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Abstract. Mammographic density is an important risk factor for breast cancer. In recent research, percentage
density assessed visually using visual analogue scales (VAS) showed stronger risk prediction than existing
automated density measures, suggesting readers may recognize relevant image features not yet captured
by hand-crafted algorithms. With deep learning, it may be possible to encapsulate this knowledge in an auto-
matic method. We have built convolutional neural networks (CNN) to predict density VAS scores from full-field
digital mammograms. The CNNs are trained using whole-image mammograms, each labeled with the average
VAS score of two independent readers. Each CNN learns a mapping between mammographic appearance and
VAS score so that at test time, they can predict VAS score for an unseen image. Networks were trained using
67,520 mammographic images from 16,968 women and for model selection we used a dataset of 73,128
images. Two case-control sets of contralateral mammograms of screen detected cancers and prior images of
women with cancers detected subsequently, matched to controls on age, menopausal status, parity, HRT and
BMI, were used for evaluating performance on breast cancer prediction. In the case-control sets, odd ratios of
cancer in the highest versus lowest quintile of percentage density were 2.49 (95% CI: 1.59 to 3.96) for screen-
detected cancers and 4.16 (2.53 to 6.82) for priors, with matched concordance indices of 0.587 (0.542 to 0.627)
and 0.616 (0.578 to 0.655), respectively. There was no significant difference between reader VAS and predicted
VAS for the prior test set (likelihood ratio chi square, p ¼ 0.134). Our fully automated method shows promising
results for cancer risk prediction and is comparable with human performance. © The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JMI.6.3.031405]
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1 Introduction
Mammographic density (MD) is one of the most important in-
dependent risk factors for breast cancer and can be defined as the
relative proportion of radio-dense fibroglandular tissue to radio-
lucent fatty tissue in the breast, as visualized in mammograms.
Women with dense breasts have a four- to sixfold increased risk
of breast cancer compared to women with fatty breasts,1 and
breast density has been shown to improve the accuracy of
current risk prediction models.2 The reliable identification of
women at increased risk of developing breast cancer paves
the way for the selective implementation of risk-reducing
interventions.3 Additionally, dense tissue may mask cancers,
reducing the sensitivity of mammography,4 and breast cancer
mortality can be reduced if women at high risk are identified
early and treated adequately.5 There is international interest
in personalizing breast screening so that women with dense

breasts are screened more regularly or with alternative or sup-
plemental modalities.6

A number of methods have been used to measure MD. These
include visual area-based methods, for example, BI-RADS
breast composition categories,7 Boyd categories,8 percent
density recorded on visual analogue scales (VAS),9 and semi-
automated thresholding (Cumulus).10 The automated Densitas
software11 operates in an area-based fashion on processed
(for presentation) full-field digital mammograms (FFDM),
while methods including Volpara12 and Quantra13 use raw
(for processing) mammograms to estimate volumes of dense
fibroglandular and fatty tissue in the breast. Density measures
may be expressed in absolute terms (area or volume of dense
tissue) or more commonly as a percentage expressing the
relative proportion of dense tissue in the breast. Recent studies
have investigated the relationship between breast density and
the risk of breast cancer and found differences depending on
the density method used.14,15

Subjective assessment of percentage density recorded on
VAS has a strong relationship with breast cancer risk.16 In
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a recent case-control study14 with three matched controls for
each cancer (366 detected in the contralateral breast at screening
on entry to the study and 338 detected subsequently), the odds
ratio for screen-detected cancers in the contralateral breast in the
highest compared with the lowest quintile of percentage density
using VAS was 4.37 (95% CI: 2.72 to 7.03) compared with 2.42
(95% CI: 1.56 to 3.78) and 2.17 (95% CI: 1.41 to 3.33) for
Volpara and Densitas percent densities, respectively. Similar
results were found for subsequent cancers, with odds ratios
of 4.48 (95% CI: 2.79 to 7.18) for VAS, 2.87 (95% CI: 1.77
to 4.64) for Volpara, and 2.34 (95% CI: 1.50 to 3.68) for
Densitas. This suggests that expert readers might recognize
important features present in the mammographic images of
high-risk women which existing automated methods may miss.
In part, this may be due to their assessment of patterns of
density as well as quantity of dense tissue; there is already
evidence in the same case-control setting that explicit quantifi-
cation of density patterns adds independent information to per-
cent density for risk prediction.17 However, visual assessment of
density is time consuming and significant reader variability has
been observed.18,19

