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Abstract

Purpose: Accurate classification of COVID-19 in chest radiographs is invaluable to hard-hit
pandemic hot spots. Transfer learning techniques for images using well-known convolutional
neural networks show promise in addressing this problem. These methods can significantly ben-
efit from supplemental training on similar conditions, considering that there currently exists no
widely available chest x-ray dataset on COVID-19. We evaluate whether targeted pretraining for
similar tasks in radiography labeling improves classification performance in a sample radiograph
dataset containing COVID-19 cases.

Approach: We train a DenseNet121 to classify chest radiographs through six training schemes.
Each training scheme is designed to incorporate cases from established datasets for general findings
in chest radiography (CXR) and pneumonia, with a control scheme with no pretraining. The result-
ing six permutations are then trained and evaluated on a dataset of 1060 radiographs collected from
475 patients after March 2020, containing 801 images of laboratory-confirmed COVID-19 cases.

Results: Sequential training phases yielded substantial improvement in classification accuracy
compared to a baseline of standard transfer learning with ImageNet parameters. The test set area
under the receiver operating characteristic curve for COVID-19 classification improved from
0.757 in the control to 0.857 for the optimal training scheme in the available images.

Conclusions: We achieve COVID-19 classification accuracies comparable to previous bench-
marks of pneumonia classification. Deliberate sequential training, rather than pooling datasets, is
critical in training effective COVID-19 classifiers within the limitations of early datasets. These
findings bring clinical-grade classification through CXR within reach for more regions impacted
by COVID-19.
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1 Introduction

Since its initial identification in December 2019, the coronavirus SARS-CoV2 has disseminated
internationally, impacting virtually every aspect of human activity. This virus causes Corona-
virus Disease 2019, abbreviated as COVID-19: a highly contagious, high-mortality, acute res-
piratory illness. On March 11, 2020, the World Health Organization declared COVID-19
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a pandemic following a 13-fold increase in cases outside China in two weeks.1 As of June 11,
2020, there have been 7,442,050 cases of COVID-19 confirmed globally, with 418,563 reported
deaths due to the coronavirus disease.2 The extent and severity of the COVID-19 pandemic is
unprecedented in modern times, pushing the need for fast and effective diagnosis to curtail the
spread of this disease.

The gold standard test for diagnosing COVID-19 is reverse transcriptase-polymerase chain
reaction (RT-PCR). However, variable sensitivity in early RT-PCR tests and shortages in capacity
prompted the consideration of diagnostic imaging for detection or management of COVID-19
progression.3 As a respiratory disease, chest imaging via computed tomography (CT) or chest
radiography (CXR) is a natural approach to managing potential cases. In fact, imaging played an
essential role in the response at early epicenters of the pandemic.3–5 More recently, the Fleischner
Society has issued a consensus statement outlining situations in which imaging may be inform-
ative in managing patient treatment.6 Although the consensus provides arguments for the relative
merits of both CT and CXR, it leaves the choice of modality to the judgment of clinical teams
based on local factors such as imaging capacity and the availability of expertise.6

In early studies, CT proved effective as a high-sensitivity method for detection.3,7 Compared
to CXR, CT produces higher-grade information; however, the modality presents distinct draw-
backs and practical challenges in this context. Typical chest CT doses are higher than CXR,
carrying a higher radiation risk to the patient.8,9 CT scanners are also more expensive and less
readily available at hospitals. Finally, turnover between patients is more difficult and poses risks
to staff, who would have to clean the scanner between patients to avoid spreading the corona-
virus. In comparison, portable chest x-ray offers distinct advantages pertaining to all these con-
cerns, easing the burden on patients and facilitating the provision of care.

The use of chest x-ray raises a question of whether COVID-19 pathological findings may be
distinguishable in CXR. Deep learning classification of COVID-19 in CXR may prove prom-
ising but has been less explored than CT, with a few recent works exploring transfer learning
techniques to adapt an existing model to COVID-19 classification and differentiation from other
pneumonia sources.10 A universal limitation to such studies tends to be access to chest radio-
graphs from patients with RT-PCR–confirmed cases of COVID-19. In lieu of this, a promising
alternative has been to incorporate larger, publicly available chest x-ray databases and focus
on proximal tasks such as general pneumonia classification. Prominent databases such as the
National Institutes of Health (NIH) dataset ChestX-Ray1411 or the pneumonia Kaggle Challenge
hosted by the Radiological Society of North America (RSNA)12 contain many samples of proxi-
mal chest radiograph findings such as pneumonia.

Considering that pneumonia and COVID-19 share common image features,13 we hypoth-
esized that supplemental training with pneumonia datasets may improve the performance of
COVID-19 classification using convolutional neural networks. This study thus aimed to evaluate
the effectiveness of a convolutional neural network informed by non-COVID pneumonia to clas-
sify COVID-19 in chest radiographs. Starting with a pretrained network, we incorporated
existing databases in successive training phases to fine-tune a convolutional neural network for
the coronavirus task. After pretraining, the algorithm was fine-tuned and evaluated using a data-
base of 1060 chest radiographs from 475 patients, taken postpandemic start and containing 801
images of COVID-19 positive cases. We employed stratified sampling at the patient level to
subdivide this database into a 60%/20%/20% data set split that preserves the original prevalence
in the training, validation, and test sets. We report performance via various training paths on this
dataset’s test set to investigate the differential performance benefits of incorporating related
images.

2 Methods

In this study, we trained a model by applying sequential pretraining in three successive fine-
tuning phases, diagrammed in Fig. 1. In these pretraining phases, the model is presented with
datasets configured to perform gradual domain adaptations. Our first phase adapted a convolu-
tional neural network trained on ImageNet to CXR tasks, following previous approaches in
end-to-end training for multilabel classification in CXR on established databases.14,15 The

Fricks et al.: Deep learning classification of COVID-19 in chest radiographs: performance and influence. . .

