the weights of shape
priors in reconstruction and ei is the error vector.

To avoid the curse of dimensionality problem, we reduce Γ
dimensionality, leading to a less computational cost. The proc-
ess of dimension reduction can be modeled as left multiplication
by a nonzero projection matrix R ∈ Rd×m, d ≪ m, where m is
the total number of pixels in an image. As proved in 12, the
choice of matrix R does not critically affect the ability to recover
the sparse solution. For computation simplicity, we compose
a matrix R with entries randomly generated from standard
Gaussian distribution and subject to unit length for all rows.
The corresponding low dimension representations are denoted
as Γ̌ðϕiÞ ¼ RΓðϕiÞ, Ψ̌ ¼ RΨ, and ěi ¼ Rei. Thus, we have

EQ-TARGET;temp:intralink-;e006;63;85Γ̌½ϕiðxÞ� ¼ Ψ̌ðx̃iÞαi þ ěi ¼ Ψ̌ðx̃iÞαi þ Iěi; (6)

where I ∈ Rd×d is an identity matrix and ei is the reconstruction
error. Note that for an overcomplete system Ψ ∈ Rd×M , the
linear system of Eq. (6) may not produce a unique solution.
Therefore, more constraints on αi and ei are needed. Similar
to face recognition applications,12 we observe that given a large
enough training set, a test shape should be sufficiently repre-
sented using a small number of similar shape priors. In addition,
the number of corrupted pixels in the original image and the
derived distance map is assumed to be small. This suggests
that the coefficient vectors αi and ei can be sparse as most
entries are zero. In this way, most dissimilar prior shapes are
suppressed due to large penalty measured by the reconstruction
error, which enables us to differentiate Oi from dissimilar shape
priors. To ensure the sparsity, we use L0 norm regularization
in the formulation. The sparse representation problem is formu-
lated as follows:
EQ-TARGET;temp:intralink-;e007;326;576

α̂i; êi ¼ argmin
αi;ěi

kΓ̌½ϕiðxÞ� − Ψ̌ðx̃iÞαi − Iěik22

þ λ1kαik0 þ λ2kěik0: (7)

However, the problem of finding the sparsest solution in an
underdetermined linear system such as Eq. (7) is proved to be
nondeterministic polynomial-time hard.24 Due to recent devel-
opments in sparse theory, it has been revealed that such a prob-
lem can be solved via L1 relaxation:25–27

EQ-TARGET;temp:intralink-;e008;326;463

α̂i; êi ¼ argmin
αi;ěi

kΓ̌½ϕiðxÞ� − Ψ̌ðx̃iÞαi − Iěik22

þ λ1kαik1 þ λ2kěik1: (8)

The L1 minimization problem can be solved via standard linear
programming methods. By this approach, we obtain the sparse
coefficients α̂i and êi and use the coefficients for sparse
reconstruction.

3 Seed Detection
In this section, we present an algorithm to recognize nuclei spa-
tial locations by nuclei seed detection. Nuclei seed detection is
essential for the follow up nuclei segmentation, as it decides the
number and initial contour locations. The proposed seed detec-
tion algorithm utilizes joint information of spatial connectivity,
distance constraint, image edge map, and a shape-based voting
map derived from eigenvalue analysis of Hessian matrix across
multiple scales.

3.1 Initialization and Preprocessing

The pathology images of tumor specimens for routine diagnos-
tics usually contain two primary chemical stains: hematoxylin
and eosin (H&E). Hematoxylin presents a dark blue or violet
color, which positively binds to nuclei. We decompose signal
intensity components of H&E stains in original images and
use only signals of hematoxylin stain for analysis. Based on
Lambert–Beer’s law, the relationship between the intensity of
light entering a specimen Li and that through a specimen Lo
can be characterized as Lo ¼ Lieð−AbÞ, where A and b are the
amount of stain and the absorption factor, respectively. By this
law, we can compute the stain-specific strength values with a
predefined stain decomposition matrix M and the observed
optical density (OD): Y ¼ − logðLo∕LiÞ.28 The stain composi-
tion matrix M consists of three normalized column vectors
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representing OD values of red, green, and blue channels from
hematoxylin, eosin, and null stain. Therefore, stain specific opti-
cal signals can be computed by X ¼ M−1Y. We retain the first
entry of the resulting stain specific signal vector at each pixel
and denote the decomposed hematoxylin channel signal as IH.

