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Abstract

Purpose: Nephrologists have empirically predicted renal function from renal morphology.
In diagnosing a case of renal dysfunction of unknown course, acute kidney injury and chronic
kidney disease are diagnosed from blood tests and an imaging study including magnetic reso-
nance imaging (MRI), and an examination/treatment policy is determined. A framework for the
estimation of renal function from water images obtained using the Dixon method is proposed to
provide information that helps clinicians reach a diagnosis by accurately estimating renal func-
tion on the basis of renal MRI.

Approach: The proposed framework consists of four steps. First, the kidney area is extracted by
MRI using the Dixon method with a U-net by deep learning. Second, the extracted renal region is
registered with the target mask. Third, the kidney features are calculated based on the target mask
classification information created by a specialist. Fourth, the estimated glomerular filtration rate
(eGFR) representing the renal function is estimated using a regression support vector machine
from the calculated features.

Results: For the accuracy evaluation, we conducted an experiment to estimate the eGFR when
MRI was performed and the eGFR slope, which is the annual rate of decline in eGFR. When the
accuracy was evaluated for 165 subjects, the eGFR was estimated to have a root mean square
error (RMSE) of 11.99 and a correlation coefficient of 0.83. Moreover, the eGFR slope was
estimated to have an RMSE of 4.8 and a correlation coefficient of 0.5.

Conclusions: Therefore, the proposed method shows the possibility of estimating the prognosis
of renal function based on water images obtained by the Dixon method.
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1 Introduction

Chronic kidney disease (CKD) is defined as a persistent decrease in estimated glomerular fil-
tration rate (eGFR) to <60 mL∕min per 1.73 m2, the presence of abnormalities suggestive of
renal injuries, such as proteinuria, or both.1,2 When CKD progresses, renal replacement therapy
is required. Moreover, CKD is also important as an underlying condition related to arterioscle-
rosis and immunodeficiency, so CKD can be seen to be related to a number of major causes of
death.1,2 CKD is a global medical problem affecting from 8% to 16% of the population
worldwide.3 Due to the wide variety of causes of CKD, there is no specific therapeutic inter-
vention, and it is necessary to detect the disease early and control the risk factors for kidney
damage.3
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When a nephrologist treats a patient with renal dysfunction with an unknown clinical course,
the nephrologist often refers to imaging findings for the kidney in addition to laboratory data and
medical history. To this end, renal ultrasonography, abdominopelvic x-ray computed tomography,
and renal magnetic resonance imaging (MRI) are useful. The nephrologist predicts the potential
renal function suggested by the morphology and reflects this potential in the treatment planning.

MRI has a particularly good resolution in terms of soft-tissue contrast and, with the use of
appropriate imaging methods, it is possible to obtain detailed information on the internal struc-
ture of the kidney, such as the corticomedullary border.4 Moreover, MRI can also provide data on
the physiological aspects of the kidney. The T2* value of the blood oxygenation level-dependent
(BOLD) method is an index of ischemia/hypoxia, which may lead to the progression of CKD,
and is significantly correlated with the rate of deterioration of CKD.5,6 The apparent diffusion
coefficient value of the diffusion-weighted image is an index related to renal fibrosis and is
significantly correlated with the pathological findings of renal biopsy.7 As described above,
there are high expectations regarding MRI as a noninvasive and multifaceted kidney evaluation
method, but MRI has one drawback in that there is no method available for the comprehensive
quantification of images.

Traditionally, medical images have been measured by the region of interest (ROI) method. In
the ROI method, a rectangular or circular area is selected, and the average value of the signal
intensities in the area is used as a representative value. Problems with this method include the
possibility that arbitrary decisions made by the observer may involve difficulty in including
location information and the fact that only a part of the image can be measured. Pruijm
et al.5 proposed the 12-layer concentric objects (TLCO) method for analyzing the renal region
by dividing this region into 12 layers. The TLCO method is a method of designating the inside
and outside of the renal region and analyzing the entire area based on the 12 layers. The external
(cortex) and internal (medullary) regions of the kidney have different structures and functions,
and the TLCO method considers the peculiar structure of the kidney. In addition, it has been
reported that the TLCO method is more stable than the ROI method because the entire renal
region is stratified and analyzed simply by specifying the external and internal regions.8

However, images that are obtained clinically may be atrophied or deformed when the kidney
is damaged and may show individual differences or contain cysts. As such, it is not always
possible to divide kidneys evenly into multiple layers, resulting in unstable findings. Therefore,
there is a desire for a fully automatic and stable method of kidney analysis.