Journal of Medical Imaging 064501-2 Nov∕Dec 2021 • Vol. 8(6)



second phase added additional training in pneumonia detection, using either a dataset with sim-
ilar pneumonia prevalence to phase 1, or an enriched dataset with higher pneumonia prevalence.
The third phase fine-tuned the resulting networks for classifying confirmed cases of COVID-19,
using chest radiographs collected for this study.

Figure 1 diagrams the training phases in each variation; we produced six variations of a
densely connected network16 which was initially pretrained on ImageNet. Path (a) was first
trained on a multilabel chest x-ray task in phase 1, before being refined with a dataset with
higher pneumonia prevalence in phase 2, and finally retrained for the COVID-19 detection task.
Path (b) was identical to path (a), except for employing a phase 2 dataset with lower pneumonia
prevalence. Path (c) did not have a phase 2 refinement. Similarly, paths (d) and (e) omitted
the first phase multilabel training and applied the two phase 2 treatments, respectively. Finally,
path (f) served as a control by directly adapting from ImageNet weights to the COVID-19 clas-
sification task. We detail training conditions in these phases in the following sections.

2.1 Phase 1: Transfer Learning from ImageNet to General Chest
Radiography Findings

The goal of phase 1 was to replicate the recent state-of-the-art in multilabel classification tasks in
CXR as a foundation for a COVID-19 classifier in phase 3. We began with DenseNet121 with
initial weights optimized for ImageNet17 natural image classification and adapted it for the multi-
label task using standard end-to-end transfer learning approaches.18,19 The top classification
layer was replaced with a 14-node densely connected layer with sigmoid activation and He

Fig. 1 Six permutations of the selected convolutional neural network architecture were refined
using pretraining phases. In each variation, the network is trained sequentially on datasets con-
taining either a mix of findings with low-pneumonia prevalence or an enhanced dataset with higher
pneumonia prevalence. Path (f) serves as the control and is directly trained on COVID-19 cases
with no prior training on chest radiographs. All networks are trained and evaluated on an identical
COVID-19 task in phase 3.
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initialization,20 resulting in corresponding outputs for the original labels in ChestX-ray14.11 This
database contains 112,210 images with common radiological findings which were collected
prior to the emergence of COVID-19. The images were divided at the patient level into
approximately a 70%/10%/20% training/validation/test split, resulting in 75,828 images for
training, 10,696 for validation, and 25,596 for testing, respectively. The testing set was the list
specified by the original database curators,21 proven a useful reference set for performance
benchmarking.15 In phase 1, we estimated the area under the receiver operating characteristic
curve (AUROC) for the test set, for each label in the multilabel task.

In preprocessing, we down-sampled the ChestX-ray14 images by a factor of two to 512 ×
512 resolution. The images were normalized using values for mean and standard deviation esti-
mated from a randomly selected set of 16,384 training images. Training images were randomly
augmented at runtime, first by random horizontal flipping, then random rotations of up to 8 deg,
and random cropping of up to 10% of the image size.

The network was trained with mirrored copies replicated across GPUs receiving batches of
16 images per GPU. Training employed a stochastic gradient descent with momentum optimizer,
with an initial learning rate of 0.01, momentum of 0.9, and weight decay of 0.0001. We used an
unweighted binary cross-entropy loss function. The learning rate was further decreased by a
factor of 10 each time the validation loss did not improve in three epochs. Early stopping halted
training if the validation loss did not improve after 10 epochs and reverted to the weights that
achieved the highest validation loss. The model and all subsequent training were implemented in
Tensorflow 2.2.0.22

2.2 Phase 2: Adaptation to Pneumonia Detection

The goal of phase 2 was to ascertain the impact of disease prevalence in an additional training
stage (pneumonia as the basis given its similarity to COVID-19 features) on the classification
accuracy of the algorithm. In this phase, we produced a pneumonia-centric dataset using 25,000
images from the RSNA pneumonia Kaggle Challenge training dataset.12 This dataset contains
a higher proportion of pneumonia cases, where 6012 images contain pneumonia findings. For
comparison, we produced a broader finding chest x-ray set by repurposing 25,000 images from
the phase 1 test set, ensuring that all 555 pneumonia cases are included. These two datasets were
split at the patient level into 80%/20% sets for training and validation, using stratified sampling
to generate sets with ∼24% and 2% pneumonia prevalence, respectively.

For training in this phase, we retained as many of the previous training conditions as possible.
The initial learning rate was reduced to 0.001, but otherwise all hyperparameters were identical
to phase 1. The DenseNet121 was initialized with phase 1 weights in paths (a) and (b) or
ImageNet weights in paths (d) and (e). Input images were normalized using mean and standard
deviation values estimated from 2048 training images of the respective refinement set. The out-
put layer was replaced with a densely connected layer with He initialization and a single sigmoid
output for pneumonia classification. We minimized the unweighted binary cross-entropy loss.
We estimated the AUROC for each of the four training permutations that received phase 2 fine
tuning.

2.3 Phase 3: Fine-Tuning from Chest Radiographs for COVID-19
Classification

The goal of phase 3 was to fine-tune the developed classification to COVID-19 cases and evalu-
ate COVID-19 classification performance under all pretraining conditions. With IRB approval,
we collected 1060 chest radiographs consecutively from 475 patients with RT-PCR result avail-
able. All images were taken postpandemic start with 801 images of COVID-19 RT-PCR positive
cases. The images were collected from multiple sites from Iran, Italy, and the US. The cases
were homogenized to reduce intraset variability and approximate the ChestX-ray14 and
RSNA datasets in content. This included manual cropping to remove burn-in labels and reframe
wider radiograph field-of-views to center on lungs (Fig. 2). The cropped images were resized to
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512 × 512 resolution and contrast scaled based on fields in the DICOM header to fit an 8-bit
dynamic range consistent with other datasets.

