
Improved 3D U-Net robustness against JPEG 2000
compression for male pelvic organ segmentation in

radiotherapy

Karim El Khoury ,*,† Martin Fockedey,,† Eliott Brion, and Benoît Macq
Université Catholique de Louvain, Institute of Information and Communication Technologies,

Electronics and Applied Mathematics, Louvain-La-Neuve, Belgium

Abstract

Purpose: Automation of organ segmentation, via convolutional neural networks (CNNs), is key
to facilitate the work of medical practitioners by ensuring that the adequate radiation dose is
delivered to the target area while avoiding harmful exposure of healthy organs. The issue with
CNNs is that they require large amounts of data transfer and storage which makes the use of
image compression a necessity. Compression will affect image quality which in turn affects the
segmentation process. We address the dilemma involved with handling large amounts of data
while preserving segmentation accuracy.

Approach:We analyze and improve 2D and 3D U-Net robustness against JPEG 2000 compres-
sion for male pelvic organ segmentation. We conduct three experiments on 56 cone beam com-
puted tomography (CT) and 74 CT scans targeting bladder and rectum segmentation. The two
objectives of the experiments are to compare the compression robustness of 2D versus 3D U-Net
and to improve the 3D U-Net compression tolerance via fine-tuning.

Results: We show that a 3D U-Net is 50% more robust to compression than a 2D U-Net.
Moreover, by fine-tuning the 3D U-Net, we can double its compression tolerance compared
to a 2D U-Net. Furthermore, we determine that fine-tuning the network to a compression ratio
of 64:1 will ensure its flexibility to be used at compression ratios equal or lower.

Conclusions:We reduce the potential risk involved with using image compression on automated
organ segmentation. We demonstrate that a 3D U-Net can be fine-tuned to handle high com-
pression ratios while preserving segmentation accuracy.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JMI.8.4.041207]

Keywords: U-Net segmentation; JPEG2000; convolutional neural networks; image compres-
sion; 3D medical imaging.

Paper 20326SSR received Nov. 30, 2020; accepted for publication Mar. 12, 2021; published
online Apr. 5, 2021.

1 Introduction

Radiotherapy cancer treatment is essentially made up of two phases: treatment planning and
delivery. During the planning phase, which is done once at the beginning of the treatment, a
computed tomography (CT) scan is taken, and after visual inspection, physicians manually out-
line the target and the surrounding healthy organs to compute a specific dose distribution. During
the delivery phase, which is done daily for a period of up to 20 days, a cone beam computed
tomography (CBCT) scan is acquired to determine the specific position in which a patient should
be aligned before delivering each fraction of the required dose. Dose fractionation limits the
patient’s health risks due to sudden large exposures. The process allows healthy cells to recu-
perate in time for the next dose delivery. The daily variations of organ size, shape, and position in
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the pelvic region are considerably large due to perpetual tasks such as filling and voiding the
bladder and rectum. Given that both CTand CBCT scans are generated by exposing the patient to
a substantial dose of radiation, detecting these variations becomes essential to avoid exposing
healthy vital organs to large doses. The automation of the segmentation process is key to facili-
tate the work of medical practitioners, as manual organ segmentation is very time consuming
(ranging from 2 to 4 h). Recent papers have addressed the segmentation of male pelvic organs
using CTand CBCT scans via a deep learning approach. Schreier et al.1 use artificially-generated
CBCT scans in their training set to segment male bladder, rectum, prostate, and seminal vesicles.
Léger et al.2 implement a U-Net segmentation scheme that is trained on real CBCT scans to
segment organs in the male pelvic region with high efficiency.

However, the issue with deep learning networks is that they require large amounts of training
data. To reach the amount of required data, multi-site data collection is often mandatory.
Therefore, image compression becomes a necessity when handling such huge amounts of data
transfer and storage. Lossy compression such as JPEG 2000 is very attractive as it can reach high
compression ratios. Nonetheless, lossy image compression will affect image quality which in
turn can affect the efficiency of deep learning tasks and can therefore impact medical practi-
tioners decision making. It is worth noting that compressing medical images is permitted by
governing bodies in North America, the European Union, and Australia provided they do not
affect the diagnostic capabilities of medical practitioners.3

Quantifying the diagnostic capabilities of physicians on compressed image is complex given
that evaluations can be subjective and can vary depending on the task at hand. Several studies
have yielded different compression ratio thresholds for different use cases in medical imaging.
Krupinski et al.4 showed that when going up to compression ratios higher than 32:1, pathologists
capability to differentiate breast cancer development stages was affected. Pantanowitz et al.5