Note that IH is often coupled with noise produced during the
slide preparation process, including uneven tissue slide cut,
heterogeneous histology process, staining artifacts, and digital
scanning noise. We can normalize the background noise in
IH by morphological reconstruction with two morphological
components, namely mask image I∩ and marker image I∪.
Initially, we set I∩ as complementary image of IH and I∪ as
IH ⊕ ρr, where ⊕ denotes the morphological dilation operator
and ρr is a circular structural element with radius r. With marker
and mask image, an image RðI∪; I∩Þ can be reconstructed by
iterative dilation and intersection until convergence.29 The dif-
ference image hðI∪; I∩; ρrÞ ¼ I∩ − RðI∪; I∩Þ consists of a near
zero-level background and a group of enhanced foreground
peaks, each representing an object of interest. In Fig. 4(a), we
present a typical background normalization result with morpho-
logical reconstruction.

3.2 Voting Map Construction

Assuming a typical nuclei shape is close to either a circle or
an ellipse, we proceed with a shape-based voting process by
analyzing nuclei structures within local image regions. Before
the voting process, we first enhance nuclei regions by eigenvalue

analysis with the Hessian matrix convolved with Gaussian filters
at multiple scales.30 With this approach, we search for circular
structures based on geometric structures characterized by the
neighboring pixel intensity profiles. Specifically, for a pixel at
ði0; j0Þ, its local image intensity change can be represented by
Taylor expansion:
EQ-TARGET;temp:intralink-;e009;326;303

hσði0 þ δi; j0 þ δjÞ ¼ hσði0; j0Þ þ ðδi; δjÞDðhσði0; j0ÞÞ

þ 1

2
ðδi; δjÞD2ðhσði0; j0ÞÞðδi; δjÞT

þO½ðδ3Þ�; (9)

where hσ ¼ h � Gσ and Gσ is a Gaussian filter with standard
deviation σ; D2ðhσði0; j0ÞÞ is Hessian of hσði0; j0Þ that is sym-
metric and thus diagonalizable with two resulting eigenvalues λi,
i ¼ 1;2, where λ1 ≤ λ2. To make our analysis invariant to nuclei
size, we adopt a family of Gaussian filters with distinctive scales
to convolve with hði; jÞ: Gσi , i ¼ 1;2; · · · ; S. As pixels close to
nuclei centers have larger intensity values than peripheral points,
signs of both eigenvalues for pixels within a nucleus are nega-
tive. Even if a nucleus is overlapped with other nuclei, such
negative eigenvalue pairs can still be identified at different scales
σi within an appropriately chosen scale range because signs of
such eigenvalues depend on relative pixel intensity change in
nuclei neighborhoods. Leveraging such a signature property
of neighboring pixel intensity change, the presence of nuclei,
even in clumps, can be indicated by the number of times

Fig. 3 Analysis results of typical examples of overlapped nuclei with distinct overall clump shapes are
presented at different steps. (a) Clumped nuclei instances with distinct overall shapes; (b) 3-D illustration
of complementary image of decomposed hematoxylin signal surface overlaid with original image;
(c) 3-D illustration of the difference image Ih surface after background normalization; and (d) 3-D
illustration of voting map after eigenvalue sign analysis.
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Hessian matrix produces negative eigenvalue pairs across differ-
ent Gaussian filter scales. In Fig. 3, we present typical examples
of overlapped nuclei with distinct overall clump shapes after dif-
ferent analysis steps. By comparison, voting maps produced
from eigenvalue sign analysis encoding pixel intensity profile
in nuclei neighborhoods have superior contrast to complemen-
tary image of decomposed hematoxylin signal IH and the differ-
ence image Ih. It demonstrates that the voting map derived from
eigenvalue sign analysis is an effective way to characterize over-
lapped nuclei local intensity profile features regardless of overall
clump shapes. Next, we begin the voting process with a zero-
valued voting map for all pixels in the image domain. We only
increment the voting map value Vði; jÞ when λ2ði; jÞ < 0. If
λ2ði; jÞ > 0, we consider pixel ði; jÞ is not within a nuclei struc-
ture and hence set zero vote for such locations. This process is
repeated for all scales. A voting map overlaid with a typical his-
tological image region, where nuclei regions in dark exhibit high
votes, is presented in Fig. 4(b).

3.3 Dynamic Seeds Detection and Merging

Given the derived voting map, we dynamically adjust a seed list
based on candidate spatial connectivity, distance constraint, and
image edge map. The proposed method can produce robust and
accurate seed detection result, especially for overlapped nuclei.