The images were divided into 60%/20%/20% splits with 626 images for training, 216 images
for validation, and a test set of 218 images, respectively. Images were sampled at the patient level
with stratification, to ensure no patient is present across multiple sets, and that the COVID-19
prevalence is maintained in each subset at ∼75% as in the total set.

As in phase 2, we maintained training parameters constant as much as possible while fine
tuning the six permutations of the model. The output layer was replaced with a densely con-
nected layer with a single output for COVID-19. Training, loss, and metrics were evaluated for
each model on 20% of the data reserved as a test set and identical to previous phases except for
the convolutional network weights, which were derived from previous phases or ImageNet in
path (f). The initial learning rate for this phase was again reduced, starting at 0.0005, with the
same learning rate reduction and early stopping rules applied. The results were again summa-
rized in terms of the area under the ROC curve for consistency. We applied DeLong’s test to
evaluate the statistical significance of each possible pairwise AUROC comparison between
the six models and further used DeLong’s method to calculate a 95% confidence interval in
the AUROC.23,24 Finally, we adjusted p-values to account for multiple comparisons using the
Bonferroni method.25

Fig. 2 An example of manual image cleaning. Wider radiograph field of views are reduced to
remove burn-in annotations, and focus on chest volumes, similar to existing databases.
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2.4 Interpretability in Results

To verify that the resulting neural network learned viable features for classifying coronavirus
disease COVID-19, we generated saliency maps, then up-sampled and overlaid them on the
original radiographs. We used the gradient-weighted class activation mapping (Grad-CAM)
method26 to produce saliency maps from the top-performing classifier on COVID-19 on its
validation set. These resulting composite images provided insight into which image regions
contributed to the network’s classifications.

3 Results

3.1 Phase 1: Transfer Learning from ImageNet to General Chest
Radiography Findings

For the pretraining task, we achieved performance on the multilabel chest x-ray task comparable
to previous state-of-the-art models, measured as AUROC evaluated on the reference test set
specified for Chest-ray1411,21 (Table 1). Our model precisely matched the average AUROC
of the top performing variant of the Baltruschat et al.’s study,15 which included trained-
from-scratch residual connection networks for this task. Similarly, our pneumonia performance
and average AUROC were only exceeded by the Güendel et al.’s model.28 Both of these net-
works took additional steps to supplement the performance of their convolutional network;
we contrast these design choices in the discussion.

3.2 Phase 2: Adaptation to Pneumonia Detection

In phase 2, path (a) was designed to improve our phase 1 model’s baseline pneumonia perfor-
mance by additional training on a higher prevalence pneumonia image set. By contrast, the

Table 1 Performance comparison of our phase 1 results with existing state-of-the-art models,
evaluated on a common test set.

Pathology AUROC Wang et al.11 Yao et al.27 Güendel et al.28 Baltruschat et al.15 Our method

Cardiomegaly 0.810 0.856 0.883 0.875 0.868

Emphysema 0.833 0.842 0.895 0.895 0.924

Edema 0.805 0.806 0.835 0.846 0.834

Hernia 0.872 0.775 0.896 0.937 0.867

Pneumothorax 0.799 0.805 0.846 0.840 0.865

Effusion 0.759 0.806 0.828 0.822 0.828

Mass 0.693 0.777 0.821 0.820 0.819

Fibrosis 0.786 0.743 0.818 0.816 0.813

Atelectasis 0.700 0.733 0.767 0.763 0.761

Consolidation 0.703 0.711 0.745 0.749 0.739

Pleural thickening 0.684 0.724 0.761 0.763 0.766

Nodule 0.669 0.724 0.758 0.747 0.777

Pneumonia 0.658 0.684 0.731 0.714 0.722

Infiltration 0.661 0.673 0.709 0.694 0.696

Macroaverage 0.745 0.761 0.807 0.806 0.806
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model in path (b) received the same number of additional images with no emphasis on a par-
ticular label. Paths (c) and (d) tested the necessity of phase 1 training. Table 2 shows results for
phase 2 training, ordered by evaluated AUROC on the respective refinement set.

Unlike in phase 1, these results have no direct comparison; the data were split for these
experiments. Although the RSNA set and the ChestX-ray14 are quite similar, given that paths
(a) and (d) are evaluated on a different test set than paths (b) and (e), it is not advisable to make
broad conclusions across these two groups of paths. However, we note that the pneumonia
AUROC improved based on the number of pneumonia cases seen, rather than the total number
of cases seen. There is a slight improvement when the pneumonia training phase was bolstered
by the phase 1 training as a foundation of general x-ray cases [path (a) versus (d)]. When relying
on data with few cases of pneumonia, there was a substantial improvement when more (previ-
ously unseen) cases and training were added, as expected [path (b) versus (e)]. Path (b) perfor-
mance on this set did not vary significantly from the estimated generalization performance
predicted in the phase 1 result. Although this may be due to nuances of the new evaluation
subset, it is overall in line with the previous result and does not appear to show substantial
improvement from the phase 1 baseline.

3.3 Phase 3: Fine Tuning from Chest Radiographs to COVID-19

Results for all six paths are presented in Table 3 with results from DeLong’s test in Table 4. In
general, adding any supplemental phase of chest radiograph fine tuning prior to adapting to
COVID-19 classification consistently improves performance. Statistically significant improve-
ments over standard transfer learning (at α ¼ 0.5) are achieved when the model receives sub-
stantial pretraining with general radiographs in paths (a)–(c) compared to paths (d)–(f). Models
that receive phase 1 training using the ChestX-ray14 set uniformly perform better than alter-
natives with reduced-set pneumonia-focused pretraining [path (d)], a reduced-set general radio-
graph pretraining [path (e)], or no pretraining [path (f)]. Of the three top performing models,
there are slight distinctions. Although we observe slight improvement with additional general
chest x-ray training [path (b)], and a slight loss in performance when an additional high

Table 2 Performance comparison of phase 2 refinements, arranged by pneumonia AUROC.
The horizontal bar between sets denotes a change in test set.