There have been numerous attempts to automate density
assessment using computer vision algorithms20–22 that require
hand-crafted descriptive features and prior knowledge of the
data. Conversely, deep learning techniques extract and learn rel-
evant features directly from the data, without prior knowledge.23

Convolutional neural networks (CNN) have been successfully
used for a wide range of imaging tasks including image classi-
fication,24 object detection and semantic segmentation,25 and
organ classification in medical images.26 In mammography,
deep learning has been used for breast segmentation,27 breast
lesion detection,28 breast mass detection,29,30 and breast mass
segmentation.30 Various deep learning approaches have been
proposed for other breast cancer related tasks such as differen-
tiation between benign and malignant masses31 and discrimina-
tion between masses and microcalcifications.32

Deep learning methods for estimating MD have gained
increased attention in recent years; however, the number of pub-
lished studies is low. Petersen et al.33 were among the first to
propose unsupervised deep learning, using a multiscale denois-
ing autoencoder to learn an image representation to train a
machine learning model to estimate breast density. Following
Petersen’s study, Kallenberg et al.34 proposed a variant of the
autoencoder that learns a sparse overcomplete representation
of the features, achieving an ROC AUC of 0.61 for breast cancer
risk prediction. A more recent study employed supervised deep
learning to classify breast density into BI-RADS categories and
to differentiate between scattered density and heterogeneously
dense breasts, showing promising results.35 As VAS has been
shown to be a better predictor of cancer than other automated
methods, we developed a method of breast density estimation by
predicting VAS scores using a supervised deep learning
approach that learns features associated with breast cancer.
The aim of this study is to create an automated method with
the potential to match human performance on breast cancer
risk assessment. Our model predicts MD VAS scores with
the final goal of assessing breast cancer risk.

2 Data
We used data from the Predicting Risk Of Cancer At
Screening (PROCAS) study.36 57,902 women were recruited
to PROCAS between October 2009 and March 2015, with

FFDM available for 44,505. Density was assessed by expert
readers using VAS as described in Sec. 3.1. Data from
women who had cancer prior to entering the PROCAS study
were excluded from the current study, as were data from
those women with additional mammographic views. PROCAS
mammograms were in three different formats as shown in
Table 1. Due to computational memory limitations, those
with format C were excluded. The number of exclusions for
all criteria (n ¼ 21;299) is shown in Table 2 leaving data
from 36,606 women and 145,820 mammographic images for
analysis.

2.1 Training Data

The training set was built by randomly selecting 50% of the data
that met the inclusion and exclusion criteria. Data from all
women that were included in the two case control test sets
described in Sec. 2.3 were further removed from the training
set to ensure no overlap between training and test sets. The train-
ing set consisted of 67,520 images from 16,968 women (132
cancers and 16,836 noncancers). A validation set comprising
∼5% of the training set was used for parameter selection and
to avoid overfitting.

2.2 Model Selection Data

The model selection set consisted of data from the remaining
50% of women (73,128 images from 18,360 women, 393 can-
cers, and 17,967 noncancers) that were not included in the train-
ing set. We used all four mammographic views and analyzed
data on a per mammogram and per woman basis (see Sec. 3.6).
To ensure no overlap between model selection and test sets,
all data included in the screen-detected cancers (SDC) and
prior test sets were removed from the model selection set.
The purpose of this set is to select the best model configuration
in terms of VAS score prediction.

Table 1 Mammographic image formats in PROCAS.

Format Dimensions (pixels) Pixel size (μm)

A 2294 × 1914 94.1

B 3062 × 2394 94.1

C 5625 × 4095 54.0

Table 2 Exclusion table. Some exclusions fall into more than one
category.

Reason for exclusion Number excluded

Additional mammographic views 2384

Format C mammographic image size 6513

Previous diagnosis of cancer 1068

No FFDM 13,400
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2.3 Test Data

We evaluated our method using two datasets: the SDC and prior
datasets. The SDC and prior datasets are the same as those used
by Astley et al.14 In both test datasets, control/noncancer data
were from women who had both a cancer-free (normal) mam-
mogram at entry to PROCAS, and a subsequent cancer-free
(normal) mammogram. Cancers were either detected at entry
to PROCAS, as interval cancers or at subsequent screens.