As any pixel on the voting map is no larger than the number
of scales S, we consider the voting map as a surface in a three-
dimensional space, as shown in Fig. 4(b). Those strong voting
peaks, representing consistent negative eigenvalue pairs from
Hessian matrix at different smoothing scales due to radially out-
ward decreasing pixel intensity profiles in local regions, suggest
the presence of nuclei. The strong peaks on the voting surface
can be detected as we gradually slide down an imaginary hori-
zontal plane (e.g., from the blue to green plane) intersecting with
the voting surface. We can generate a binary image from the
original voting map with threshold v for each intersection plane.
We begin with an empty seed list L and append to it the resulting
centroids of voting peaks satisfying all the following conditions:
(a) such voting peak centers do not exist in the peak list L yet.

(b) They come from strong peaks that suggest consistent local
intensity change property, a key to a reliable nuclei detection.
Such strong peaks can be identified with their sizes no less
than area threshold AðvÞ ¼ ηþ exp½ρfðvÞ�, where ρ and η are
predefined scalars that determine the lower area threshold for
detected peaks in the voting map at each step and fðvÞ ¼
vmax−v

vmax−vmin
is a function normalizing the voting value v; specifi-

cally, ηþ 1 is the lowest peak cross-section size expectation
when the imaginary horizontal plane is the highest. ρ determines
how peak areas are expected to grow as the imaginary horizontal
plane slides down. Their choices depend on the nuclei texture
homogeneity and nuclei size. We choose η to be small enough
not to miss any strong peaks, and ρ big enough to represent the
rapid growth of strong voting peak cross-sections as the imagi-
nary horizontal plane slides down. (c) Such points are within the
foreground region in the binary mask detected by the adaptive
thresholding method.

With a list of seed candidates, we perform seed pruning to
eliminate false positive seeds. We compute the pairwise distan-
ces for all peaks in L and iteratively merge adjacent centroids
within distance threshold D1. This is followed by a second
round of distance-based merging with a relaxed threshold D2

(D1 < D2). In the second round, two peaks are merged only
if the following conditions are true: (a) distance between these
two points is less than D2 and (b) the path connecting a pair of
points does not intersect with any canny edge derived from the
original image. The edge map is used to prevent centroids of
closely clumped nuclei from being merged. With this seed merg-
ing process, we can retain seeds from true clumped nuclei in
histological images without tedious parameter tuning process.

4 Occluded Nuclei Segmentation
With nuclei detected in Sec. 3, we further develop an improved
level set based segmentation method to drive initialized nuclei
contours to true nuclei edges. Our development is driven by the
use case of automatic analysis of occluded nuclei in whole-slide
histopathologic images. In our method, each nuclei is described

Fig. 4 Voting map derived from a typical image region is demonstrated. (a) Top: the deconvolved hema-
toxylin channel, eosin channel, marker image; bottom: reconstructed, difference, and voting map surface
overlaid with original image. (b) Illustration of the voting peak detection by sliding down an imaginary
horizontal plane that intersects with the voting surface.
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by a level set function and we aim to simultaneously obtain all
N level set functions by optimizing a variational model.

4.1 Prior Information Integration

As described in Sec. 2.4, given a large enough set of shape priors
Ψ ¼ fψ jg, a shape of interest ϕi can be encoded as sparse linear
superposition of shape priors. Thus, we define a shape term as
follows:

EQ-TARGET;temp:intralink-;e010;63;656E1 ¼
XN
i¼1

Z
Ω

�
Γ½ϕiðxÞ� −

XM
j¼1

ψ jðx̃iÞα̂ij
�2
dx; (10)

where α̂ij is the j’th entry of α̂i. This shape prior term describes
the difference between the target distance map and the best
sparsely reconstructed distance map derived from shape priors.
Through this optimization process, the target distance map
ΓðϕiÞ evolves to fit itself to the feature space spanned by the
shape priors.

4.2 Adaptive Penalty on Mutual Occlusion

It is common to have mutually occluded nuclei in 2-D histopa-
thologic images due to the fact that these images represent 2-D
projected signals of tissue nuclei in 3-D space. It is a challenging
task to segment mutually occluded nuclei and identify hidden
boundaries across each other. This problem becomes exponen-
tially complicated when there are more than two nuclei involved
in occlusion. In the level set framework, intersecting nuclei may
all have positive function values after contour evolutions, mak-
ing it difficult to differentiate them from each other. To address
this problem, we introduce an adaptive occlusion penalty term to
dynamically suppress nuclei intersection events. The occlusion
penalty term is determined by the number of nuclei that are
overlapped. Meanwhile, this term prevents deformable contours
from becoming identical after iterations of evolution. Speci-
fically, we define the adaptive occlusion penalty term as follows:

EQ-TARGET;temp:intralink-;e011;63;344E2 ¼
Z
Ω

XN
i¼1

H½ϕiðxÞ�−
�
1−

YN
k¼1

ð1−HðϕkðxÞÞÞ
�
dx; (11)

where Hð·Þ is the Heaviside function. The first term in Eq. (11)
is a superposition of the Heaviside functions of all nuclei at pixel
x and the second term is a binary function indicating if pixel x
is inside any nuclei. This penalty term describes the extent of
image regions occupied by multiple nuclei and the associated
number of intersecting nuclei in such regions. Equivalently, it
represents a dynamic occlusion penalty power on overlapped
nuclei.

4.3 Edge Guided Contour and Evolution Stability

To further encourage contour convergence and retain contour
smoothness, we define an edge-guided contour regularity term
as follows:

EQ-TARGET;temp:intralink-;e012;63;143E3 ¼
XN
i¼1

Z
Ω
QðxÞj∇H½ϕiðxÞ�jdx; (12)

where QðxÞ ¼ expð− j∇IðxÞj2
2σ2

Þ is an exponential function mono-
tonously decreasing as the image magnitude of gradient at x
increases and j∇H½ϕiðxÞ�j is nonzero only on nuclei boundaries.

As a result, this term drives contours to strong edge locations
and helps to regulate smoothness of nuclei boundaries.

Additionally, we include an evolutionary stability term31 to
regulate the property of level set function as follows:

EQ-TARGET;temp:intralink-;e013;326;708E4 ¼
XN
i¼1

Z
Ω
Rðj∇ϕiðxÞjÞdx; (13)

where RðxÞ is defined as a double-well potential function:

EQ-TARGET;temp:intralink-;e014;326;648RðxÞ ¼
(

1
ð2πÞ2 ½1 − cosð2πxÞ�; if x ≤ 1

1
2
ðx − 1Þ2; if x ≥ 1

: (14)

This term in Eq. (13) is used to retain signed distance property
for stable level set function computation.

4.4 Improved Variational Level Set Formulation

By combining terms in Eqs. (10)–(13), we formulate our method
with a variational level set framework.1 To evolve nuclei con-
tours to desired nuclei boundaries, we minimize the following
functional:
EQ-TARGET;temp:intralink-;e015;326;500

EðC;Φ;Θ; TÞ ¼
Z
Ω
Lðx;Φ; C;Θ; TÞdx ¼ Ecv þ

X4
i¼1

Ei

¼ λo
XN
i¼1

Z
Ω
ðI − ciÞ2H½ϕiðxÞ�dx

þ λb

Z
Ω
ðI − cbÞ2

YN
i¼1

½1 −HðϕiðxÞÞ�dx

þ ν
XN
i¼1

Z
Ω

�
ΓðϕiðxÞÞ −

XM
j¼1

ψ jðxiÞα̂ij
�2
dx

þ ω

Z
Ω

XN
i¼1

H½ϕiðxÞ� −
�
1 −

YN
k¼1

ð1 −HðϕkðxÞÞÞ
�
dx

þ μ
XN
i¼1

Z
Ω
QðxÞj∇H½ϕiðxÞ�jdx

þ ξ
XN
i¼1

Z
Ω
Rðj∇ϕiðxÞjÞdx; (15)

where fcig and cb are scalars that define the average pixel inten-
sities in regions of nuclei and background, respectively. We
denote C ¼ fci; cbg, Φ ¼ fϕig, Θ ¼ fθig, and T ¼ fti1; ti2g,
i ¼ 1;2; : : : ; N as sets of variables of the energy functional.
Parameters fλo; λb; μ; ξ;ω; νg are weights of different terms
in the functional.

5 Numerical Computations
In this section, we present numerical computations to minimize
the functional in Eq. (15). We optimize the functional iteratively
by updating functions Φ and variables fC;Θ; Tg alternatively.
We begin with updating functions Φ first. Parameterizing iter-
ation as an artificial time variable t > 0, we minimize the func-
tional by solving Euler–Lagrange equation based on theory of
calculus of variations:
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EQ-TARGET;temp:intralink-;e016;63;752