Variant Description

Total
radiographs in
training sets

Pneumonia
radiographs in
training sets

Pneumonia
prevalence in
phase 2 (%)

Pneumonia
AUROC

Path (a) Phase 1 weights + RSNA pneum. 95,828 5571 24.05 0.885

Path (d) ImageNet weights + RSNA pneum. 20,000 4810 24.05 0.877

Path (b) Phase 1 weights + NIH test set 95,919 1199 2.18 0.716

Path (e) ImageNet weights + NIH test set 20,091 438 2.18 0.635

Table 3 COVID-19 detection performance measured by AUROC.

Variant Description AUROC AUROC 95% CI

Path (a) General chest x-ray dataset + pneumonia refinement 0.849 0.786 to 0.912

Path (b) General chest x-ray dataset + additional general radiographs 0.857 0.794 to 0.920

Path (c) General chest x-ray dataset 0.851 0.794 to 0.907

Path (d) Standard ImageNet weights + pneumonia refinement 0.806 0.735 – 0.876

Path (e) Standard ImageNet weights + additional general radiographs 0.765 0.690 to 0.841

Path (f) Standard ImageNet weights 0.757 0.683 to 0.831
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pneumonia prevalence refinement set is applied [path (a)], neither effect is statistically distin-
guishable from the single-phase training [path (c)] in this evaluation. Pretraining a network to
label with largest set of general chest x-ray findings from a single database provides the most
substantial benefit as evaluated [path (b)].

There is a marked decrease in performance in the absence of prior training with a substantial
set of chest radiographs, as models received in phase 1. Interestingly, a small set of proportion-
ally higher pneumonia cases provide a more pronounced increase in performance over pretrain-
ing with a small set of general radiographs or standard transfer learning, suggesting that a high
number of pneumonia cases in training contribute much of the top-class performance in COVID-
19 detection. Consequently, path (d) performs well but is not clearly distinguishable from either
the top performers [paths (a)–(c)] or the bottom performers [paths (e)–(f)]. Pretraining with a set
of ∼20; 000 radiographs with low pneumonia prevalence [path (e)] provides a marginal but sta-
tistically insignificant improvement to the scenario with no radiographs in pretraining [path (f)].

In Table 5, the p-values calculated using DeLong’s test are adjusted for multiple comparisons
using the Bonferroni’s method.25 Bonferroni’s method divides the significance level α by the
number of comparisons m, or equivalently scales the p-values. We scale the p-values in Table 4
by a factor of 15, yielding Table 5. With this adjustment in place, models with a high proportion
of pneumonia cases in pretraining [paths (a)–(d)] are statistically indistinguishable in perfor-
mance. There is a tangible distinction between this group of models and the group that does
not receive a sizable set of pneumonia cases in pretraining [paths (e)–(f)], but it is not statistically
significant when adjusted by the number of point-to-point comparisons made in this experimen-
tal design. We expand on these results and approach to multiple comparisons in the discussion.

Table 4 Significance (p values) of model-to-model AUROC comparisons on test set using
DeLong’s test. Models pairs with statistically differentiable performance at α ¼ 0.5 have cells hold-
ing their p-value marked in bold, likewise models that are highly similar are marked in italics.

Path (a) Path (b) Path (c) Path (d) Path (e) Path (f)

Path (f) 0.047 0.027 0.034 0.300 0.851 —

Path (e) 0.033 0.025 0.025 0.392 —

Path (d) 0.224 0.159 0.176 —

Path (c) 0.960 0.818 —

Path (b) 0.747 —

Path (a) —

Table 5 Significance (p-values) of model-to-model AUROC comparisons on test set using
DeLong’s test with Bonferroni adjustments. P-values above 1 have been limited to 1 for ease
of interpretation. Model pairs with statistically indistinguishable performance have cells marked
in italics.

Path (a) Path (b) Path (c) Path (d) Path (e) Path (f)

Path (f) 0.705 0.405 0.510 1.000* 1.000* —

Path (e) 0.495 0.375 0.375 1.000* —

Path (d) 1.000* 1.000* 1.000 —

Path (c) 1.000* 1.000* —

Path (b) 1.000* —

Path (a) —
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Finally, we produce ROC curves for each model evaluated on the test set in phase 3 (Fig. 3).
Examining these ROCs, we see some additional nuances. Path (b) once again achieves the opti-
mal performance in most cases, providing the highest or near-highest sensitivity for each
decrease in specificity. There is a range at ∼0.3 to 0.7 specificity where the path (a) model pro-
vides superior sensitivity than the path (b) model, suggesting that these complementary
approaches to training may be useful for combination through ensemble methods. The three
models previously distinguished for superior performance only occasionally intersect with path
(d), which matches top models at low and high specificity but has decreased sensitivity at mid-
level specificity. Only paths (e) and (f) show clearly inferior performance at all decision thresh-
olds. All models are well above the center diagonal line, indicating that each model offers some
effectiveness as a classifier.

3.4 Interpretability in Results

We used the Grad-CAM method26 to produce saliency maps from the top-performing classifier
on COVID-19 from path (b) on images in its test set. The results overall affirmed that the network
appropriately uses the lung regions for classification. Figure 4 shows two selected cases and their
respective overlaid saliency maps, emphasizing the image regions contributing to the classifi-
cation decision, where a jet colormap spans from high-weight (red) to low-weight (blue) con-
tribution. Note that the patient number indicated is the randomized index within the test set.