2.3.1 Screen-detected cancers dataset

The SDC dataset was a subset of PROCAS with mammographic
images from 1646 women (366 cancers and 1098 noncancers).
All cancers were detected during screening on entry to
PROCAS. MD was assessed in the contralateral breast of
women with cancer and in the same breast for the matched
controls. Each case was matched to three controls based on age
(þ∕ − 12 months), BMI category (missing, <24.9, 25.0 to 29.9,
30þ kg∕m2), hormone replacement therapy (HRT) use (cur-
rent versus never/ever), and menopausal status (premenopausal,
perimenopausal, or postmenopausal).

2.3.2 Prior dataset

The prior dataset consisted of 338 cancers and 1014 controls
also from the PROCAS study. All cases in this dataset were
cancer-free on entry to PROCAS but diagnosed subsequently.
The median time to diagnosis of cancer was 36 months
(25th percentile: 32 months, 75th percentile: 39 months). We
analyzed the mammographic images of these women on entry
to PROCAS, using all four mammographic views. Similarly
to the SDC dataset, cases were matched to three controls
based on age, BMI category, HRT, menopausal status, and year
of mammogram.

3 Method

3.1 Visual Assessment of Density

In the PROCAS study, mammograms had their density assessed
by two of nineteen independent readers (radiologists, advanced
practitioner radiographers, and breast physicians). The VAS

used was a 10-cm line marked at the ends with 0% and
100%. Each reader marked their assessment of breast density
on one scale for each mammographic view. Mammograms
were assigned to readers on a pragmatic basis. The VAS
score for each mammographic image was computed as the
average of the two reader scores. The VAS score per woman
was averaged across all four mammographic images and across
the two readers.

3.2 Deep Learning Model

We propose an automated method for assessing breast cancer
risk based on whole-image FFDM using reader VAS scores
as a measure of breast density. As a first step, we built a
deep CNN that takes whole-image mammograms as input
and predicts a single number between 0 and 100. This number
corresponds to the VAS score (percentage density). One of the
main characteristics of CNNs is that features are learned from
the training data without human input and are directly optimized
for the prediction task. Features (often referred to as filters) are
small patches, which are convolved with the input image and
create activation maps that show how the input responds to
the filters. The values of the features are automatically adjusted
to optimize an objective function; in this case, the minimization
of the squared difference between predicted and reader VAS
scores. Our implementation uses the TensorFlow library.37

Our network consists of six groups of two convolutional layers
and a max pooling layer. Our architecture is VGG-like, although
there are some differences regarding the depth of the network
and the number of feature maps, which were imposed by
memory constraints. Figure 1 shows a conceptual representation
of the network, the complete architecture is shown in Fig. 2.
We use a nonsaturating nonlinear activation function ReLU38

after each convolutional layer and apply batch normalization39

before ReLU.

3.3 Preprocessing

All mammographic images had the same spatial resolution.
To have a single mammogram size, we padded format A mam-
mograms with zeros on the bottom and right edges to match
the image size of format B mammograms. Right breast

Fig. 1 Conceptual diagram of our CNN for predicting VAS score.
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mammograms were flipped horizontally before padding.
Further, all mammograms were cropped to 2995 × 2394 and
downscaled using bicubic interpolation. Images were down-
scaled due to memory limitations. We used two downscaling
factors to produce images of low and high resolution:
640 × 512 and 1280 × 1024, respectively. The upper bound
of the pixel values was set to 75% of the pixel value range,
to reduce the difference between background and breast pixel
intensity. Finally, we inverted the pixel intensities and applied
histogram equalization (256 bins).40 All pixel values were
normalized in the range 0 to 1 before images were fed into
the network. Table 3 shows the two input image formats
used for training and their pixel size after down-scaling original
images. No data augmentation techniques were applied to our
dataset.