∂ϕi

∂t
¼ −

∂E
∂ϕi

¼ −
�
∂Lðx;ϕiÞ

∂ϕi
−
X2
j¼1

∂
∂xj

�
∂Lðx;ϕiÞ

∂ ∂ϕi
∂xj

��

¼ −λoðI − ciÞ2δðϕiÞ

þ λbðI − cbÞ2
YN

k¼1;k¼i

ð1 −HðϕkðxÞÞÞδðϕiÞ

þ μδðϕiÞ
�
∇QðxÞ · ∇ϕi

jϕij
þQðxÞdiv

�
∇ϕi

j∇ϕij
��

þ ξdiv

�
R 0ðj∇ϕijÞ
j∇ϕij

∇ϕi

�

− ωδðϕiÞ
�
1 −

YN
k¼1;k¼i

ð1 −HðϕkðxÞÞÞ
�

−2ν
�
ΓðϕiðxÞÞ −

XM
j¼1

ψ jðx̃iÞα̂ij
�
; (16)

where δð·Þ ¼ H 0ð·Þ denotes the Dirac delta function.
Next, we fix Φ and update transformation parameters. We

derive updating equations for transformation parameters by
computing gradient descent of functional EðΘ; TÞ:
EQ-TARGET;temp:intralink-;e017;63;486

∂θi
∂t

¼ 2ν

Z
Ω

�
ΓðϕiðxÞÞ −

XM
j¼1

ψ jðx̃iÞα̂ij
�

�XM
j¼1

ð∇x̃iψ j · ∇θi x̃iÞα̂ij
�
dx; (17)

where ∇x̃iψ j ≜
h
∂ψ j

∂x̃i1
∂ψ j

∂x̃i2

i
T

and ∇θi x̃i ¼�
sið−x1 sinðθiÞ þ x2 cosðθiÞÞ
sið−x1 cosðθiÞ − x2 sinðθiÞÞ

�
EQ-TARGET;temp:intralink-;e018;63;357

∂tik
∂t

¼ 2ν

Z
Ω

�
ΓðϕiðxÞÞ −

XM
j¼1

ψ jðx̃iÞα̂ij
�

�XM
j¼1

ð∇x̃iψ j · ∇tik x̃iÞα̂ij
�
dx; (18)

where k ¼ 1 or 2:

EQ-TARGET;temp:intralink-;e019;63;260∇tik x̃i ¼
� ½ 1 0 �T; if k ¼ 1

½ 0 1 �T; if k ¼ 2
: (19)

Finally, we fixΦ, and fΘ; Tg, and update ci and cb by setting
the partial derivative of Eðci; cbÞwith respective to ci and cb and
solving these equations, respectively. The optimal values turn
out to be the average image intensities in corresponding area:1

EQ-TARGET;temp:intralink-;e020;63;170

∂Eðci; cbÞ
∂ci

¼ 0 ⇒ ci ¼
R
Ω IðxÞHðϕiÞdxR

Ω HðϕiÞdx
; (20)

EQ-TARGET;temp:intralink-;e021;63;113

∂Eðci;cbÞ
∂cb

¼ 0⇒ cb ¼
R
Ω IðxÞ

QN
i¼1½1−HðϕiðxÞÞ�dxR

Ω
Q

N
i¼1½1−HðϕiðxÞÞ�dx

: (21)

In this way, this minimization problem is solved by iterative
computation of Euler–Lagrange equation and gradient descent

approach until the functional is converged. The zero level sets of
the converged functions Φ indicate the final nuclei contours.

6 Experimental Results

6.1 Dataset and Parameter Setting

We present experimental results of our algorithm for analysis
of nuclei within histopathologic images of glioblastoma brain
tumor specimens. The effectiveness of our algorithm is verified
with two datasets of H&E stained GBM specimens captured at
40× magnification, namely GBM40 dataset and TCGA FFPE
dataset: http://cancergenome.nih.gov/. These images are ob-
tained after glioblastoma brain tissues are processed with a tis-
sue preparation protocol. Image patches with size 512 × 512 are
used for experiments due to memory limit. For GBM40 dataset,
there are 5396 and 1849 manually annotated nuclei for seed
detection and boundary delineation, respectively. For TCGA
dataset, the total number of annotated nuclei for boundary seg-
mentation is 4961. Shape profiles of 27,000 glioblastoma brain
nuclei are manually extracted from the dataset to form the set of
shape priors. All shape priors are aligned with generalized
Procrustes analysis.21 As discussed in Secs. 2.1 and 2.2, we re-
present shapes as distance maps, cluster shape priors with an L1