In Fig. 4, we see clear examples of what the network incorporates in a higher output score.
The subdiaphragmatic region is devalued in the classification decision (blue), with larger empha-
sis on lung spaces with potential consolidation (red). For instance, in patient 30, an area of
increased density in the middle lobe of the right lung contributes highly to the network output
of 95.4% activation. Some slight emphasis is commonly present at other hyperdense regions,
such as the clavicles or other bones, however, relatively low compared to activations in the lung.
At most thresholds, these two images would be classified as positive findings; therefore, these
are saliency maps of true positive classifications.

By contrast, Fig. 5 shows two negative cases with low-value network outputs, which typify
true negative classifications. Again, the network learns to base decisions on the lungs, resulting

Fig. 3 Receiver operating characteristic curves for each path as evaluated on the COVID-19
test set in phase 3.
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in a rough region of interest isolating the lungs. Within the lung region, no particular landmark in
a non-pathological lung finding disproportionately contributes to the classification, as seen by
the relatively uniform red region centered over the lungs. In patient 191, some increased density
in the lower right lung especially causes some mid-level weighting, but overall the activation on
this image is very low at 5.5%. Also by cropping out most burn-in labels, we can verify that the
few burn-in labels present in the dataset do not contribute to the decision (blue region above
patient left shoulders).

On some examples, this pattern is reversed; some additional figures showing likely false
positive and true positive cases are added in the Appendix. Overall, the occurrence of these
errors is proportional to the ROC metrics reported previously and depends on the selected deci-
sion threshold.

4 Discussion

The alarming pace and severity of the current COVID-19 pandemic has forced consideration of
the many uses of imaging in managing treatment.6 The utility of imaging in these situations often

Fig. 4 Saliency maps for two exemplary cases which are true positives at most decision
thresholds.
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hinges on the availability of experts to interpret the result for each patient.6 Deep learning and
other artificial intelligence techniques aim to mitigate this challenge through automated or semi-
automated reading of cases. However, their quality relies on the availability of large volumes of
data with known truth. It took months for COVID-19 to affect millions of people, whereas it can
take years to put together effective databases for training deep learning algorithms. To address
this challenge, we demonstrated that large volumes of previous data on similar conditions can
tangibly improve COVID-19 classification.

Our approach builds on many previous developments in deep learning applied to CXR,
which we briefly summarize here. Although the database is known to have inaccuracies in some
labels,15 the availability of a large, common set of labeled chest radiographs through the ChestX-
Ray14 database has led to many high-profile successes in the multilabel task in chest x-rays.11

Several studies iteratively improved classification performance as measured by AUROC, begin-
ning with the originators of the database. They employed a composite model that relied on pool-
ing together late activations of many pretrained networks.11 Yao et al.27 pushed performance
further by relying on a simpler convolutional architecture similar to DenseNet and combining
several convolutional outputs with an long-short term memory networks sequential model to
capture label dependence.27 Güendel et al.28 simplified the model further by introducing two

Fig. 5 Saliency maps for two exemplary cases which are true negatives at most decision
thresholds.
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convolutional layers for localization prior to a single DenseNet which classifies the input. Their
performance was further boosted slightly by pooling the ChestX-Ray14 set with the prostate,
lung, colorectal, and ovarian (PLCO)29 cancer screening trial dataset for additional data in
cancer-related findings primarily. From there, CheXNet famously garnered attention for initially
claiming better-than-radiologist performance using a direct end-to-end transfer learning ap-
proach based on DenseNet12114 and has since been extended in CheXpert30 and CheXNeXt.31

Finally, a comparison by Baltruschat’s et al. introduced trained-from-scratch variants of
ResNet32 that incorporated scan parameters in its decision-making.15

Prior approaches all have in common convolutional architectures that employ some level of
residual connection,32 either in the use of ResNet architectures or the densely connected exten-
sions proposed by Huang et al.16 Our decision in using DenseNet121 as well as hyperparameter
choices and in the first phase follows (with slight modifications) relatively straightforward
approaches with few additions, such as CheXNet.14 To our knowledge, the original CheXNet
has not been evaluated on the official evaluation data split indicated by the ChestX-ray14 orig-
inators. Our facsimile in phase 1 achieves matching results of Güendel et al.28 or Baltruschat
et al.15 without the addition of PLCO data or scanning parameters, respectively. Our phase 1
reproduction reaffirms the direct and simple approach, with little change from phase to phase
to emphasize the effect of training data. For instance, we did not employ weighting for class
imbalance, as it would need to be changed from phase to phase, and in the previous studies on
chest classification and in our early testing, it was found to have minimal impact.15 We report
primarily the AUROC metric throughout in keeping with these earlier works.

One strength of the ChestX-Ray14 database and many Kaggle competitions is that the data
split is common to all approaches, allowing for direct comparison of results. The selection of
training set and especially evaluation set can have notable impact on the assessed classification
performance of a trained model, particularly when the sample is small, even though the goal
generally is to minimize this effect. It is difficult to compare metrics from different datasets,
as we avoid in phase 2, due to sampling effects. For instance, our phase 3 results are roughly
in range of the AUROC values reported by a recent multireader comparison study10 undertaken
concurrently with ours. However, their use of a proprietary classifier and different COVID-19
databases limit the comparisons possible. We reaffirm that using databases such as the RSNA
pneumonia challenge or ChestX-Ray14 in a pretraining phase results in favorable classification
performance, and anticipate classifiers based on fewer than 1000 COVID-19 cases to achieve
no more than approximately the pneumonia classification performance from previous chest
radiograph models. Until a standard COVID-19 radiograph database is broadly available, we
cannot confidently compare COVID-19 classifiers on an equal basis, hence phase 3 emphasizes
relative improvements.