As a comprehensive quantification method for renal images, Kuo et al.9 proposed a method
for estimating the eGFR at the time of examination using deep learning and ultrasonic images. In
contrast, computer-aided diagnosis (CAD) studies on renal MRI and studies on transplanted
kidneys have been reported. Khalifa et al.10 proposed a framework that estimates the rejection
of transplanted kidneys using the time-series dynamic contrast-enhanced-magnetic resonance
imaging (DCE-MRI) method. In this method, images obtained by time-series DCE-MRI are
aligned, and the renal region is extracted using the level-set method. The alignment is then cor-
rected, and the cortex is calculated and analyzed based on the brightness from the extracted renal
region. Shehata et al.11 proposed a method for estimating the rejection of transplanted kidneys
using deep learning. The DCE-MRI method requires a contrast medium and cannot be applied in
cases of CKD. In addition, it is difficult to extract the cortex based on the brightness in impaired
kidneys.

In this study, we attempted to solve the above problems and develop a comprehensive evalu-
ation method for renal MRI that can be applied as a clinical test. By taking advantage of the close
relationship between renal morphology and renal function, the water images used in the Dixon
method for evaluating the internal structure of the kidney were used to evaluate the target, and
the correct label was eGFR, which is an index of renal function. Dixon techniques rely on the
difference in resonance frequency between fat and water, and, therefore, fat-only, water-only,
in-phase, and out-of-phase images are acquired.12 In the kidney, where the water-rich organ
parenchyma is surrounded by fat, Dixon or similar fat-suppressed images clearly distinguish
the renal parenchyma from the surrounding structure. We propose a method of extracting the
renal region from magnetic resonance images with a U-net, converting the extracted renal region
into a nonrigid body in the target mask, and then analyzing this region based on the TLCO of
the target mask.
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2 Material and Methods

The proposed automated framework is shown in Fig. 1. The proposed framework uses the
following four steps to process the MRI of the Dixon method:

1. Kidney area segmentation from the surrounding abdominal structures by U-net.
2. Noise removal by three-dimensional (3D) labeling.
3. Nonrigid registration of kidney area and target mask.
4. Calculation of the TLCO.
5. Estimation of the renal function (eGFR) by a regression support vector machine (SVM).

In this paper, the proposed method is the automatic TLCO (A-TLCO) method that compen-
sates for the weaknesses of the previously reported TLCO method and automates the measure-
ment process. The details of the method are described below in order to distinguish the proposed
method from the conventional manual TLCO method.

2.1 Kidney Area Is Segmented from the Surrounding Abdominal Structures
by U-net

Water images of the Dixon method used in this study have a clear renal region. In addition, this
section describes a rough extraction of the renal region. Therefore, we have decided to use U-net,
which is known to provide good results for the area extraction of medical images.13 Coronal
sections of Dixon water images were used. There are three to six sliced images per subject, and
the image size is 320 × 320. We used 1201 images of 174 cases. All images were created by a
specialist as a renal segmentation image. Figure 2 shows the U-net used for renal region extrac-
tion. The network discriminates between three classes: kidney, kidney boundaries, and other
tissue. However, there is an imbalanced distribution of samples in the kidney boundaries class
as compared with the other tissue class. We used a weighted cross-entropy loss in order to com-
pensate for this imbalance and achieve more accurate learning when training the network. We
used softmax with weighted cross-entropy loss for network output and true label comparison.

Extraction of kidney area by U-net

Train mask

Result of U-netU-net
Original

Noise removal
by 3D labeling

Original Kidney area

Nonrigid registration

Left-kidney

TLCO

Left-kidney Histogram
feature

Estimation 
of eGFR by 
Regression 

SVM

Extraction of target kidney area 
and TLCO by manual (doctor)

Fig. 1 Proposed CAD system for estimation of the glomerular filtration rate slope from MRI
using the Dixon method.
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Fig. 2 The U-net architecture used for renal region extraction in this study.
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Cost minimization on 50 epochs was performed using the adaptive moment estimation optimizer
with a learning rate of 0.0001. The training time for this network was ∼1 h on a workstation
with an NVIDIATITAN RTX GPU × 2. A total of 1201 images were divided into 600 and 601
images, and classification was performed to extract the renal region. The renal function estima-
tion experiment was then performed for all subjects. Figure 3 shows the extraction results
obtained by U-net. Figure 3(a) is an input image, and Fig. 3(b) is a teacher image. Figure 3(c)
shows the extraction result. It can be confirmed that there are few false positives and that the
region close to the renal region can be extracted.