3.4 Training

We trained two independent networks, one for cranio-caudal
(CC) images and one for medio-lateral oblique (MLO) images,
using the architecture shown in Fig. 2. Each network takes pre-
processed mammographic images as input and outputs a single
value, which represents a VAS score. We trained separate mod-
els for the two input size images. The CNN learns a mapping
between the input mammographic image and the output VAS
score. We used the Adam optimizer41 with different values of

Fig. 2 Network architecture and characteristics of each layer. The number of feature maps and the kernel
size of each convolutional layer are shown as: feature maps@kernel size. The fully connected layers are
marked with FC followed by the number of neurons in the layer for the low-resolution input and the
number of neurons for the high-resolution input in parenthesis.

Table 3 Input image format used for training and pixel size after
down-scaling original images.

Format Dimensions (pixels) Pixel size (μm)

Low resolution 640 × 512 20.12

High resolution 1240 × 1024 40.24 Fig. 3 Distribution of VAS scores per image in PROCAS. The distri-
bution is strongly skewed toward smaller values.
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initial learning rate: 5 × 10−6, 1 × 10−6, 5 × 10−7, and
1 × 10−7; we selected the models that performed best on
the validation set. VAS scores do not have a uniform distribu-
tion across the population in PROCAS. The distribution is
negatively skewed, over half of images have scores below
30% and only a fifth of images have scores above 50% as
shown in Fig. 3. Over-exposing our model to low VAS scores
could skew the predicted values toward small VAS scores.
To avoid this, we built balanced minibatches by oversampling
examples with high VAS scores. In the balanced mini-batch,
there is one example for each VAS value range of 20: 1 to 20,
21 to 40, etc. To assess the impact of the sampling strategy,

we also trained the networks with randomly sampled
minibatches.

We trained the CNNs for 300,000 minibatch iterations.
Minibatches consisted of five images. Weights were initialized
with values from a normal distribution with 0 mean and standard
deviation of 0.1. Biases were initialized with a value of 0.1.
For the fully connected layers, we used a dropout rate of 0.5
at training time. As described in Sec. 2.1, 5% of the training
data was used as a validation set, which was evaluated
every 100 iterations, for early stopping. The best performing
models on the validation set were evaluated on the model selec-
tion set. We used two cost functions: a mean squared error

Table 4 Networks configurations. Each configuration is a different combination of input size, cost function, and sampling strategy. The low-res-
olution configurations have names starting with LR, and the high-resolution with HR. The cost function is reflected in the name as “w” for weighted
cost function and “nw” for nonweighted. Finally, the sampling strategy adds “b” or “r” to the name, for balanced and random, respectively.

Name Input size (pixels) Cost function Mini-batch sampling strategy

LR-w-b 640 × 512 Weighted MSE Balanced by VAS ranges of 20

LR-nw-b 640 × 512 MSE Balanced by VAS ranges of 20

LR-w-r 640 × 512 Weighted MSE Random

LR-nw-r 640 × 512 MSE Random

HR-w-b 1240 × 1024 Weighted MSE Balanced by VAS ranges of 20

HR-nw-b 1240 × 1024 MSE Balanced by VAS ranges of 20

HR-w-r 1240 × 1024 Weighted MSE Random

HR-nw-r 1240 × 1024 MSE Random

Table 5 MSE (95% confidence intervals) for the model selection set, for the high-resolution images. Each column represents a different network
configuration. The first row shows values obtained for the predictions made per image; the second and third rows show MSE for CC and MLO,
respectively; the fourth row shows results averaged per woman.

HR-nw-r HR-w-r HR-nw-b HR-w-b

Per image 96.1 (94.8 to 97.3) 106.5 (105.1 to 107.9) 99.2 (97.9 to 100.5) 104.1 (102.8 to 105.2)

CC 94.6 (93.0 to 96.3) 103.3 (101.4 to 105.2) 99.0 (97.3 to 100.8) 103.1 (101.5 to 104.8)

MLO 97.6 (95.8 to 99.5) 109.8 (107.6 to 111.9) 99.3 (97.5 to 101.0) 105.0 (103.1 to 106.9)

Per woman 79.3 (77.2 to 81.3) 86.2 (84.0 to 88.7) 77.3 (75.4 to 79.3) 81.9 (79.8 to 84.1)

Table 6 MSE (95% confidence intervals) for the model selection set, for the low-resolution images. Each column represents a different network
configuration. The first row shows values obtained for the predictions made per image; the second and third rows show MSE for CC and MLO,
respectively; the fourth row shows results averaged per woman.