Until a standard COVID-19 database is public, many approaches are limited by the number
of cases available, with many preprint examples relying on the archive curated by a group as a
public collaborative project.33 Although this set provides a common, comparable data source,
authors are cautioned on relying on this dataset alone for diagnostic claims.33–35 Details such as
image quality, compression method, sampling effects, and protocol may vary drastically between
locations, resulting in a highly “noisy” dataset. Pooling dataset that are noisy or artefactual
heterogeneously across different data groups may misleadingly yield high performance, as the
classifier can choose COVID-19 cases due to imaging defects rather than underlying pathology.
In our own experience, manual data cleanup including cropping was necessary as early iterations
of our classifier distinguished COVID-19 easily due to detailed burn-in labels (such as Fig. 5).
Even after minimizing this effect, we elected for a phased approach as COVID-19 radiographs in
our set had dataset-specific, disease-related image characteristics that overwhelmed underlying
pathological signals in a pooled approach. The more severe COVID-19 cases in our set were
often in critical condition and imaged with portable x-rays in a supinated position, generally
resulting in a lesser quality, higher density image. In some examples, the patient’s head, electro-
cardiogram leads, or intubation equipment were visible in COVID-19 cases (such as Fig. 4),
which may not be present in typical, ambulatory chest x-ray patients. This may have led to the
minor emphasis on clavicular regions in the saliency maps for positive cases; however, the over-
all classification performance did not appear to be impacted by these cases. We minimize these
confounding influences by our cleanup process. The phased approach here was effective in
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deriving performance improvement from similar data that could otherwise not be used in
training.

As with many other studies, our results are primarily limited by the data available. A larger
dataset could improve model performance through more sample images, and likewise allow for
further testing that would improve the ability to distinguish these approaches to model training.
The relative improvements between certain paths, particularly (a), (b), and (c), are not distinct
enough to definitively indicate one variant above all others. The Bonferroni adjustment for multi-
ple comparisons, while known to be conservative in rejecting a null hypothesis,25 further empha-
sizes how models pretrained with pneumonia-prevalent datasets are performant on COVID-19
cases and we cannot conclusively distinguish their performance with the limited dataset. The
relatively small effect of training in this experiment when accounting for the number of com-
parisons, thereby reducing the significance in performance differences, is also consistent with the
similarity between each model variant. We hypothesize that in practice an ensembling of variants
such as these would likely provide the best performance. We conclude from the relative improve-
ments in our results that the optimal paths’ improved performance on COVID-19 benefitted from
exposure to general chest radiograph features imparted in phase 1, as well as from fine-tuning for
pneumonia-like findings from a high number of pneumonia cases in all combined pretraining.

A clearer performance improvement in paths (a) and (b) compared to (c) may be possible by
refining the multiphase training, where switching data sources and reinitializing the final clas-
sification layer was disruptive to initial performance in training and potentially the model param-
eterization. This investigation deliberately limited variant-specific optimizations to the training
protocol and hyperparameters of later steps to avoid confounding effects and emphasize the
effect of pretraining phases. While training conditions were reasonable in each case and variants
trained until early stopping conditions were met within each phase, we cannot rule out that fur-
ther optimization in earlier phases would lead to increased performance in the COVID-19 clas-
sification task. The impact of these measures on performance can be further explored.

5 Conclusions

As researchers continue to collect data on COVID-19, deliberate pretraining with similar con-
ditions will continue to play a part in improving classification performance. We achieved
COVID-19 classification accuracies comparable to previous benchmarks of pneumonia classi-
fication and a significant improvement in classification performance relative to a baseline with-
out phased pretraining in comparing individual models. Deliberate sequential training, rather
than pooling datasets, is critical in training effective COVID-19 classifiers using limited, early
datasets with potentially variable image quality. These techniques improve classifier perfor-
mance on currently available data, and we expect will continue to provide performance benefits
that will accelerate the production of an automated COVID-19 classifier for radiography. Our
results also indicate that further testing on larger datasets is required to definitively establish their
relative performance gains, as when adjusted for multiple comparisons, all variants pretrained
with pneumonia radiographs attain reasonable performance. These techniques bring clinical-
grade radiograph classification within reach for overwhelmed healthcare operations at the
frontlines of the COVID-19 pandemic.

6 Appendix

Presented here are saliency maps of cases which caused classification errors by the neural net-
work. They are in general reversals of the previously noted pattern and RT-PCR result. Figure 6
shows a patient with some increased density in the lower right lung, resulting in a higher network
output value; however, the RT-PCR result is negative. This case is a likely false positive for most
decision thresholds.

Similarly, Fig. 7 shows a similar negative decision pattern from Fig. 5 on a case with a pos-
itive laboratory test result. Here a chest x-ray with minimal consolidation corresponds to a pos-
itive RT-PCR result. The network appears to base the decision primarily off the relatively non-
pathological lung appearance and assigns a low-value output to this case. Subtle consolidation is
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difficult even for expert readers, and a subset of patients may not have visible lung involvement
at time of imaging.
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Fig. 7 Example false negative and corresponding saliency map.

Fig. 6 Example false positive and corresponding saliency map.

Fricks et al.: Deep learning classification of COVID-19 in chest radiographs: performance and influence. . .

Journal of Medical Imaging 064501-14 Nov∕Dec 2021 • Vol. 8(6)



References

1. “WHO Director-General’s opening remarks at the media briefing on COVID-19-11 March
2020,” https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-
the-media-briefing-on-covid-19-11-march-2020 (accessed 11 June 2020).

2. E. Dong, H. Du, and L. Gardner, “An interactive web-based dashboard to track COVID-19
in real time,” Lancet Infect Dis. 20(5), 533–534 (2020).

3. Y. Fang et al., “Sensitivity of chest CT for COVID-19: comparison to RT-PCR,” Radiology
296, 200432 (2020).

4. H. X. Bai et al., “Performance of radiologists in differentiating COVID-19 from viral pneu-
monia on chest CT,” Radiology 296, 200823 (2020).

5. T. Ai et al., “Correlation of chest CT and RT-PCR testing in Coronavirus Disease 2019
(COVID-19) in China: a report of 1014 cases,” Radiology 296, 200642 (2020).