demonstrated that in the case of the measurement of the HER2 score in images of breast carci-
noma, a 200:1 compression ratio was accepted. In the work of Marcelo et al.,6 10 different data-
sets of pathological images (mainly carcinomas and adenocarcinomas) are used to evaluate the
impact of data compression on telepathology. A 95% accuracy was shown following testing with
10 medical practitioners of uncompressed and 90:1 JPEG compressed images. In the work of
Kalinski et al.,3 a compression ratio of 20:1 was considered adequate to detect Helicobacter
pylori gastritis from histopathological images. However, these studies assessed the impact of
compression through physicians subjective evaluation criteria. Even though this evaluation cri-
teria is definitely valid, it can become expensive and impractical when handling large datasets
and complex deep learning tasks as medical practitioners time resources are scares. The intro-
duction of high complexity models such as convolutional neural networks (CNN) into modern
day medical imaging would impose a change in the evaluation criteria depending on the deep
learning task at hand, whether it is classification or segmentation of medical images. Given that
the CNN would be trained on compressed data, it yields a high tolerance to the distortion caused
by image compression. A recent study by Zanjani et al.7 has validated the above point. They
studied the impact of JPEG 2000 on CNN for classification of metastases in breast lymph node
using histopathological whole side images. They showed that training their network on uncom-
pressed images and testing it compressed images showed good performances up to a compres-
sion ration of 24:1. Meanwhile, training their network on compressed images at a ratio of 48:1
maintained correct detection performance for compression ratios of 48:1 and lower.

Studying the impact of image compression on deep learning-based U-Net segmentation is
very valuable to both the computer science and medical imaging communities. Sharma et al.8

have analyzed the performance of semantic segmentation algorithms when trained with JPEG
compressed images. Their results show that a network trained with a compressed dataset out-
performs networks trained on uncompressed datasets. They also show that JPEG compression
behaves as a data augmentation medium to improve semantic U-Net segmentation. To the extent
of our knowledge, the impact of image compression on deep learning-based U-Net segmentation
in medical imaging has yet to be addressed. In this paper, we propose to study the impact of
JPEG 2000 on 2D and 3D CNN-based segmentation. More precisely, we worked on the robust-
ness of 2D and 3D U-Net segmentation of male pelvic organs to JPEG 2000 compression. The
U-Net architecture is a type of CNN typically used in medical imaging that has been modified to
work with smaller datasets and yield higher segmentation accuracy. This research offers three
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main contributions on the impact of image compression on deep learning-based segmentation.
(1) We show that a 3D U-Net segmentation in more resilient to high compression ratios than a 2D
U-Net segmentation when trained on uncompressed data. (2) By fine-tuning the 3D U-Net seg-
mentation, we can further increase its resilient to high compression ratios while maintaining the
same segmentation performances with respect to the 2D U-Net. (3) We determine that fine-tun-
ing our 3D network to a specific compression ratio will ensure its flexibility to be tested at
compression ratios equal or lower with equivalently high performances.

This paper is organized as follows. In Sec. 2, we present our dataset and the methods used by
presenting the JPEG 2000 compression algorithm, the 2D and 3D U-Net segmentation archi-
tectures, the evaluation metrics as well as the three experiments that have been conducted. In
Sec. 3, we present the detailed individual results of the three experiments: 2D versus 3D U-Net
robustness to compression, 3D U-Net fine-tuning and 3D U-Net training phase fine-tuning. In
Sec. 4, we discuss on the previously obtained results for 2D and 3D U-Net segmentation, we
position our results with respect to the literature and comment on key limitations that we faced in
this study. In Sec. 5, we conclude by summarizing the outcomes of our paper and looking ahead
at potential future work.

2 Materials and Methods

2.1 Dataset

The patients’ CTs and CBCTs come from the the CHU-UCL-Namur and CHU-Charleroi
Hôpital André Vésale Belgium. André Vésale provided 56 CBCT, and 22 CT volumes while
the CHU-UCL-Namur provided 52 CT volumes; all are from male patients. All the images
were first stocked under the DICOM format after their acquisition. To create volumes from the
2D CT images, the CT slices were concatenated. Afterward all volumes were re-sampled to
obtain a 1.2 × 1.2 × 1.5 mm regular grid in 192 × 192 × 160 matrices. This step was necessary
to have equivalent size and scale for both CTand CBCT volumes. These matrices use a grayscale
with integer values between 0 and 255. For each patient, three masks representing the bladder,
the rectum and the background were annotated manually by a trained specialist. The training set
is composed of 60 CTs and 45 CBCTs and the test set is composed of 14 CTs and 11 CBCTs,
this partition gives a ratio of 80:20 for both data types. Before feeding the data into the networks,
each volume was normalized using the mean and standard deviation of the training set.

2.2 JPEG 2000 Algorithm

After the creation of JPEG standard, JPEG 2000 was proposed as a follow-up standard having
better rate-distortion performances and having additional features such as quality scalability.9

The main difference between the two algorithms is that JPEG 2000 uses the discrete wavelet
transform (DWT) instead of the classical discrete cosine transform (DCT) used in JPEG. Even
though the performances of JPEG and JPEG 2000 are quite similar at low compression ratios,
JPEG 2000 outperforms JPEG at high compression ratios making it a key factor in the creation of
the DICOM standard.10 In this paper, to be able to fix a target compression ratio on our dataset,
the Python glymur library (which contains an interface to the OpenJPEG library) was used. Even
though our dataset is composed of volumes, we compressed slices of this volumes as if they were
images.