2.2 False-Detection Removal by 3D Labeling

Although the renal region detected by U-net was highly accurate, false detection occurred. False
positives are extracted for organs other than kidneys, as shown in Fig. 4(b). This may be because
when U-net is trained with 64 × 64 patches, spatial information larger than the patch size is lost.
To improve this problem, methods including detecting the location of the kidney by object detec-
tion, such as Faster R-CNN14 or YOLOv3,15 and applying semantic segmentation in a narrow
region are considered. However, in this study, the boundary of the kidney by U-net is well dis-
criminated, and there are few false positives for other organs, so there is little need to complicate
the process. Therefore, we decided to perform 3D labeling for each subject and exclude areas

Fig. 3 Results of renal region extraction by U-net: (a) original, (b) mask, and (c) result.

Fig. 4 Kidney area obtained by U-net: (a) slice 1, (b) slice 2, and (c) slice 3. Result of the
elimination of noise area by 3D labeling: (d) slice 1, (e) slice 2, and (f) slice 3.
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other than those with a large area. The processed results are shown in Fig. 4. Figures 4(a)–4(c)
show the extraction results by U-net. It can be confirmed that false positives occur in areas other
than the renal region. Figures 4(d)–4(f) show the results of 3D labeling and exclusion of areas
with a 3D area of 2500 pixels or less. This procedure was applied to all 1201 images, and it was
confirmed that there were no cases of the renal region being accidentally excluded.

2.3 Nonrigid Registration of Kidney Area and Target Mask

An effective method for estimating renal function is to analyze the structure of the kidney while
considering the kidney anatomically.5,16 However, time and effort are required for a specialist to
manually extract the renal region. In addition, manual measurements will result in different
results depending on the specialist. Therefore, we propose a method by which to automatically
identify the positions of the cortex and medulla of all images by registration of all of the renal
regions extracted by U-net to one target mask. The registration method is performed in two steps
using a MATLAB function. The first step is a brightness-based affine transformation. The bright-
ness-based registration method calculates the similarity between two images, repeats the affine
transformation so that the similarity is high, and estimates the geometric transformation (trans-
lation/rotation/scaling/shear) with the highest similarity. The processing results are shown in
Fig. 5. Figure 5(a) is the original image. Figure 5(b) shows the results of extracting the renal
region by U-net. Figure 5(c) is the target mask. Figure 5(c) is the renal region of a normal renal
image extracted by a specialist. A typical patient has two kidneys. In this study, we analyze the
kidney with a larger area. In Fig. 5(b), the left kidney is larger. As such, the left kidney is
extracted and registered with the target mask. Figure 5(d) shows a pseudocolor image of the
target mask and the initial position of the extracted kidney. The pseudocolor image shows the
target mask in green, the extracted kidney in magenta, and the overlapping pixels of both in
white. The result of the affine transformation is shown in Fig. 5(e). Next, the shape is finely
modified by registration using a brightness-based displacement field.9,10 In this paper, the regis-
tration is performed using the displacement field based on Thirion’s demons algorithm.1,2 The
result of modification of the image shown in Fig. 5(e) using the displacement field is shown in
Fig. 5(f). The fine shape has been modified to approach the target mask. Figure 5(g) shows the
final registration of the image.

Fig. 5 Result of rigid transform: (a) original image, (b) result by U-net, (c) target mask, (d) initial
position, (e) affine transform, (f) displacement field, and (g) result of registration.
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2.4 Calculation of TLCO