graph intoM groups and use one representative shape from each
group to form a training shape dictionary Ψ for sparse represen-
tation. We apply the proposed method to datasets with the fol-
lowing parameter setup: r ¼ 10, σi ¼ f3.3; 3.6; : : : ; 10g, D1 ¼
15, D2 ¼ 25, λo ¼ λb ¼ 1, μ ¼ 5000, ξ ¼ 2, ω ¼ 2000, ν ¼
3000, M ¼ 100, η ¼ 10, ρ ¼ 10. Note that our approach is
an image data driven process. Therefore, the scanner setting such
as magnification factor does not have significant impact on the
parameter setting. As seeds are detected in the voting map that is
produced by eigenvalue analysis of image local Hessian matrix
associated with a set of Gaussian filter scales, transforming from
the original image to voting map can partially help take care of
nuclei scale variations. In our study, this set of Gaussian filter
scales is chosen to cover varying nuclei sizes, with 3maxiðσiÞ
approximately equal to the radius of a typical large nucleus.

For the weighting parameters for nuclei segmentation, we
assign parameter values so that all terms in Eq. (15) are appro-
priately balanced in numerical values. In our experiment, follow-
ing three parameters have similar value and scale: the coefficient
for edge-gradient weighted contour length μ, the coefficient for
the occlusion penalty term ω, and the coefficient for squared
fitting error of shape-derived distance map ν. The weight ξ is
numerically set by referring to typical value of the double-well
potential function. We use the l1-ls MATLAB toolbox32 to solve
the L1-minimization problem.

6.2 Seed Detection

For quantitative analysis, we assess performance of seed detec-
tion method with reference to annotations by a pathologist. Note
that we evaluate our approach with nontouching and occluded
nuclei in each image separately. Five metrics are computed from
each image to show seed detection performance: nuclei number
error (C), miss detection (M), false recognition (F), over seg-
mentation (O), under segmentation (U), and count error (CE)%.
Nuclei number error is used to demonstrate the absolute differ-
ence between the number of nuclei detected by machine and
that reported by human expert. Miss and false detection re-
present the number of missing and false recognition events when
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machine-based seed detection method is used to detect individ-
ual nuclei with no occluded neighbors. Meanwhile, we use over-
and undersegmentation to record events where the number of
machined-identified nuclei from a nuclei clump is more and less
than the true number marked by human expert, respectively.
Finally, we use the count error% to represent the nuclei number
error in reference to the true nuclei number. The resulting out-
puts are shown in Tables 1 and 2. Additionally, we compare our
method with a single-pass voting method based on mean shift11

and an oriented kernel-based iterative voting method.9 By con-
trast to our method, both the single-pass voting method and the
iterative voting method tend to miss detecting nuclei. Note that
GBM40 dataset is produced by our local laboratory. Compared
to the public TCGA dataset, GBM40 dataset is more carefully
prepared with better staining and contrast, leading to higher
SNR. This results in better performances of all methods for com-
parison consistently. We also illustrate seed detection results
on several typical image patches in Fig. 5.

6.3 Nuclei Segmentation

We model the nuclei segmentation problem by the variational
level set framework mathematically described in Eq. (15) and
solve it by the numerical computations in Sec. 4. The level set
functions do not stop evolving until they either reach conver-
gence or exceed iteration number limit. We present the evolution
results of zero level sets at iteration 10, 20, and 30 in Fig. 6. The
detected nuclei shapes are well defined, as shown in Fig. 6.
Notably, those overlapping nuclei can also be correctly seg-
mented, with occluded boundaries reasonably recovered. It is
also observed that most zero level sets can rapidly converge
to true nuclei boundaries within 10 iterations. After that, zero
level sets fine tune themselves to better fit to nuclei contour

details, especially over those overlapped nuclei. With our
experiment data, we only observe minor improvements in nuclei
segmentation from 10 to 30 iterations. In general, the optimal
number of iterations depends on data properties. End users can
determine the accuracy-speed tradeoff and select the best num-
ber of iterations based on individual experiment scenarios.

In addition, we present experimental results of three images
presenting the best, median, and worst overall segmentation per-
formance in Fig. 7. The bar charts in Fig. 7 present our method
efficacy measured by the Jaccard coefficient, precision, recall,
and F1 score. The small variation in these metrics over the best,
median, and worst images suggests a good consistency and gen-
eralization ability of our method.