2.3 U-Net Segmentation Architecture

Two different architectures are considered in this paper: 3D U-Net and the 2D U-Net. The code
implementing these architecture was adapted from the Github repository in Ref. 11 for the 2D
U-Net and from the Github repository in Ref. 12 for the 3D U-Net. Both networks are similar in
their structure, except for the following differences: (i) the 3D uses an additional dimension at all
levels, (ii) at each level the 2D has four times more feature-maps than the 3D, (iii) the 3D net-
work uses an additional pooling/up-convolution, and (iv) the volumes were re-scaled for the 3D
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from 192 × 192 × 160 to 160 × 160 × 128 to fit GPU memory constraints. The 3D U-Net net-
work is shown in Fig. 1.

As first described by Ronneberger et al.,13 the U-Net is considered as a reference configu-
ration for segmentation. This network uses a contracting path to extract contextual information
and create deep features while forwarding higher resolution features in a up-scaling path to
obtain an output with more detailed and complex edges. The 3D network (respectively 2D net-
work) uses 3 × 3 × 3 convolution (respectively 3 × 3) with zero padding to preserve the dimen-
sions of the feature maps. In the down-sampling path max pooling with stride 2 is used between
each resolution level and the number of feature-maps is doubled. While in the up-sampling path,
we halve the number of feature maps at each scale using 2 × 2 (respectively 2 × 2 × 2) up-
convolutions.

2.4 Metrics and Loss Functions

We use Ti and ti;ðx;y;zÞ (respectively Pi and pi;ðx;y;zÞ) as the targeted (respectively predicted) mask
i and the targeted (respectively predicted) voxel values, these variables are used to define the
different evaluation metrics and loss functions. The target is the area segmented by the medical
specialist and the prediction is the network output. The index i refers to the segmentation class
(0 = bladder, 1 = rectum, and 2 = background).

The Dice similarity coefficient (DSC) measures the quality of the segmentation by comparing
the target and prediction common area to their volume size.

EQ-TARGET;temp:intralink-;e001;116;234DSCi ¼
2 · jPi ∩ Tij
jPij þ jTij

: (1)

EQ-TARGET;temp:intralink-;e002;116;178DSCi ¼
2 ·

P
x;y;z

pi;ðx;y;zÞ · ti;ðx;y;zÞ
P
x;y;z

pi;ðx;y;zÞ þ ti;ðx;y;zÞ
: (2)

The symmetric mean boundary distance (SMBD) is a measure of the distance between the
mask border. If we consider the distance between a point pi;b belonging to the predicted border
Pi;b and the target border Ti;b, we can express it as

Fig. 1 3D U-Net architecture scheme.

El Khoury et al.: Improved 3D U-Net robustness against JPEG 2000 compression. . .

Journal of Medical Imaging 041207-4 Jul∕Aug 2021 • Vol. 8(4)



EQ-TARGET;temp:intralink-;e003;116;735dðpi;b; Ti;bÞ ¼ min
t∈Tb

ks⊙ðpi;b − ti;bÞk2: (3)

k:k2 denotes the euclidean norm and st = (1.2, 1.2, 1.5) is the pixel spacing in mm. Then, we
can measure the mean boundary distance.

EQ-TARGET;temp:intralink-;e004;116;682DðPi;b; Ti;bÞ ¼
1

n

X

pi;b

dðpi;b; Ti;bÞ: (4)

This metric is asymmetric as DðPi;b; Ti;bÞ ≠ DðTi;b; Pi;bÞ, it is why we use the SMBD,

EQ-TARGET;temp:intralink-;e005;116;621SMBD ¼ DðPi;b; Ti;bÞ þDðTi;b; Pi;bÞ
2

: (5)

The loss function L3D used for the 3D U-Net is defined in Eq. (6), it is based on the opposite
of the DSC of the organs. The uneven volumes of the classes created convergence issues which
were solved by weighting the three for the rectum DSC and discarding the background DSC.

EQ-TARGET;temp:intralink-;e006;116;542L3D ¼ −DSC0 − 3 · DSC1: (6)

The DSC could not be used on the 2D U-Net training because for some slices only one or
even no organ was present creating problems for the batch DSC computation. Thus, we opted for
the cross-entropy function L2D as loss function,

EQ-TARGET;temp:intralink-;e007;116;474L2D ¼ −
X

i¼0;1;2

X

x;y

ti;ðx;yÞ logðpi;ðx;yÞÞ: (7)

To compare the 2D and 3D network performances rigorously, the DSC results shown will
always be computed based on 3D matrices. Thus for the 2D network each slice will be predicted
individually and then concatenated with the others of the same volume before calculating
its DSC.

2.5 Experiments

In this work, we set up three experiments to determine the optimal way to train the CNN to be
robust against the impact of JPEG 2000 compression:

In the first experiment, we compare the performances of 2D versus 3D U-Net segmentation
on compressed images. Referring to the block diagram in Fig. 2, we train both the 2D and 3D U-
Net networks on uncompressed images from the data set. We then compress/decompress the test
set using JPEG 2000 at several compression ratios to evaluate the networks performances at each
compression ratio.

In the second experiment, we fine-tune the 3D U-Net training. Referring to the block diagram
in Fig. 3, in addition, the first training phase where we train the network on uncompressed
images, we add a second training phase where we train the network on compressed/decom-
pressed images at several compression ratio and test them on the same compression ratio that
the network was trained on.