In this study, the TLCO method is used for the analysis of renal function. The TLCO method
specifies the inner (medullary side) and outer (cortical side) boundaries of the renal parenchyma
and divides the renal region into 12 layers from the outside to the inside. The method for layering
is not explained in the TLCO paper.8 Therefore, in this study, we calculated the TLCO using
geodesic distance conversion.17 When geodesic distance conversion inputs a binary image of the
renal region and a seed image, a distance conversion image is generated based on the seed image.
Figure 6(a) shows a binary image of the renal region extracted by a specialist. Figure 6(b) shows
a seed image made by a specialist. Figure 6(c) shows a pseudocolor image of the geodesic dis-
tance conversion. However, the image shown in Fig. 6(c) was not obtained by dividing the renal
region into 12 layers. Therefore, the result of geodesic distance conversion was normalized into
12 layers. Specifically, the number of layers was divided by the maximum value and then multi-
plied by 12. The normalized geodesic distance conversion pseudocolor image is shown in
Fig. 6(d). The target mask is very important because it directly affects the calculation of the
TLCO method. In this study, we decided to use two types of images, a normal kidney image
selected by a specialist and the kidney image with the largest region. Since the TLCO method
divides the kidney into 12 layers, calculation with a small atrophied kidney is difficult.
Therefore, a kidney image with a small area cannot be used as a target mask. Figure 7 shows
the results of applying the TLCO method to MRI images of patients. Figure 7(a) is a normal
image selected by a specialist. Figure 7(b) shows the results of the specialist extraction of the
renal region from Fig. 7(a). Figure 7(c) is a pseudocolor image divided into 12 layers by the
TLCO method. Figure 7(d) is an image of the kidney with the largest area. Figure 7(e) shows the
result of the specialist extracting the renal region from Fig. 7(d). Figure 7(d) is a pseudocolor
image divided into 12 layers by the TLCO method.

2.5 eGFR Used to Estimate Renal Function by RSVM

In the TLCO method, we used 12 measurements, one for each layer, to estimate the cortico-
medullary gradient of MR signal intensity based on the following definitions: cortical

Fig. 6 Calculation of the TLCO: (a) mask image, (b) seed image, (c) geodesic distance conver-
sion, and (d) TLCO.
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(mean of the three superficial layers), medullary [mean of deep layers (layers 8 to 10)], and the
gradient [linear fit to the data points (layers four to seven) when plotting MR signal intensity
versus % of depth]. It has been reported that the gradient of the MR signal intensity correlates
with the eGFR.8 As chronic damage progresses in the kidney, the difference between the outer
and inner layers in the internal structure disappears. The nephrologist evaluates these changes
from the images. Therefore, computing the gradient of MR signal intensity from the outer to
inner layers, the fourth to seventh layers provides an index that replaces the human evaluation
index. The process has been explained in previous reports, and this index is known to be useful in
the evaluation of kidney images.5,16,18 In this study, we decided to use machine learning to esti-
mate renal function. At this time, eGFR is a continuous value. Therefore, eGFR is estimated
using a regression support vector machine (RSVM). In addition, the TLCO method uses the
average value of each layer. However, in this study, the histogram of each layer is used as a
feature. The number of bins in the histogram is 50. The finally calculated features are the mean,
kurtosis, skewness, median, a median of each TLCO (12 feats) and histogram (50 feats) of all
renal regions, and the histogram of each TLCO (12 × 50 ¼ 600 feats) was calculated. In addi-
tion, a noise-removed image was created using a median filter. The noise-removed image was
created by applying the median filter once and twice. The feature was calculated from the noise-
removed image by the same method. Therefore, the number of features calculated as a feature
candidate is 1998.

3 Results

3.1 Patient Data and MRI Acquisition Protocol

CKD patients with a sufficient number of visits for the treatment and evaluation of CKD (more
than three times during a period of at least 1 year) were enrolled (n ¼ 165, 105 men and 55
women, aged from 19 to 87 years, and with a mean age of 60� 15 years). The proposed frame-
work has been tested on two-dimensional water images of the Dixon method data sets collected
from 165 subjects. Magnetic resonance examinations were performed on a 3.0 T (Skyra,
Siemens Healthcare, Erlangen, Germany) scanner using a spine coil and an 18-channel phased-
array body coil. Coronal 3D T1-weighted volume-interpolated breath-hold examination Dixon
images were generated from in-phase, out-of-phase, fat-only, and water-only images.12 The MRI

Fig. 7 TLCO of the target mask: (a) normal kidney, (b) mask, (c) TLCO, (d) large kidney, (e) mask,
and (f) TLCO.
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parameters were as follows: echo time (TE); delta TE (= 2.46 ms); delta (= 1.23); repetition time
(= 5.35 ms); flip angle (= 10 deg); field of view (¼360 × 360 × 144 mm); recon matrix (= 320);
and respiratory compensation (= breath-hold). During the observation period, blood and urine
data were sampled every 3 to 6 months. The eGFR was calculated using the formula for Japanese
patients,19 i.e., eGFR (mL∕min ∕1.73 m2) = 194 × Cr − 1.094 × age − 0.287 (× 0.739 for
female cases). Since eGFR always decreases, we performed a linear approximation using blood
test results from multiple time points and calculated the eGFR at the date of imaging. We also
estimated the rate of decline in eGFR using the same linear approximation method and sub-
sequently defined the “annual rate of decline in eGFR = eGFR slope” as an index of CKD prog-
nosis. Urinary protein (UPro) levels were noted and corrected for urinary creatinine (urine
protein: creatinine ratio, g:g). The Institutional Review Board of Saitama Medical University
approved this research and its publication in accordance with the Declaration of Helsinki
and the Japanese guidelines for clinical research (Approval Nos. 12065, 18107, 19048.01,
20107.01).