LR-nw-r LR-w-r LR-nw-b LR-w-b

Per image 98.0 (96.7 to 99.2) 108.4 (107.0 to 109.9) 104.0 (102.7 to 105.3) 113.3 (112.0 to 114.8)

CC 100.0 (98.2 to 101.7) 110.8 (108.8 to 112.8) 108.0 (106.2 to 109.8) 116.8 (114.8 to 118.6)

MLO 95.9 (94.1 to 97.7) 106.1 (104.1 to 108.3) 99.9 (97.9 to 101.8) 109.9 (108.0 to 111.7)

Per woman 79.4 (77.3 to 81.4) 87.2 (84.8 to 89.7) 82.1 (80.0 to 84.3) 90.2 (88.0 to 92.4)
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(MSE) and a weighted MSE. For the standard MSE, we com-
puted loss as

EQ-TARGET;temp:intralink-;e001;63;730L ¼ 1

n

Xn

i¼1

ðYi − ŶiÞ2; (1)

where Y is the reader VAS and Ŷ is the predicted VAS score. For
the weighted function, each weight is inversely proportional to
the inter-reader difference, so that examples where both readers
agree, to give a larger contribution to the loss:

EQ-TARGET;temp:intralink-;e002;63;638L ¼ 1

n

Xn

i¼1

λiðYi − ŶiÞ2; (2)

where Y is the reader VAS, Ŷ is the predicted VAS score, and λ is
the absolute difference between two reader estimates. We have
eight different network configurations given by the input image
size, sampling strategy, and cost function. Table 4 shows their
assigned names which will be used throughout the paper.

The low-resolution networks were trained on a Tesla P100
GPU, while the high-resolution networks were trained on 4
Tesla P100 GPUs. Training time was ∼36 h for small resolution
images and 6 days for high-resolution images.

Fig. 4 MSE with 95% CI per image for (a) and (b) low- and high-resolution input. All configurations are
displayed with a different line style or color. Configurations with weighted cost function are displayed in
purple, and nonweighted in orange. Balanced mini-batches are displayed with a solid line, and random
ones with dashed lines. Data were analyzed in divisions of 10% of VAS score. The Y -axis shows
the MSE of the predicted VAS score.

Fig. 5 Plot of inter-reader variability with 95% CI for ranges of 10 val-
ues of reader VAS score. X -axis shows the ranges of reader VAS
(average of two readers) and Y -axis shows the average inter-reader
variability. Inter-reader variability is computed as the absolute differ-
ence between the scores of two readers for each mammographic
image.
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3.5 Predicting Density Score

The MLO or CC network predicted a single VAS score for each
previously unseen mammogram image. A small proportion of
images (∼1%) produced a negative VAS score and were set
to zero. The VAS score for a woman was computed by averaging

scores across all mammogram images available (both breasts
and both views).

3.6 Model Selection and Testing

Breast cancer risk prediction was assessed by first selecting the
CNN architecture that gave the highest accuracy on the model

Fig. 6 MSE with 95% CI per image for low- and high-resolution input for CC and MLO views. All configu-
rations are displayed with a different line style or color. Configurations with weighted cost function are dis-
played in purple, and nonweighted in orange. Balanced mini-batches are displayed with a solid line, and
random ones with dashed lines. Data were analyzed in divisions of 10% of VAS score. The Y -axis shows
the MSE of the predicted VAS score. (a) and (b) the MSE for low-resolution, (c) and (d) for high-resolution.
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selection set. The predicted VAS scores from this model were
used to assess breast cancer risk on both the prior and SDC
datasets.

3.6.1 Model selection

VAS scores per image and woman were predicted for low- and
high-resolution images for different parameter configurations
(Table 4) for the model selection dataset, with the aim of select-
ing the best performing model. MSE with bootstrap confidence
intervals were calculated for each configuration. Additionally,
Bland–Altman plots42 were used to evaluate the agreement
between reader and predicted VAS scores and to identify any
systematic bias in predicted VAS. We computed the reproduc-
ibility coefficient (RPC), which quantifies the agreement
between reader and predicted VAS. About 95% of predicted
VAS scores are expected to be within one RPC from the median
after adjusting for systematic bias.