In the third experiment, we look to improve the fine-tuning of the 3D U-Net training phase.
Referring to the block diagram in Fig. 4, we use a similar approach to that of the second

Fig. 2 Experiment 1 block diagram: 2D versus 3D U-Net robustness to JPEG 2000 compression
at several compression ratios.
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experiment, however, we train our network on one specific compression ratio and test it on sev-
eral compression ratios. By training our network in this manner, we are able to determine the
ideal compression ratio at which to store our images for training and testing of the 3D U-Net
segmentation.

3 Results

3.1 Experiment 1: 2D Versus 3D U-Net Robustness to JPEG 2000
Compression Tested at Several Compression Ratio

In this experiment, we train both the 2D and 3D U-Net on uncompressed images and test them on
compressed/decompressed images for each compression ratio ranging from 24:1 to 128:1. We
then look at two segmentation evaluation metrics, the DSC and SMBD, in the case of both the
CT and CBCT datasets on bladder and rectum segmentation. The detailed results of the experi-
ment for both bladder and rectum segmentation are summarized in Tables 1 and 2, respectively.

Referring to Fig. 5, we can observe better overall performance of the 3D U-Net network in
terms of the DSC when testing at all compression ratios. It is also clear that the higher the com-
pression ratio used on our test set, the more robust the 3D U-Net is with respect do the 2D U-Net.
Concerning the 2D U-Net segmentation of the bladder, for an acceptable mean DSC threshold of
0.7, we can compress up to a ratio of 64:1 and 48:1 using CT and CBCT scans respectively.
Whereas for the 3D U-Net segmentation of the bladder, for an acceptable mean DSC threshold of
0.7, we can compress up to a ratio of 96:1 and 64:1 using CT and CBCT scans respectively. This
means that we can compress our test sets up to 1.5 times as much for the same segmentation
performances of the bladder. Similar observations can be made for the rectum segmentation.
Concerning the 2D U-Net segmentation of the rectum, for an acceptable mean DSC threshold
of 0.7, we can compress up to a ratio of 32:1 using both CTand CBCT scans. Whereas for the 3D
U-Net segmentation of the rectum, for an acceptable mean DSC threshold of 0.7, we can com-
press up to a ratio of 48:1 using both CT and CBCT scans. This means that we can compress our
test sets up to 1.5 times as much for the same segmentation performances of the rectum.

Referring to Figs. 6 and 7, we can observe the visual results with respect to the original
targeted segmentation mask for a CBCT scan of the bladder and rectum at a compression ratio
of 96:1. We can see that the 3D U-Net provides clearer outlines of the organs. We can also
observe that the 2D U-Net is more likely to yield discontinuities in its segmentation which causes
worst SMBD performances.

Fig. 4 Experiment 3 block diagram: 3D fine-tuned at a specific compression ratio for robustness to
JPEG 2000 compression and testing at several compression ratios.

Fig. 3 Experiment 2 block diagram: 3D versus fine-tuned 3D U-Net robustness to JPEG 2000
compression for training at several compression ratios and testing at the same compression ratios.
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3.2 Experiment 2: 3D Versus 3D Fine-Tuned U-Net Robustness to JPEG
2000 Compression Trained at Several Compression Ratio and Tested
at the Same Compression Ratios

In this experiment, the training phase is split into two phases. In the first phase, we train the 3D
U-Net on uncompressed images similar to Experiment 1. In the second phase, we add an addi-
tional training phase by adding to the training set compressed/decompressed images. We do this
for several compression ratios ranging from 24:1 to 128:1 and test the network on the same

Fig. 5 Experiment 1—DSC performances at several compression ratios for 2D (red) and 3D (blue)
U-Net segmentation of the bladder (top) and the rectum (bottom) on CT (left) and CBCT (right)
images.

Fig. 6 Experiment 1—Visual results for bladder segmentation using 2D and 3D U-Net with a com-
pression ratio of 96:1 on a CBCT scan.

Fig. 7 Experiment 1—Visual results for rectum segmentation using 2D and 3D U-Net with a com-
pression ratio of 96:1 on a CBCT scan.

El Khoury et al.: Improved 3D U-Net robustness against JPEG 2000 compression. . .

Journal of Medical Imaging 041207-9 Jul∕Aug 2021 • Vol. 8(4)



compression ratio as the one used for the second training phase. We then look at two segmen-
tation evaluation metrics the DSC and SMBD in the case of both the CT and CBCT datasets on
bladder and rectum segmentation. The detailed results of the experiment for both bladder and
rectum segmentation are summarized in Tables 3 and 4 respectively.