To quantitatively assess our method’s performance, we use
human annotations from pathologist as ground truth. By com-
paring the experimental result B with ground truth annotation A,
we evaluate the performance of our method with multiple

metrics:36,37 Jaccard coefficient JðA; BÞ ¼ jA∩Bj
jA∪Bj, precision rate

PðA; BÞ ¼ jA∩Bj
B , recall rate RðA; BÞ ¼ jA∩Bj

A , F1 score

F1ðA; BÞ ¼ 2
PðA;BÞRðA;BÞ
PðA;BÞþRðA;BÞ, and Hausdorff distance HðA; BÞ ¼

maxðhðA; BÞ; hðB;AÞÞ, where hðA;BÞ¼maxa∈Aminb∈Bka−bk.
The testing results evaluated with these metrics are presented
in Table 3. Our proposed method achieves better performance
in most metrics than the other methods. A qualitative perfor-
mance comparison across several compared methods and our
proposed method is shown in Fig. 8. We also demonstrate
the results of the proposed nuclei segmentation method with
different seed detection methods in Fig. 10. It is notable that
our proposed method is able to better capture nuclei boundaries
than other methods for comparison. In particular, only our
method can recover boundaries of overlapped nuclei by compar-
isons. This property makes our method superior to the other

Table 1 Image-wise seed detection performance on GBM40 dataset.

Metric C M F O U Count error (%)

IVW33 15.85� 8.42 2.84� 2.23 5.76� 3.05 12.85� 5.67 0.07� 0.27 11.14

MOW34 32.15� 4.86 1.62� 1.94 11.15� 3.48 22.69� 4.53 0.08� 0.28 22.60

RACM35 34.46� 10.60 5.00� 2.38 7.08� 3.88 32.08� 7.42 0.00� 0.00 24.23

CNN 32.17� 6.61 1.67� 1.03 6.16� 2.48 27.67� 6.15 0.00� 0.00 22.65

Ours 2.15� 1.51 2.85� 1.99 1.30� 1.18 0.33� 0.66 0.50� 0.72 1.51

Note: Bold numbers indicate the best performance.

Table 2 Image-wise seed detection performance on TCGA dataset.

Metric C M F O U Count error (%)

IVW33 36.85� 10.99 0.77� 0.83 32.92� 9.28 6.31� 2.46 1.62� 1.33 29.71

MOW34 55� 14.17 1.38� 1.26 55.38� 14.55 3.62� 2.33 2.62� 1.45 44.35

RACM35 54.23� 13.28 1� 1.47 42.15� 12.42 13� 5.42 0.08� 0.28 43.73

CNN 48.20� 7.59 0.00� 0.00 20.81� 9.34 27.42� 9.81 0.00� 0.00 38.87

Ours 11.92� 6.45 2.46� 1.20 15.69� 6.18 1.38� 1.56 2.69� 1.65 9.61

Note: Bold numbers indicate the best performance.
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methods when analytics of occluded nuclei is crucial in
investigations.

6.4 Parameter Sensitivity Analysis for Segmentation

We further investigate the segmentation contribution from indi-
vidual terms in our variational model by testing with different
parameters and comparing their associated segmentation results.
The segmentation result with our default parameter setting is
shown in Fig. 9(a). When ν ¼ 0, the shape prior fitting term
E1 does not take effect in the contour deformation process.
The resulting segmentation outcome is presented in Fig. 9(b),
where finalized nuclei contours are less regulated. Similarly,
we can remove the occlusion penalty term E2 from the varia-
tional model by setting ω ¼ 0. The associated result is illus-
trated in Fig. 9(c). Under this setting, the detected nuclei
present a strong inclination to overlap with each other. When
the shape prior fitting term E1, the dynamic occlusion penalty

term E2, and the evolutionary stability term E4 are all removed
(ν ¼ ω ¼ ξ ¼ 0), the resulting nuclei contours become signifi-
cantly degraded, as shown in Fig. 9(d). Note that shapes appear
to be less regulated in Figs. 9(b)–9(d) without one or more terms

Fig. 6 Nuclei contour deformation: initial zero level set and that after 10, 20, 30 evolving iterations,
respectively. Those overlapping nuclei can be well separated, as shown in close-up views on the right.
(a) The initial contour, (b) 10 iterations, (c) 20 iterations, (d) 30 iterations, and (e) zoomed-in views.

Fig. 7 Metrics of the samples with the best, median, and worst
Jaccard coefficients overall nuclei segmentation result of all testing
images.