3.6.2 Prediction of breast cancer

To evaluate the selected model’s ability to predict breast cancer,
we used the screen detected cancer (SDC) and prior datasets
described in Sec. 2.3. For this we used only predicted VAS
per woman, which was calculated differently for the two data-
sets. For prior, scores for all views available were averaged. For
the SDC set, only the contralateral side was used for cancer
cases; for controls, we used the same side as their matched case.

The relationship between VAS and case-control status was
analyzed using conditional logistic regression with density mea-
sures modeled as quintiles based on the density distribution
of controls. The difference in the likelihood-ratio chi-square
between models with reader and predicted VAS scores was com-
pared. The matched concordance (mC) index,43 which provides
a statistic similar to the area under the receiving operator
characteristic curve (AUC) for matched case-control studies,
was calculated with empirical bootstrap confidence intervals43

to compare the discrimination performance of the models.
All p-values are two-sided.

4 Results

4.1 Model Selection

For all network configurations and for both views, a learning
rate of 5 × 10−6 was found to give the lowest MSE on the val-
idation set. Tables 5 and 6 show the MSE per image, per view
and per woman obtained with different training strategies for
the model selection set. The lowest MSE is obtained for the HR-
nw-r configuration (high-resolution input, non-weighted cost
function and random mini-batches) per image and HR-nw-b
(high-resolution input, non-weighted cost function and balanced
mini-batches) per woman. Overall, the high-resolution input
configurations outperformed the corresponding low-resolution
configurations by a small margin. Training with balanced
mini-batches increased the MSE in the majority of cases with
the exception of HR-nw-b per woman and HR-w-b both per
image and per woman. This may be because balancing mini-
batches has the equivalent effect of increasing the weight of
under-represented VAS labels in the cost function.

Figures 4(a) and 4(b) show the MSE value per range of
10 values of reader VAS for low- and high-resolution input,
respectively. These plots show the impact of different training
parameters on prediction error.

Using balanced mini-batches increased the error in the
smaller values of VAS but decreased it for larger VAS values.
The weighted cost function improves the error at the ends of the
VAS range, where the inter-reader variability is low (shown in
Fig. 5). The effects of balancing and weighted cost function are
less prominent for the high-resolution images. The reduced per-
formance with balanced mini-batches may have been caused by
the impact this weighting had on changing the distribution of
VAS labels between training and test data. The weighted cost
function also increased the MSE across all models. This cost
function reduced the weight of those samples for which there
is disagreement between two readers. Figure 5 shows the
distribution is heavily skewed toward the middle of the VAS
range, thus the weighting of these samples would also change
the distribution of VAS labels with respect to the test set. Similar
plots for CC performance and MLO performance are shown in
Fig. 6. Table 7 shows the mean squared difference between the
two readers.

Plots of the inter-reader difference against predicted vs reader
difference are shown in Fig. 7.

For all configurations, Bland–Altman analysis42 showed
good agreement between predicted VAS and reader scores.
The RPC for predicted VAS per mammographic image was
<18.0% for high-resolution input and <19.0% for low-resolution
input. When analyzed on a per woman basis, the RPC values
were <16.0% and <16.3% for high- and low-resolution inputs,
respectively. Systematic bias was low across all configurations
with values between −2.0% and 1.5% per image and between
−1.5% and 1.3% per woman. Table 8 shows the Pearson
correlation values for the model selection set and the two test
sets. Bland–Altman plots of HR-nw-r and HR-nw-b for the
model selection set are shown in Fig. 8.

Figure 9 shows the reader scores plotted for all pairs of
views. The Pearson correlation coefficient r varies between
0.97 and 0.99. Figures 10 and 11 show the predicted scores

Table 8 Correlation between predicted and reader VAS per image
and per woman. All correlations have p < 0.01.

Dataset HR-nw-r HR-nw-b

Per image Model selection set 0.805 0.803

SDC 0.808 0.806

Prior 0.812 0.812

Per woman Model selection set 0.838 0.843

SDC 0.834 0.845

Prior 0.846 0.851

Table 7 Mean squared difference between readers.

MSE (95% CI)

Per image 267.5 (264.4 to 270.9)

Per woman 258.7 (252.6 to 264.6)
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Fig. 8 Bland–Altman plot of predicted and reader VAS score for the model selection set. The horizontal
axis shows the average of reader and predicted VAS scores; the vertical axis shows the difference
between predicted and reader VAS scores. Solid line represents median, dashed lines show the
95% confidence limits. The gray level of each point indicates the number of points as shown on the
right hand side of each plot. (a) and (b) For Hr-nw-b, (c) and (d) for HR-nw-r.