3.1.1 Kidney segmentation

In this study, U-net is used to extract the renal region. To determine the hyperparameters of
U-net, experiments were conducted with patch sizes of 32 × 32, 64 × 64, and 128 × 128 and
two to four layers. In the experiment, 600 of the 1201 water images of the Dixon method were
used for learning, and the extraction accuracy of 601 images was evaluated. The segmentation
accuracy is evaluated using the Dice similarity coefficient, characterizing the agreement between
the segmented and ground truth regions. The dynamic susceptibility contrast (DSC) is defined
by the following expression:

EQ-TARGET;temp:intralink-;sec3.1.1;116;446Dice coefficient ¼ 2TP

2TPþ FPþ FN
;

where TP, FP, and FN denote the true positive, false positive, and false negative segmentation
results, respectively. As illustrated in Table 1, the closer the DSC is to 1, the better the segmen-
tation. To obtain the ground truth in our experiments, a medical specialist delineated the kidney
borders.

In addition, Table 2 shows the accuracy of the two-class (renal region and other tissues)
segmentation, and Table 3 shows the accuracy of the three-class (renal region, renal region boun-
dary, and other tissues) segmentation. In addition, erosion and dilation treatment was added as

Table 1 Confusion matrix.

Ground truth

Kidney area Other area

U-net result Kidney area TP FP

Other areas FN TN

Table 2 Accuracy of two-class segmentation result by U-net.

Two-class

The number of layers of U-net

2 (%) 3 (%) 4 (%)

Patch size 32 × 32 77 79 80

64 × 64 79 82 82

128 × 128 77 82 83
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needed. The best accuracy was 87%. The most accurate results were for the three-class mask
(renal region, renal region boundary, and other tissues), three layers of U-net, and a patch size of
64 × 64. Similar results were obtained for four layers of U-net and a patch size of 128 × 128.
In this study, we decided to use three layers of 64 × 64 in consideration of learning time.

3.1.2 Comparison of the TLCO and A-TLCO methods

In this study, we estimate the eGFR by multiple regression analysis using the average value of
each layer of the TLCO calculated from water images of the Dixon method for comparison with
the A-TLCO method. The estimated results by the TLCO method are shown in Table 4. Multiple
water images of the Dixon method were obtained for each subject. In this study, we analyze the
kidney with the largest area for each subject. UPro is known to correlate with renal function in
urine and blood tests. The correlation coefficient is shown in Table 4. Upro had a negative cor-
relation of −0.32. On the other hand, the result of manually creating TLCO and estimation by
multiple regression analysis was 0.49. The TLCO method results correlate better with the eGFR
as compared with the UPro. On the other hand, the correlation coefficient estimated using multi-
ple regression analysis calculated by the A-TLCO was 0.46. Therefore, it was clarified that the
proposed method enables TLCO analysis without the need for a specialist to select the renal
region.

3.1.3 Estimation of renal function by RSVM

The accuracy of the A-TLCO method was evaluated using an RSVM and a regression random
forest (R-RF). The root mean square error (RMSE) and correlation coefficient were used for evalu-
ation. The RMSE was calculated as the accuracy evaluation of continuous values, as follows:

EQ-TARGET;temp:intralink-;sec3.1.3;116;297RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðFi − TiÞ2
vuut ;

where N is the number of estimated values, F is the estimated value, and T is the true value.
In addition, we decided to calculate the correlation coefficient to verify the clinical significance
of the estimation

EQ-TARGET;temp:intralink-;sec3.1.3;116;204CorrelationðF; TÞ ¼ 1

N − 1

XN
i¼1

�
Fi − μF

σF

��
Ti − μT

σT

�
;

Table 3 Accuracy of three-class segmentation result by U-net.

Three-class

The number of layers of U-net

2 (%) 3 (%) 4 (%)

Patch size 32 × 32 82 84 85

64 × 64 84 87 86

128 × 128 82 86 87

Table 4 Correlation of eGFR by multiple regression analysis.