Referring to Fig. 8, we can observe better overall performance of the 3D fine-tuned U-Net
network in terms of the DSC when testing at all compression ratios. It is also clear that the higher
the compression ratio used on our test set, the more robust the 3D fine-tuned U-Net is with
respect do the 3D U-Net. This is expected given our network has gone through a second training
phase with compressed images. Concerning the 3D U-Net segmentation of the bladder, for an
acceptable mean DSC threshold of 0.7, we can compress up to a ratio of 96:1 and 64:1 using CT
and CBCT scans respectively. Whereas for the 3D fine-tuned U-Net segmentation of the bladder,
for an acceptable mean DSC threshold of 0.7, we can compress up to a ratio of 128:1 and 96:1
using CT and CBCT scans, respectively. This means that we can compress our test sets up to 1.5
times as much for the same segmentation performances of the bladder. Similar observations can
be made for the rectum segmentation. Concerning the 3D U-Net segmentation of the rectum, for
an acceptable mean DSC threshold of 0.7, we can compress up to a ratio of 48:1 using both CT
and CBCT scans. Whereas for the 3D fine-tuned U-Net segmentation of the rectum, for an
acceptable mean DSC threshold of 0.7, we can compress up to a ratio of 64:1 using both
CT and CBCT scans. This means that we can compress our test sets up to 1.5 times as much
for the same segmentation performances of the rectum. When comparing the results of 3D fine-
tuned U-Net from Experiment 2 to the 2D U-Net from Experiment 1, we can deduce that we can
compress our test sets up to twice as much for the same segmentation performances of both the
rectum and the bladder using CT and CBCT scans.

Referring to Fig. 9 and Fig. 10, we can observe the visual results with respect to the original
targeted segmentation mask for a CBCT scan of the bladder and rectum at a compression ratio of
96:1. We can see that the 3D fine-tuned U-Net provides clearer outlines of the organs. We can
also observe that the 3D U-Net is more likely to yield some discontinuities in its segmentation
which causes worst SMBD performances.

3.3 Experiment 3: 3D Fine-Tuned U-Net Robustness to JPEG 2000
Compression Trained at Specific Compression Ratios and Tested at
Several Compression Ratios

In this experiment, we find the ideal compression ratio at which we should train the 3D U-Net to
ensure robustness to JPEG 2000 compression for testing at several compression ratios. Similar to
Experiment 2, the training phase is split into two phases. The first phase is done with uncom-
pressed images and the second training phase is done by adding compressed images at a specific
compression ratio (48:1, 64:1, and 96:1) and testing the network at several compression ratios
ranging from 24:1 to 128:1. We then look at two segmentation evaluation metrics the DSC and
SMBD in the case of both the CT and CBCT datasets on bladder and rectum segmentation. The
detailed results of the experiment for both bladder and rectum segmentation are summarized in
Table 5 and Table 6, respectively.

We observe the results when training our network in the second phase on only images com-
pressed at 48:1, 64:1, and 96:1, respectively. We observe that the higher the compression on
which our network is trained, the more robust it is to testing at high compression ratios.
However, this also means that the network becomes weaker when testing at low compression
ratios. Referring to Fig. 11, we can see that when training our network with a compression ratio
of 48:1 and 64:1 we are able to maintain higher segmentation performance than at 96:1 however,
the later provides higher segmentation performance at high compression ratios up to 128:1.
Given the observations, to guarantee the flexibility of our network, we want to ensure that
we retain high performance for all compression ratios up to the highest compression ratio pos-
sible. Given the results and setting a minimum mean DSC performance threshold of 0.7, we
deduce that training our network at a compression ratio of 96:1 for bladder segmentation would
allow this flexibility while guaranteeing high segmentation performance when compressing our
test set at a compression ratio of 96:1 or lower. On the other hand, the same observation can be
made at a compression ratio of 64:1 for rectum segmentation. Given that we are looking to
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guarantee high segmentation performance for the highest compression ratio possible for both the
bladder and the rectum, a compression ratio of 64:1 would be the maximum compression ratio
that would suit both. Therefore, for a network trained on a compression ratio of 64:1, we would
ensure high segmentation performance for both organs for test sets compressed at a ratio of 64:1
or lower.

Referring to Figs. 12 and 13, we can observe the visual results with respect to the original
targeted segmentation mask for a CBCT scan of the bladder and rectum when the 3D fine-tuned

Fig. 8 Experiment 2—DSC performances after training and testing at several compression ratios
for 3D (blue) and 3D fine-tuned (green) U-Net segmentation of the bladder (top) and the rectum
(bottom) on CT (left) and CBCT (right) images.

Fig. 9 Experiment 2—Visual results for bladder segmentation using 3D and 3D fine-tuned U-Net
with a compression ratio of 96:1 on a CBCT scan.

Fig. 10 Experiment 2—Visual results for rectum segmentation using 3D and 3D fine-tuned U-Net
with a compression ratio of 96:1 on a CBCT scan.
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network is trained at a compression ratio of 64:1 and tested at compression ratios of 1:1, 32:1,
and 64:1. We can observe successful segmentation of both the bladder and the rectum in all three
cases underlining the robustness of proposed training strategy for our network.

4 Discussion

4.1 2D v 3D U-Net Robustness to Compression

In Experiment 1, we show that the 3D U-Net is more robust to compression than the 2D U-Net.
This can be explained by analyzing the distortion created by the JPEG 2000 artifacts in the 2D
and 3D compression case. In the case of 2D compression, given that we take the 3D volume and
compress it slice by slice, the distortion caused by JPEG 2000 is independent from slice to slice.
This means that two adjacent slices undergo a different distortion and therefore can have differ-
ent results. In the case of the 3D compression, the 3D U-Net allows to average out the noise
between the slices and recognize the original shape of the organ. This can visualized in Fig. 14.