Fig. 7 Plot of inter-reader absolute difference versus absolute difference between reader and predicted
VAS on the model selection set for two models (a) HR-nw-b and (b) HR-nw-r.
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for all pairs of views obtained with HR-nw-r and HR-nw-b,
respectively. The Pearson correlation coefficient r varies
between 0.86 and 0.92 showing good agreement between scores
across all four views.

4.2 Prediction of Breast Cancer

Figure 12 illustrates the odds of developing breast cancer for
women in quintiles of predicted VAS score compared with
women in the lowest quintile for the prior dataset. Table 9
shows the odds of developing breast cancer for women in the
highest quintile of VAS score compared to women in the lowest
quintile. Predicted and reader VAS both gave a statistically sig-
nificant association with breast cancer risk for the SDC and prior
datasets. However, the odds ratio associated with reader VAS
was higher than that for predicted VAS. For the SDC dataset,
the odds ratio for women in the highest quintile compared to
women in the lowest quintile of predicted VAS was 2.49
(95% CI: 1.57 to 3.96) for HR-nw-r and 2.40 (95% CI: 1.53
to 3.78) for HR-nw-b. In the prior dataset, the OR for predicted
VAS was 4.16 (95% CI: 2.53 to 6.82) for HR-nw-r and 4.06
(95% CI 2.51 to 6.56) for HR-nw-b.

Table 10 shows the matched concordance index obtained for
both case-control datasets. The matched concordance index for
reader VAS was higher than predicted VAS for both datasets
showing better discrimination between cases and controls
for reader VAS. Table 11 shows the p-values based on the
likelihood ratio chi-square comparing the difference between
models for each case-control dataset. In the SDC case control
study, reader VAS was a significantly better predictor than
predicted VAS for both HR-nw-r (p ¼ 0.002) and HR-nw-b
(p ¼ 0.001). For the prior dataset, there was no significant dif-
ference between reader VAS and predicted VAS for HR-nw-r
(p ¼ 0.134), but reader VAS was a better predictor than HR-
w-b (p ¼ 0.041). There was no significant difference between
HR-w-r and HR-w-b on either the prior (p ¼ 0.902) or SDC
(p ¼ 0.760) datasets.

Bland–Altman plots of HR-nw-r and HR-nw-b for the two
case control sets are shown in Figs. 13 and 14.

5 Discussion
In this paper, we present a fully automated method to predict
VAS scores for breast density assessment. Breast density is
an important risk factor for breast cancer, although studies

Fig. 9 Scatter plot and density plots of reader scores for all pairs of views.
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vary in their findings regarding which breast density measure is
most predictive of cancer. Recent studies have shown that auto-
mated methods are capable of matching radiologists’ perfor-
mance for breast density assessment. Kerlikowske et al.44

compared automatic BI-RADS with clinical BI-RADS and
showed they similarly predicted both interval and screen-
detected cancer risk, which indicates that either measure may
be used for density assessment. A deep learning method pro-
posed by Lehman et al.45 for assessing BI-RADS density in
a clinical setting, showed good agreement between the model’s
predictions and radiologists’ assessments. Duffy et al.46 inves-
tigated the association of different density measures with breast
cancer risk using digital breast tomosynthesis and compared
automatic and visual measures. All measures showed a positive
correlation with cancer risk, but the strongest effect was shown
by an absolute density measure. However, Astley et al.14 showed
that subjective assessment of breast density was a stronger pre-
dictor of breast cancer than other automated and semiautomated
methods.