UPro Manual Affine Affine&Int

Accuracy of registration — — 0.9 0.88

Correlation −0.32 0.49 0.46 0.42
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where μ is the average and σ is the standard deviation. A-TLCO registration was performed with
a target mask. In this case, the accuracy may differ depending on the target mask. The A-TLCO
divides the renal region into 12 layers. Since dividing the kidney into 12 layers is difficult if the
kidney is atrophied, we decided to use two types of kidneys: kidneys in good condition that are
closest to normal and kidneys that have the largest area among the normal cases as selected by a
specialist. In addition, for the registration method, we compared the affine transformation and the
result of applying the displacement field-based registration method in addition to the affine trans-
formation. Feature selection was performed using the forward step-wise method. Subject-based
cross-validation was used for accuracy evaluation. Table 5 shows the results of eGFR at the time
of MRI imaging. The maximum value of the eGFR used in this study is 113, and the minimum
value of the eGFR is 9.4. The best estimation correlation coefficient of eGFR was obtained by
using a kidney with a large area as the target mask, applying affine and displacement field-based
transformations for registration, and using RSVM, with an RMSE of 11.99 and a correlation
coefficient of 0.83. An expert manually calculated 165 TLCO and estimated these values using
RSVM results with an RMSE of 15.07 and a correlation coefficient of 0.69. The RSVM models
were created using MATLAB 2019a in the experiment. The training option and parameters used
for training were as follows: kernel = rbf, box constraint = iqrðYÞ∕1.349, and ε = iqrðYÞ∕1.349.
Here, iqrðYÞ is the interquartile range of response variable Y. The kernel width parameter σ was
determined by a heuristic subsampling procedure. We compared the SVM with the R-RF. The
number of trees was set to 300, and the parameters were used by default. The results obtained
using the R-RF indicated that the RMSE of the eGFR was 14.48 and that the correlation coef-
ficient was 0.76. In addition, we compared the results using the deep learning of GoogLeNet. To
use GoogLeNet in this study, the last fully connected layer, softmax, and the classification output
of the network were deleted, and the fully connected layer and regression layer of output 1 were
added. GoogLeNet uses the result of learning with ImageNet20 as transfer learning. The training
option and parameters used for training were as follows: initial learning rate = 0.005, Max
Epochs = 100, l2reg = 0.0001, and Mini Batch Size = 64. Subject-based cross-validation was
used for accuracy evaluation. The results obtained using GoogLeNet indicated that the RMSE of
the eGFR was 21 and the correlation coefficient was 0.23. We also compared the method with
deep learning and SVM (GoogLeNet + SVM), which has recently been the focus of attention.

Table 5 Accuracy of eGFR by machine learning.

Discriminator Mask type
Registration
method

eGFR (present)

The number
of featuresRMSE Corr

Regression-SVM Normal kidney Affine 12.17 0.83 21

Affine & Disp 14.06 0.74 13

Large kidney Affine 12.89 0.8 19

Affine & Disp 11.99 0.83 31

R-RF Normal kidney Affine 14.96 0.71 7

Affine & Disp 15.47 0.67 8

Large kidney Affine 14.45 0.76 8

Affine & Disp 14.48 0.76 8

Regression-SVM Manual extraction 15.07 0.69 11

GoogLeNet 21 0.23 —

GoogLeNet + SVM 21 −0.01 —

Note: Bold value is the discriminator with the highest correlation coefficient.
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With the pretrained GoogLeNet, the high-dimensional features that occur after obtaining the
deep features of the MRI images are reduced with the neighbor component analysis (NCA)
method.21,22 The accuracy was evaluated by SVM using the features obtained by NCA. The
results obtained using GoogLeNet + SVM indicated that the RMSE of the eGFR was 21 and
that the correlation coefficient was −0.01. Table 6 shows the estimation results for eGFR slope,
which indicates the prognosis of renal function. The maximum value of eGFR slope used in this
study is 50.5, and the minimum value is −27.6. The best estimation correlation coefficient of the
eGFR slope was obtained by using a kidney with a large area as the target mask, applying affine
and displacement field-based transformations for registration, and using an RSVM with an
RMSE of 4.8 and a correlation coefficient of 0.5. A similar correlation coefficient was obtained
when using an RSVM with an RMSE of 4.58, and a correlation coefficient of 0.5. An expert
manually calculated 165 TLCO and estimated the TLCO using RSVM results with an RMSE
of 4.82 and a correlation coefficient of 0.45. GoogLeNet was calculated to obtain an RMSE of
5.35 and a correlation coefficient of −0.09. GoogLeNet + SVM was calculated to obtain an
RMSE of 5.25 and a correlation coefficient of −0.11.