Fig. 11 Experiment 3—DSC performances after training at specific compression ratios of 48:1
(cyan), 64:1 (purple) and 96:1 (orange) and testing at several compression ratios for 3D U-Net
segmentation of the bladder(top) and the rectum(bottom) on CT (left) and CBCT (right) images

Fig. 12 Experiment 3—Visual results for bladder segmentation using 3D fine-tuned U-Net trained
with a compression ratio of 64:1 and tested at compression ratios of 1:1, 32:1, and 64:1 on a CBCT
scan.
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We can see that reconstructing the original parallelepiped shape from noisy rectangular slices is
easier when using several noisy 2D slices rather than using individual 2D noisy slices.

4.2 Research Positioning

Positioning the research put forward in this paper is twofold. The first goal achieved by the paper
is to validate the novel approach of studying the impact of compressed datasets on training and
testing of 2D and 3D U-Net segmentation in a medical imaging context. The second goal is to
encourage the use of compressed datasets in medical imaging by introducing a robust CNN that
maintains high segmentation performance for 3D medical images at high compression ratios.

With regards to the chosen experimental methodology, in Experiment 2 and Experiment 3,
we fine-tune our network by adding a second training phase using compressed images. As shown
by Kim et al.14 and Svoboda et al.,15 we can train a CNN to recognize compression artifacts and
correct them. Similarly, in Experiment 2 and Experiment 3, fine-tuning the CNN will teach it to
adapt to compression effects and maintain successful segmentation performance by filtering the
compression distortion in the deep features. Having a second training phase with purely com-
pressed images, similar to the experiments done by Zanjani et al.7 for a classification task, proves
to be highly successful at high compression ratios for the segmentation task. The network indeed
specialize itself to extreme artifacts cause by compression and is able to maintain its high seg-
mentation performance. This indeed shows that this methodology can be applied, in the context
of medical imaging, not only to CNN trained for high-performance classification tasks but also to
U-Net CNN for high-performance segmentation tasks. Even though our experimental setups
differ from the work of Sharma et al.,8 we observe similar outcomes to theirs in our
Experiment 2. In their work, they train their network on pure compressed data whereas we only
add the compressed data at the fine-tuning phase. They also test their network on uncompressed
data to see the utility of adding compressed data to the training set, whereas we test it on com-
pressed data to observe the U-Net’s robustness to compression. However, we both come to the
similar conclusion that a network trained with a compressed dataset outperforms networks
trained on uncompressed datasets. We therefore both observe that compressing our training data
has a data augmentation effect on our CNN.

Concerning the obtained compression robustness, in Experiment 1, when training our 3D
U-Net on an uncompressed dataset an testing it on a test set at several compression ration,
we observe a compression cutoff threshold up to 48:1 (included) for successful segmentation

Fig. 14 3D denoising representation. (a) Rectangular parallelepiped divided in slices; (b) indepen-
dent noise added to the borders of each slice; (c) individual noisy slice.

Fig. 13 Experiment 3—Visual results for rectum segmentation using 3D fine-tuned U-Net trained
with a compression ratio of 64:1 and tested at compression ratios of 1:1, 32:1, and 64:1 on a CBCT
scan.
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of both the bladder and the rectum. This cutoff threshold puts our compression tolerance twice
above the works of Krupinski et al.4 and Zanjani et al.7 who can tolerate of compression thresh-
old of 24:1 (included) in the same scenario as Experiment 1. When specializing our network by
training it on a dataset with specific compression ratio of 64:1 we observe a compression cutoff
threshold up to 48:1 (included) for successful segmentation of both the bladder and the rectum.
This cutoff threshold puts us slightly above the compression threshold achieved by Zanjani et al.7

of 48:1 (included) in the same scenario as Experiment 3.

4.3 Limitations

The main limitation that we faced is defining the adequate evaluation criteria for the assessment
of our results. We understand that the DSC is a mathematical evaluation criterion, therefore it is
possible in some cases for two images to have the same DSC for the same organ but have two
different clinical evaluations by the medical practitioner. In this paper, we defined an empirical
minimum DSC threshold of 0.7. This threshold has been validated by our research team and the
original team of annotation experts after observing several visual outcomes of U-Net organ seg-
mentation results on our dataset. The 0.7 DSC threshold has also been validated by Carillo et al.16

following their work on organ segmentation in the male pelvic region. They found 0.7 as an
acceptable DSC threshold following a quantitative assessment study involving 15 physicians
that performed penile bulb contouring on CT scans of 10 patients suffering from possible erectile
dysfunction and urinary toxicity after radiotherapy for prostate cancer. We understand that the
DSC threshold may differ from one organ to another for correct segmentation. But given that
both our works involve contouring organs on CT scans in the male pelvic region, we feel com-
fortable using it as additional validation for our DSC threshold. Nevertheless, the choice of the
minimum DSC threshold in our work is key as it is inversely proportional to the compression cut
off threshold. Another potential limitation is that the DSC does not show whether or not the
segmentation has impacted the medical practitioner decision making in either the treatment plan-
ning or the treatment delivery phases. In our case, the images are not only used for contouring
purposes, but are also used to calculate the exact dose to be delivered to the patient. Ideally, you
would like to set the compression cut off threshold based on whether or not the slight deterio-
ration in the image due to compression impacted the medical practitioner’s decision making.
However, this evaluation method is subjective, hard to quantify, and time consuming.