Fig. 5 Comparisons of seed detection results: (a) ground truth; (b) IVW;33 (c) MOW;34 (d) RACM;35 and
(e) our proposed method. We use arrows to demonstrate representative tissue areas, where our
approach can correctly detect seeds while other methods fail.
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Fig. 9 Segmented nuclei with distinct parameter settings: (a) μ ¼ 5000, ξ ¼ 2, ω ¼ 2000, ν ¼ 3000;
(b) same as (a) except ν ¼ 0; (c) same as (a) except ω ¼ 0; (d) same as (a) except ξ ¼ 0, ω ¼ 0,
ν ¼ 0; (e) same as (a) except μ ¼ 3900; (f) same as (a) except μ ¼ 4500; (g) same as (a) except
ν ¼ 5000; and (h) same as (a) except μ ¼ 3900 and ν ¼ 5000.

(b) (c) (d) (e) (a) (f) (g) 

Fig. 8 Comparison of segmentation results: (a) original image; (b) ground truth; (c) MS;38 (d) ISO;39

(e) SBGFRLS,40 (f) vanilla Chan–Vese model,1 and (g) our proposed method. We use arrows to dem-
onstrate typical tissue areas, where our approach can correctly segment nuclei while other methods fail.
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in the variational model. In addition to the final results with only
a subset of terms in Figs. 9(b)–9(d), we also investigate the sen-
sitivity of parameters to final results. Our investigations with
parameter deviation from our proposed value set suggest that
results remain similar even when we change μ by 22%
(μ ¼ 3900), 10% (μ ¼ 4500), and ν by 67% (ν ¼ 5000), as pre-
sented in Figs. 9(e)–9(g). Figure 9(h) presents results when μ
and ν are simultaneously changed by 22% and 67%. Overall,
a larger μ leads to a better contour convergence to true nuclei
boundary by energy term E3; a larger ν forces contours to look
more from the reconstructed sparse shape priors by E1; a larger
ω tends to prevent nuclei more from overlapping with each other
by E2.

To illustrate the effect of seed detection, we demonstrate the
segmented nuclei contours in Fig. 10 by replacing the seed
detection algorithm in our pipeline with other seed detection
methods. Since the number of detected nuclei depends on the
seed-based initialization, miss detection of seeds may result
in undersegmentation of nuclei, as shown in Figs. 10(b) and
10(c). We also test the impact of the shape prior library size
on segmentation by changing the number of shape prior clusters
M. The segmented nuclei contours in Fig. 11 show that the pro-
posed method does not degrade significantly with less shape
priors. In practice, we carefully choose the number of clusters
M ¼ 100 so that M is large enough to cover shape variations,
but small enough to avoid high computation burden.

6.5 Limitation and Future Work

Although the proposed method can achieve good quantitative
and visual results, it is limited by the following factors:

(a) Nuclei contour evolution depends on accurate detection of
seeds, therefore, the segmentation performance may degrade
when seeds are not correctly detected. In cases where seeds are
missing, our proposed method, like other level set based meth-
ods in literature, does not produce correct segmentation result as
no level set function is correctly initialized for deformation.
However, we have shown in our experimental tests that our pro-
posed seed detection has a good performance with a very low
missing rate, as suggested in Tables 1 and 2. When nuclei seeds
are slightly shifted within nuclei regions, our approach is able
to produce similar and correct segmented nuclei contours for
overlapping nuclei. (b) Application of our method to whole slide
images can be time-consuming compared to other state-of-the-
art methods. To address the problem, we will further develop a
MapReduce based high performance image analysis framework
to make this process scalable and cost effective.43,44

7 Conclusion
In this paper, we propose a nuclei segmentation method based
on the level set framework, aiming to simultaneously identify
contours of multiple nuclei with mutual occlusion. We present
our method with its application to nuclei segmentation using
histopathologic images of glioblastoma brain tumors. First, a
seed detection method is developed to automatically initialize
nuclei contours. For better nuclei contour deformation, we
incorporate into the model a set of typical nuclei shapes as
prior information through spectral clustering on L1 graph.
Meanwhile, an adaptive nuclei occlusion penalty term is de-
signed to dynamically penalize nuclei contour occlusion based
on the number of overlapped nuclei. It also prevents recognized
contours of overlapped nuclei from being identical. A numerical

Fig. 10 Comparison of segmentation results with nuclei initialization by different seed detectionmethods:
(a) original image; (b) ground truth; (c) single-pass voting with mean shift11 using ImageJ plugin; (d) iter-
ative voting;9 and (e) our proposed method.
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optimization algorithm is used to iteratively search for the
desired level set functions. Experiments on glioblastoma brain
histopathologic images produce better results as compared with
other state-of-the-art experiments, suggesting the effectiveness
of our detection and segmentation approach for nuclei analysis
with glioblastoma histopathologic images.
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