6. G. D. Rubin et al., “The role of chest imaging in patient management during the COVID-19
pandemic: a multinational consensus statement from the Fleischner Society,” Radiology
296, 201365 (2020).

7. L. Li et al., “Artificial intelligence distinguishes COVID-19 from community acquired pneu-
monia on chest CT,” Radiology 296, 200905 (2020).

8. Y. Zhang et al., “Comparison of patient specific dose metrics between chest radiography,
tomosynthesis, and CT for adult patients of wide ranging body habitus,” Med. Phys. 41(2),
023901 (2014).

9. F. Ria et al., “A comparison of COVID-19 and imaging radiation risk in clinical patient
populations,” J. Radiol. Prot. 40, 1336 (2020).

10. K. Murphy et al., “COVID-19 on the chest radiograph: a multi-reader evaluation of an AI
system,” Radiology 296, 201874 (2020).

11. X. Wang et al., “ChestX-Ray8: hospital-scale chest x-ray database and benchmarks on
weakly-supervised classification and localization of common thorax diseases,” in IEEE
Conf. Comput. Vision and Pattern Recognit. (CVPR), pp. 3462–3471 (2017).

12. “RSNA Pneumonia Detection Challenge,” https://kaggle.com/c/rsna-pneumonia-detection-
challenge (accessed 19 June 2020).

13. M. Chung et al., “CT imaging features of 2019 novel coronavirus (2019-nCoV),” Radiology
295(1), 202–207 (2020).

14. P. Rajpurkar et al., “CheXNet: radiologist-level pneumonia detection on chest x-rays with
deep learning,” https://arxiv.org/abs/1711.05225 (2017).

15. I. M. Baltruschat et al., “Comparison of deep learning approaches for multi-label chest x-ray
classification,” Sci. Rep. 9(1), 1–10 (2019).

16. G. Huang et al., “Densely connected convolutional networks,” in IEEE Conf. Comput. Vision
and Pattern Recognit. (CVPR), IEEE, Honolulu, Hawaii, pp. 2261–2269 (2017).

17. J. Deng et al., “ImageNet: a large-scale hierarchical image database,” in IEEE Conf.
Comput. Vision and Pattern Recognit., pp. 248–255 (2009).

18. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press (2016).
19. F. Chollet, Deep Learning with Python, 1st ed., Manning Publications Co. (2017).
20. K. He et al., “Delving deep into rectifiers: surpassing human-level performance on

ImageNet classification,” in IEEE Int. Conf. Comput. Vision (ICCV), IEEE, Santiago, Chile,
pp. 1026–1034 (2015).

21. “NIH Clinical Center provides one of the largest publicly available chest x-ray datasets to
scientific community,” National Institutes of Health (NIH), 2017, https://www.nih.gov/
news-events/news-releases/nih-clinical-center-provides-one-largest-publicly-available-chest-
x-ray-datasets-scientific-community (accessed 19 June 2020).

22. M. Abadi et al., “TensorFlow: a system for large-scale machine learning,” in Proc. 12th
USENIX Conf. Operating Syst. Design and Implementation, Association for Computing
Machinery, New York, pp. 265–283 (2016).

23. E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson, “Comparing the areas under two
or more correlated receiver operating characteristic curves: a nonparametric approach,”
Biometrics 44(3), 837–845 (1988).

Fricks et al.: Deep learning classification of COVID-19 in chest radiographs: performance and influence. . .

Journal of Medical Imaging 064501-15 Nov∕Dec 2021 • Vol. 8(6)

https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020
https://doi.org/10.1016/S1473-3099(20)30120-1
https://doi.org/10.1148/radiol.2020200432
https://doi.org/10.1148/radiol.2020200823
https://doi.org/10.1148/radiol.2020200642
https://doi.org/10.1148/radiol.2020201365
https://doi.org/10.1148/radiol.2020200905
https://doi.org/10.1118/1.4859315
https://doi.org/10.1148/radiol.2020200905
https://doi.org/10.1148/radiol.2020201874
https://kaggle.com/c/rsna-pneumonia-detection-challenge
https://kaggle.com/c/rsna-pneumonia-detection-challenge
https://kaggle.com/c/rsna-pneumonia-detection-challenge
https://doi.org/10.1148/radiol.2020200230
https://arxiv.org/abs/1711.05225
https://arxiv.org/abs/1711.05225
https://arxiv.org/abs/1711.05225
https://doi.org/10.1038/s41598-019-42294-8
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/ICCV.2015.123
https://www.nih.gov/news-events/news-releases/nih-clinical-center-provides-one-largest-publicly-available-chest-x-ray-datasets-scientific-community
https://www.nih.gov/news-events/news-releases/nih-clinical-center-provides-one-largest-publicly-available-chest-x-ray-datasets-scientific-community
https://www.nih.gov/news-events/news-releases/nih-clinical-center-provides-one-largest-publicly-available-chest-x-ray-datasets-scientific-community
https://www.nih.gov/news-events/news-releases/nih-clinical-center-provides-one-largest-publicly-available-chest-x-ray-datasets-scientific-community
https://www.nih.gov/news-events/news-releases/nih-clinical-center-provides-one-largest-publicly-available-chest-x-ray-datasets-scientific-community
https://doi.org/10.2307/2531595


24. X. Sun and W. Xu, “Fast implementation of DeLong’s algorithm for comparing the areas
under correlated receiver operating characteristic curves,” IEEE Signal Process. Lett.
21(11), 1389–1393 (2014).

25. S. Midway et al., “Comparing multiple comparisons: practical guidance for choosing the
best multiple comparisons test,” PeerJ 8, e10387 (2020).

26. R. R. Selvaraju et al., “Grad-CAM: visual explanations from deep networks via gradient-
based localization,” in IEEE Int. Conf. Comput. Vision (ICCV), pp. 618–626 (2017).