3.2 Selected Features of the Proposed Method

In this study, 1998 features were calculated, and feature selection was performed using the for-
ward step-wise method. The eGFR estimation required an average of 14 features. The least-cases
scenario involved seven features, and the most-cases scenario involved 31 features. Table 5
indicates the number of features required for convergence. Table 7 shows the features selected
for estimating eGFR (RSVM + Large kidney + Affine & Int). The histograms calculated from the
entire mask were selected from 7 out of 31 features. However, most of the histograms were
created for each A-TLCO layer and 24 of the 31 features. Figure 8 shows which layer was
selected in the TLCO layer-by-layer histogram. At this time, layer 1 is the outermost layer, and
layer 12 is the innermost layer. Layers 4 to 6 are the boundaries between the cortex and the
medulla. Although the features are selected from the histogram of each layer, relatively many
bins of the layers corresponding to the inside and outside are selected. This may indicate that
changes in the cortex and medulla are effective. In addition, many features of the image from
which noise was removed by applying a median filter were selected.

Table 6 Estimation accuracy of eGFR slope by machine learning.

Discriminator Mask type
Registration
method

eGFR slope

The number
of featuresRMSE Corr

Regression-
SVM

Normal kidney Affine 4.87 0.4 8

Affine & Int 4.8 0.48 9

Large kidney Affine 4.86 0.42 5

Affine & Int 4.8 0.5 14

R-RF Normal kidney Affine 4.68 0.44 5

Affine & Int 4.58 0.5 8

Large kidney Affine 5.00 0.28 4

Affine & Int 4.73 0.42 5

Regression-
SVM

Manual extraction 4.82 0.45 7

GoogLeNet 5.35 −0.09 —

GoogLeNet + SVM 5.25 0.11 —

Note: Bold value is the discriminator with the highest correlation coefficient.
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Table 7 shows the number of features required for convergence of the eGFR. Table 8 shows
the features selected for estimating the eGFR slope (RSVM + Large kidney + Affine & Int). The
mean, kurtosis, skewness, median, and histogram calculated from the entire mask were selected
from 2 of 14 features. However, most of the histograms were created for each A-TLCO layer
and 12 of the 14 features. Figure 9 shows which layer was selected in the TLCO layer-by-layer
histogram. As few as 12 features are selected, and relatively many bins of the layers corresponding

Table 7 Features selected for eGFR estimation.

Feature name Number of features

Mean, kurtosis, skewness, median (4 × 3 = 12 feats) 0

Histogram of kidney (50 feats) 1

Histogram of kidney of median filter one time (50 feats) 1

Histogram of kidney of median filter two times (50 feats) 5

Median of each layer of A-TLCO (12 × 3 = 36 feats) 0

Histogram of each layer of A-TLCO (600 feats) 7

Histogram of each layer of A-TLCO of median filter one time (600 feats) 10

Histogram of each layer of A-TLCO of median filter two times (600 feats) 7

Fig. 8 A-TLCO histogram features selected by eGFR estimation.

Table 8 Features selected for eGFR slope estimation.

Feature name Number of features

Mean, kurtosis, skewness, median (4 × 3 = 12 feats) 1

Histogram of kidney (50 feats) 0

Histogram of kidney of median filter one time (50 feats) 1

Histogram of kidney of median filter two times (50 feats) 0

Median of each layer of A-TLCO (12 × 3 = 36 feats) 0

Histogram of each layer of A-TLCO (600 feats) 4

Histogram of each layer of A-TLCO of median filter one time (600 feats) 0

Histogram of each layer of A-TLCO of median filter two times (600 feats) 8
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to the inside and outside are selected. In addition, many features of the image from which noise
was removed by applying a median filter were selected.