5 Conclusion and Future Work

With the emergence of deep learning applications in medical imaging, the challenge of having
large amounts of readily available data has made image compression a necessity. This has led
researchers in the field to look into the impact of image compression on the performance of deep
learning algorithms in medical imaging as well as its impact on the diagnostic capabilities of
medical practitioners. In this paper, we extended the work done in the field on the impact of
image compression on the performance of deep learning-based image classification, to evalu-
ating the effect of image compression on the performance of deep learning-based image seg-
mentation. More precisely, we have studied the impact of JPEG 2000 compression on 2D and 3D
CNN-based U-Net segmentation of male pelvic organs. We conducted three experiments on 56
CBCT and 74 CT scans to improve U-Net performance against JPEG 2000 compression for
bladder and rectum segmentation. We have shown that 3D U-Net segmentation is more robust
to compression that a 2D U-Net. Furthermore, by fine-tuning the 3D U-Net, we can go up to a
compression ratio twice as high for the same segmentation performance compared to a 2D U-
Net. Moreover, we determine that fine-tuning our network to a specific compression ratio of 64:1
will ensure its flexibility to be used at compression ratios equal or lower with high segmentation
performance. This work is to be seen as a positive result to further encourage the use of image
compression in the medical imaging field.

To increase the validation of our research, future work should be extended to tackle various
applications in medical imaging, which rely on 3D U-Net segmentation of organs based on CTs
and/or CBCTs. This can range from segmentation of lung nodules for detection of lung
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carcinoma17 to kidney segmentation for treatment of renal cell carcinoma18 and whole-heart
segmentation to aid early detection of critical cardiovascular diseases.19 Another interesting path
that we are currently looking into is to incorporate compressed images directly into the 3D U-Net
segmentation. Gueguen et al.20 investigated the potential of using the blockwise DCT coeffi-
cients of the JPEG codec and training the CNN directly on them. This method has the potential
to be faster and more accurate than most traditional CNNs, by reducing the network’s complex-
ity and therefore decreasing random access memory (RAM) consumption. In our case, we would
need to adapt the 3D U-Net to work directly on the DWT coefficients of the JPEG2000 codec
which should induce even better results given the flexibility of JPEG2000.

Disclosures

The authors declare no conflicts of interest.

Acknowledgments

Karim El Khoury’s research is supported by the TrustEye project from the WALinnov program
(Grant No. 1710040) funded by the Walloon region of Belgium and intoPIX S.A. Eliott Brion’s
research is supported by the Walloon region of Belgium under Grant No. RW-DGO6-Biowin-
Bidmed.

References

1. J. Schreier et al., “Clinical evaluation of a full-image deep segmentation algorithm for the
male pelvis on cone-beam CT and CT,” Radiother. Oncol. 145, 1–6 (2020).

2. J. Léger et al., “Cross-domain data augmentation for deep-learning-based male pelvic organ
segmentation in cone beam CT,” Appl. Sci. 10(3), 1154 (2020).

3. T. Kalinski et al., “Lossless compression of JPEG2000 whole slide images is not required
for diagnostic virtual microscopy,” Am. J. Clin. Pathol.y 136(6), 889–895 (2011).

4. E. Krupinski et al., “Compressing pathology whole-slide images using a human and model
observer evaluation,” J. Pathol. Inf. 3(1), 17 (2012).

5. L. Pantanowitz et al., “Impact of altering various image parameters on human epidermal
growth factor receptor 2 image analysis data quality,” J. Pathol. Inf. 8(1), 39 (2017).

6. A. Marcelo et al., “Effect of image compression on telepathology: a randomized clinical
trial,” Arch. Pathol. Lab. Med. 124(11), 1653–1656 (2000).

7. F. G. Zanjani et al., “Impact of JPEG 2000 compression on deep convolutional neural networks
for metastatic cancer detection in histopathological images,” J. Med. Imaging 6(2), 027501
(2019).

8. S. Sharma et al., “Performance analysis of semantic segmentation algorithms trained with
JPEG compressed datasets,” Proc. SPIE 11401, 1140104 (2020).

9. F. Auli-Llinas and J. Serra-Sagrista, “JPEG2000 quality scalability without quality layers,”
IEEE Trans. Circuits Syst. Video Technol. 18(7), 923–936 (2008).

10. M. Herrmann et al., “Implementing the DICOM standard for digital pathology,” J. Pathol.
Inf. 9(1), 37 (2018).

11. X. Zhi, “UNet for images,” 2017, https://github.com/zhixuhao/unet.
12. E. Brion, “Pelvis segmentation,” 2020, https://github.com/eliottbrion/pelvis_segmentation.
13. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical

image segmentation,” Lect. Notes Comput. Sci. 9351, 234–241 (2015).
14. T. Kim et al., “SF-CNN: a fast compression artifacts removal via spatial-to-frequency con-

volutional neural networks,” in IEEE Int. Conf. Image Process. (2019).
15. P. Svoboda et al., “Compression artifacts removal using convolutional neural networks,” J.