27. L. Yao et al., “Learning to diagnose from scratch by exploiting dependencies among labels,”
https://arxiv.org/abs/1710.10501 (2018).

28. S. Gündel et al., “Learning to recognize abnormalities in chest x-rays with location-aware
dense networks,” in Progress in Pattern Recognition, Image Analysis, Computer Vision,
and Applications, R. Vera-Rodriguez, J. Fierrez, and A. Morales, Eds., pp. 757–765,
Springer International Publishing, Cham (2019).

29. J. K. Gohagan et al., “The prostate, lung, colorectal and ovarian (PLCO) cancer screening
trial of the National Cancer Institute: history, organization, and status,” Control Clin. Trials
21(6 Suppl.), 251S–272S (2000).

30. J. Irvin et al., “CheXpert: a large chest radiograph dataset with uncertainty labels and expert
comparison,” in Proc. AAAI Conf. Artif. Intell., Vol. 33, pp. 590–597 (2019).

31. P. Rajpurkar et al., “Deep learning for chest radiograph diagnosis: a retrospective comparison
of the CheXNeXt algorithm to practicing radiologists,” PLoS Med. 15(11), e1002686 (2018).

32. K. He et al., “Deep residual learning for image recognition,” in IEEE Conf. Comput. Vision
and Pattern Recognit. (CVPR), pp. 770–778 (2016).

33. J. P. Cohen, ieee8023/covid-chestxray-dataset, Jupyter Notebook (2020).
34. G. Maguolo and L. Nanni, “A critic evaluation of methods for COVID-19 automatic detec-

tion from x-ray images,” Inf. Fusion 76, 1–7 (2020).
35. E. Tartaglione et al., “Unveiling COVID-19 from chest x-ray with deep learning: a hurdles

race with small data,” Int. J. Environ. Res. Public. Health 17(18), 6933 (2020).

Rafael B. Fricks received his BS degree in biomedical engineering from the University of
Texas at Austin in 2013 and his MS and PhD degrees in biomedical engineering from Duke
University in 2017 and 2018, respectively. He is a computer engineer at MAVERIC Center and
the National Artificial Intelligence Institute (NAII) in the Department of Veterans Affairs, as well
as a postdoctoral fellow at Carl E. Ravin Advanced Imaging Laboratories. His current research
interests include computer vision and artificial intelligence in radiology and image quality.

Francesco Ria received his medical physics doctorate degree from the University of Milan,
Milan, Italy, in 2014. He is a senior research associate at Carl E. Ravin Advanced Imaging
Laboratories and Clinical Imaging Physics Group at Duke University. His interests include
in vivo quantitative analysis of radiation burden and image quality in radiology to simultaneously
assess risk and clinical benefit in real patient populations.

Hamid Chalian completed his radiology training at Case Western University. He then special-
ized in cardiothoracic imaging at Duke University, where he stayed as an assistant professor of
radiology. He subsequently moved to Salt Lake City to continue his career as an associate pro-
fessor of radiology at the University of Utah. His research focus is on lung cancer, lung cancer
screening, and application of innovative CT and MRI technologies to improve cardiothoracic
imaging.

Pegah Khoshpouri completed her postdoctoral research fellowship from Johns Hopkins
University and continued her research at Duke University. She is currently being trained as
a radiology resident at the University of Utah. She is interested in the development of new bio-
markers for better assessment of tumors such as liver and lung cancer.

Ehsan Abadi is an assistant professor of radiology at Duke University. He is an imaging scientist
with expertise in x-ray imaging, computational human modeling, medical imaging simulation,
machine learning, and quantitative image analysis. His current research focus is to identify and
optimize imaging systems for accurate and precise quantifications of lung disease.

Fricks et al.: Deep learning classification of COVID-19 in chest radiographs: performance and influence. . .

Journal of Medical Imaging 064501-16 Nov∕Dec 2021 • Vol. 8(6)

https://doi.org/10.1109/LSP.2014.2337313
https://doi.org/10.7717/peerj.10387
https://doi.org/10.1109/ICCV.2017.74
https://arxiv.org/abs/1710.10501
https://arxiv.org/abs/1710.10501
https://arxiv.org/abs/1710.10501
https://doi.org/10.1016/S0197-2456(00)00097-0
https://doi.org/10.1371/journal.pmed.1002686
https://doi.org/10.1016/j.inffus.2021.04.008
https://doi.org/10.3390/ijerph17186933


Lorenzo Bianchi received his medical physics doctorate degree from the University of Milan,
Milan, Italy and, after about 10 years spent at the University Hospital of Varese, he became a
chief of Medical Physics Department of ASST della Valle Olona, Italy. He is a medical physicist.
His interests include nuclear medicine therapy, medical statistics, and radiation protection. Since
2010, he has been an editorial director of the Italian Association of Medical and Health Physics.

William P. Segars received his PhD in biomedical engineering from the University of North
Carolina in 2001. He is an associate professor of radiology and biomedical engineering and a
member of the Carl E. Ravin Advanced Imaging Laboratories (RAILabs) at Duke University. He
is among the leaders in the development of simulation tools for medical imaging research where
he has applied state-of-the-art computer graphics techniques to develop realistic anatomical and
physiological models.

Ehsan Samei is a tenured professor and a chief imaging physicist at Duke University Health
System. He is an imaging scientist with an active interest in bridging the gap between scientific
scholarship and clinical practice through virtual clinical trials and clinically relevant imaging
metrology and optimization. He has mentored more than 100 trainees, has published more than
300 referred journal papers, and has been the recipient of more than 30 extramural grants.

Fricks et al.: Deep learning classification of COVID-19 in chest radiographs: performance and influence. . .

Journal of Medical Imaging 064501-17 Nov∕Dec 2021 • Vol. 8(6)