Our method is the first automated method to attempt to repro-
duce reader VAS scores as an assessment of breast cancer risk,

with results showing performance comparable to reader esti-
mates. We used a large dataset with 145,820 mammographic
FFDM from 36,606 women and tested our networks on two
datasets. We showed that CNNs can predict a VAS score that
reflects reader VAS as a first step toward building a model
for cancer risk prediction. Results showed a strong agreement
between reader VAS and predicted VAS for both low and
high-resolution images. Bland–Altman analysis showed similar
results for all network configurations and there was no substan-
tial difference in performance between low and high-resolution
images. The mean difference (systematic bias) between reader
and predicted VAS was small; however, 95% limits of agree-
ment showed considerable variation, which has been found to
be a problem in the visual assessment of breast density both
within and between readers.18

We investigated our method’s capacity to predict breast
cancer in the datasets previously used by Astley et al.14 An
important finding is that although there is not complete agree-
ment between predicted and reader VAS, this does not hinder the
capacity of our method to predict cancer. Our method performed
well both in predicting breast cancer in women with screen

Fig. 10 Scatter plot and density plots of predicted scores for HR-nw-r, for all pairs of views.
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detected cancer using the contralateral breast and in predicting
the future development of the disease; however, ORs for pre-
dicted VAS were lower than those for reader VAS on both
case-control datasets.

Fig. 11 Scatter plot and density plots of predicted scores for HR-nw-b, for all pairs of views.

Fig. 12 Odds of developing breast cancer with 95% CIs for reader
and predicted VAS on the prior dataset. Predicted VAS is computed
with the HR-nw-r model (high-resolution input, nonweighted cost
function, and random mini-batches).

Table 9 Odds ratio (95% CI) for highest quintile compared with
lowest quintile of VAS scores for both case-control datasets.

Prior (OR, 95% CI) SDC (OR, 95% CI)

Reader VAS 4.41 (2.76 to 7.06) 4.63 (2.82 to 7.60)

HR-nw-r 4.16 (2.53 to 6.82) 2.49 (1.57 to 3.96)

HR-nw-b 4.06 (2.51 to 6.56) 2.40 (1.53 to 3.78)

Table 10 Matched concordance index for predicted and reader VAS
for both case-control datasets.

Prior (95% CI) SDC (95% CI)

Reader VAS 0.642 (0.602 to 0.678) 0.645 (0.605 to 0.683)

HR-nw-r 0.616 (0.578 to 0.655) 0.587 (0.542 to 0.627)

HR-nw-b 0.624 (0.586 to 0.663) 0.589 (0.551 to 0.628)
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For predicting the future development of breast cancer, our
method suggests a stronger association with breast cancer risk
than other automated density methods (Volpara, Quantra and
Densitas) as reported by Astley et al. using the same datasets.
Matched concordance index analysis revealed that VAS scores
predicted using our method are similar to reader VAS in terms of
assessing cancer status on the prior set (0.64 for reader VAS,
compared to 0.616 and 0.624 for our method with overlapping
confidence intervals). On the SDC set, our predicted scores pro-
duced slightly lower matched concordance indices (0.587 and

0.589 for our method, and 0.645 for Reader VAS). This
might be due to the use of only two predicted VAS scores to
compute the average for each woman, rather than four for
the prior dataset. However, the ability to identify women at
risk before cancer is detected (as in the prior dataset) is more
relevant for screening stratification. In this context, our method
can identify women at risk similarly to radiologists.

One limitation of our study is that we used mammographic
images produced with acquisition systems from a single vendor
(GE Senographe Essential mammography system). Future work
includes extending the method to work with images produced
by different systems. The strengths of this approach include
the fact that the method requires no human input and the pre-
processing step is minimal. Our method aims to encapsulate
expert perception of features that are associated with risk but
may not be captured by methods that estimate the quantity
of fibroglandular tissue. Predicted VAS is fully automatic, so
does not suffer from the limitations of reader assessment
such as inter-reader variability18 or variations in ability to
identify women at higher risk of developing breast cancer.19

This would make it a pragmatic solution for population-based
stratified screening.

Table 11 P-values based on likelihood ratio comparing different
models.

Model comparison Prior (p-values) SDC (p-values)

Reader versus HR-nw-r p ¼ 0.134 p ¼ 0.002

Reader versus HR-w-b p ¼ 0.041 p ¼ 0.001

HR-w-b versus HR-nw-r p ¼ 0.902 p ¼ 0.760

Fig. 13 Bland–Altman plot of predicted and reader VAS score for the HR-nw-r model. The horizontal axis
shows the average of reader and predicted VAS scores; the vertical axis shows the difference between
predicted and reader VAS scores. Solid line represents median, dashed lines show the 95% confidence
limits. The gray level of each point indicates the number of points as shown on the right hand side of each
plot. (a) and (b) For the SDC set; (c) and (d) for the prior set.
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