4 Discussions

4.1 Performance of the Proposed Method

In this study, renal function was estimated using water images of the Dixon method. The eGFR
accuracy was 0.38 when estimated by multiple regression analysis using the average value for
each layer. On the other hand, when a normal kidney with a large area was used as the renal
region and affine transformation and displacement field registration were used for registration,
the RMSE was 11.99 and the correlation coefficient was 0.83, which is a large improvement.
Large kidneys tended to have better RMSE and correlation coefficients than normal kidneys. For
comparison, features were calculated and evaluated using the TLCO manually extracted by a
specialist. The TLCO method has an RMSE of 15.07 and a correlation coefficient of 0.69. Better
results were obtained with the A-TLCO method than with the TLCO method. It is thought that
the reason for this is that the value provided by the TLCO method varies because the renal region
is manually divided into layers and dividing small kidneys, such as atrophic kidneys, into 12
layers is difficult. The results obtained by GoogLeNet had an RMSE of 21 and a correlation
coefficient of 0.23. Using GoogLeNet + SVM did not provide good results, giving an RMSE
of 21 and a correlation coefficient of −0.01. It became clear that estimation by simple deep
learning was difficult. This probably indicates the small number of data used for learning as
well as the difficult estimation of information that specialists cannot recognize from images,
using deep learning. However, using the A-TLCO method, we found that eGFR could be esti-
mated with high accuracy from water images of the Dixon method.

A similar experiment was performed on the eGFR slope. The eGFR slope was calculated
using a normal kidney with a large area as a renal region, and affine transformation and dis-
placement field registration were used for registration. The RMSE was 4.8, and the correlation
coefficient was 0.5. In the estimation of the eGFR slope, a correlation coefficient of 0.5 was also
obtained using R-RF. However, the estimated eGFR slope tended to have a significantly lower
correlation coefficient than the eGFR estimation. The TLCO manually extracted by a specialist
was also evaluated using the same method. The RMSE was 4.82, and the correlation coefficient
was 0.45. Better results were obtained with the A-TLCO method. The results obtained by
GoogLeNet had an RMSE of 5.35 and a correlation coefficient of −0.09. Using GoogLeNet
+SVM did not provide good results, giving an RMSE of 5.25 and a correlation coefficient
of 0.11. It was again clear that estimation by simple deep learning was difficult. However, it
was found that the prognosis of renal function can be estimated to some extent using the
A-TLCO method, even using water images of the Dixon method. In order to improve the accu-
racy of eGFR slope estimation, it is necessary to consider different MRI images, such as the
T2* map generated by BOLD MRI.

Fig. 9 A-TLCO histogram features selected by slope estimation.
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4.2 Adequacy for Clinical Application of Selected Features of the Proposed
Method

Nephrologists have empirically predicted renal function from renal morphology. In diagnosing a
case of renal dysfunction of unknown course, acute kidney injury and chronic kidney disease are
diagnosed from blood tests and an imaging study including MRI, and an examination/treatment
policy is determined. For example, the discrepancy between the predicted eGFR from the images
and the actual eGFR is known to be large in the case of acute kidney injury, while in the case
of chronic kidney injury, the discrepancy is small. In addition, MRI is used as a reference for
predicting renal function recovery by treating patients with acute kidney injury. However, neph-
rologists empirically predict renal function based on the size of the kidney, surface irregularities,
and the clarity of the boundary between the cortex and medulla, and quantitative evaluation is
difficult. On the other hand, this study is expected to allow quantitative assessment and repro-
ducibility to diagnostic imaging by MRI. The proposed method is a framework for quantifying
the state of the kidney and can be applied to various types of MRI, such as T2* mapping.
Therefore, the proposed method is expected to become a new imaging method for evaluating
various physiological and pathological aspects of the kidney.

5 Conclusion

We proposed the A-TLCOmethod to estimate renal function fromwater images obtained using the
Dixon method. The proposed method afforded an RMSE of 11.99 and a correlation coefficient of
0.83 for eGFR estimation, an RMSE of 4.8 and a correlation coefficient of 0.5 for eGFR slope,
which is an indicator of CKD prognosis. These results confirmed that the reliability was high and
the accuracy was dramatically improved compared with the conventional TLCO method.

The de facto standard for MRI measurement is the ROI method. Since the kidneys are con-
centrically arranged with functional and anatomical distinctions, it has been reported that the
TLCO method provides more information than does the ROI method.8 In this paper, by adding
auto-annotation and registration processing using the mask, as well as devising the features used
in the estimation, we have been able to greatly improve the accuracy of the estimation using the
features obtained by the conventional TLCO method.

MRI methods that can acquire the status of hypoxia and fibrosis have been reported, just as
water imaging can image the internal structure of the kidney. Unlike x-ray computerized tomog-
raphy and ultrasonography, MRI can also provide the physiological and functional aspects of the
kidney along with positional information. As such, the proposed method of comprehensive MRI
quantification is expected to afford an important imaging analysis method that can provide useful
information to clinicians.
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