WSCG 24, 63–72 (2016).
16. V. Carillo et al., “Contouring variability of the penile bulb on CT images: quantitative

assessment using a generalized concordance index,” Int. J. Radiat. Oncol. Biol. Phys.
84(3), 841–846 (2012).

El Khoury et al.: Improved 3D U-Net robustness against JPEG 2000 compression. . .

Journal of Medical Imaging 041207-19 Jul∕Aug 2021 • Vol. 8(4)

https://doi.org/10.1016/j.radonc.2019.11.021
https://doi.org/10.3390/app10031154
https://doi.org/10.1309/AJCPYI1Z3TGGAIEP
https://doi.org/10.4103/2153-3539.95129
https://doi.org/10.4103/jpi.jpi_46_17
https://doi.org/10.1043/0003-9985(2000)124%3C1653:EOICOT%3E2.0.CO;2
https://doi.org/10.1117/1.JMI.6.2.027501
https://doi.org/10.1117/12.2557928
https://doi.org/10.1109/TCSVT.2008.920748
https://doi.org/10.4103/jpi.jpi_42_18
https://doi.org/10.4103/jpi.jpi_42_18
https://github.com/zhixuhao/unet
https://github.com/zhixuhao/unet
https://github.com/eliottbrion/pelvis_segmentation
https://github.com/eliottbrion/pelvis_segmentation
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/icip.2019.8803503
https://doi.org/10.1016/j.ijrobp.2011.12.057


17. Z. Xiao et al., “Segmentation of lung nodules using improved 3D-UNet neural network,”
Symmetry 12(11), 1787 (2020).

18. W. Zhao et al., “Mss U-Net: 3D segmentation of kidneys and tumors from CT images with a
multi-scale supervised u-net,” Inf. Med. Unlocked 19, 100357 (2020).

19. M. Habijan et al., “Whole heart segmentation from CT images using 3D U-Net architec-
ture,” in Int. Conf. Syst. Signals Image Process. (2019).

20. L. Gueguen et al., “Faster neural networks straight from JPEG,” in Advances in Neural
Information Processing Systems, S. Bengio et al., Eds., Vol. 31, Curran Associates, Inc.
(2018).

Karim El Khoury received his BE degree in electrical engineering from the Lebanese American
University (LAU), Lebanon, in 2017, and MS degree in electrical engineering from the
Université Catholique de Louvain (UCLouvain), Belgium, in 2019. As part of his master’s thesis
work, he explored aspects of improved motion estimation through sensor-aided block matching
for inter-frame video compression algorithms. He is currently working toward his PhD on light-
weight compression and detection algorithms for high-resolution video streams, as part of Prof.
Benoît Macq’s Pixels and Interactions Lab (PiLAB) in UCLouvain’s Institute of Information and
Communication Technologies, Electronics and Applied Mathematics (ICTEAM).

Martin Fockedey received his MS degree in electrical engineering from the Université
Catholique de Louvain (UCLouvain), Belgium, in 2020. His master’s thesis work focused pri-
marily on the evaluation and optimization of image compression algorithms for CNNs for both
classification and segmentation tasks.

Eliott Brion received his PhD in engineering from Université Catholique de Louvain in 2021.
During his master’s thesis, he developed statistical shape models to track the motion of the pros-
tate across different sessions of radiotherapy. In his PhD thesis, he worked on deep learning for
organ segmentation. More specifically, he designed algorithms aiming to propagate contours
inside a volume and perform domain adaptation between CT and CBCT. He is now a post-
doctoral researcher focusing on creating consensus between algorithms and medical doctors.
His other current interests include the use of artificial neural networks for personalized care
in polycystic kidney disease and pulmonary embolism.

Benoît Macq received his PhD from UCLouvain–Belgium, in 1989. He has been a researcher
with the Philips Research Laboratory, Belgium, in 1990 and 1991, where he developed wavelet-
based compression algorithms and contributed to the JPEG 2000 standard. He has been a pro-
fessor with the Polytechnic School of UCLouvain since 1993. He has also been a visiting
professor with the École Polytechnique Fédérale de Lausanne, Massachusetts Institute of
Technology, and McGill University. His main research interests are image compression, image
watermarking, medical imaging, and immersive communications. He is a member of the Royal
Academy of Science of Belgium. He was the general chair of the IEEE ICIP 2011, Brussels. He
has been the chair of several European projects, including a Network of Excellence
on Multimodal Interactions (SIMILAR Project) and an integrated proposal, EDcine, which
paved the way for digital cinema technology in the European Union. He was an associate editor
of the IEEE Transactions on Multimedia and a guest editor of the Proceedings of the IEEE. He is
a senior associate editor of the IEEE Transactions on Image Processing. He is also the founder of
the Journal of Multimodal Interfaces (Springer Verlag), and the co-founder of 11 spin-off
companies.

El Khoury et al.: Improved 3D U-Net robustness against JPEG 2000 compression. . .

Journal of Medical Imaging 041207-20 Jul∕Aug 2021 • Vol. 8(4)

https://doi.org/10.3390/sym12111787
https://doi.org/10.1016/j.imu.2020.100357
https://doi.org/10.1109/iwssip.2019.8787253

