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Abstract

Purpose: The morphology of a polymer aligner, designed according to an orthodontic treatment
plan, determines clinical outcomes. A fundamental element of orthodontic tooth movement with
aligner treatment is the fit of the aligner’s surface to the individual teeth. Gaps between the
aligner and teeth do occur because current aligner fabrication is not capable of completely repro-
ducing the complex anatomy of the individual denture. Our study aims at a quantitative three-
dimensional assessment of the fit between optically transparent aligners placed on a polymeric
model of the upper dental arch for two thermofoil thicknesses at preselected thermoforming
temperatures.

Approach: Using an intraoral scan of a subject’s upper dental arch, eight models were printed
using a stereolithographic system. A series of eight NaturAligners® was manufactured with
a pressure molding process, using thermofoils with thicknesses of 550 and 750 μm and pre-
selected process temperatures between 110°C and 210°C. These aligners placed on the corre-
sponding models were imaged by an advanced micro computed tomography system. The
aligners and the models were segmented to extract the gaps and aligners’ local thicknesses
as a function of the processing temperature for the two foil thicknesses.

Results: The results indicate that the aligners show a better fit when the foils are processed at
higher temperatures. Nevertheless, processing temperatures can be kept below 150°C, as the gain
becomes negligible. Thermal processing reduces the average thickness of the aligners to 60%
with respect to the planar starting foil. These thickness distributions demonstrate that the aligners
are generally thicker on the occlusal surfaces of molars and premolars but thinner around the
incisors and buccal as well as on oral surfaces.

Conclusions: Hard x-ray tomography with micrometer resolution is a powerful technique
employed to localize the gaps between aligners and teeth, and it also enables film thickness
measurements after thermoforming. The thicker film on the occlusal surfaces is most welcome
because of aligner abrasion during wear. The NaturAligner® surfaces consist of a 25-μm-thin
cellulose layer, and thus the microplastics released via abrasion of less than this thickness are
expected to be substantially less critical than for other commercially available, optically trans-
parent aligners.
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1 Introduction

Orthodontic treatments with optically transparent aligners have seen a constant increase in
acceptance in recent years. The low acceptance rates of conventional orthodontic devices in adult
populations, due to a perceived lack of attractiveness, as well as workflows becoming easier for
practitioners, can explain the rising demand for aligner treatments.1,2 Orthodontic tooth move-
ment is accomplished by employing prolonged pressure on that tooth. The initial movement is
rapid, as it occurs within the dental alveolus. The periodontal ligament (PDL), which connects
the tooth to the alveolar bone, is stretched on one side and compressed on the other side of the
root so that a tension and a compression side can be differentiated.3 The disruption of the
mechanical balance of PDL and bone leads to the recruitment of osteoclasts and osteoblasts
in the vicinity of the tooth.4 These specialized cells are responsible for bone resorption on the
compression side and bone apposition on the tension side, respectively.5 This bone remodeling
usually occurs within 40 days after the initial force is applied.3

Aligners are used for treating mild-to-moderate and some complex malocclusions.6 In com-
parison with conventional orthodontic appliances, clear aligners are known to cause limited
negative periodontal effects, as they can be removed before cleaning one’s teeth,7 and limited
clinical emergencies, as they can be easily replaced if broken or lost.8 The rapid advancement of
digital technologies in dentistry and in the field of orthodontics has led most aligner manufac-
turing companies to adopt a complete digital workflow. As intraoral optical scanners have
become more accurate9 and easier to handle, more practitioners have been able to offer aligner
treatments to their patients. Such a treatment normally starts with an intraoral scan of the upper
and lower dental arch, and generated data are then processed using computer-aided design
(CAD) to create virtual three-dimensional (3D) models. A treatment-planning program enables
practitioners to virtually move the teeth in the desired position in steps that should range from
0.2 to 0.5 mm.10 For each step, a 3D model is created and printed using a stereolithographic
technique (3D printer). These models are then used to create aligners with a thermoforming
procedure using a polymer foil. Depending on the phase of the treatment, aligners of specific
thicknesses can be used to modulate the force applied to the tooth.11 This choice is important,
as excessive forces can cause hyalinization, bone necrosis, and external root resorption.12

Depending on the severity of the malocclusion, treatments last from 4 to 18 months.8 The success
of aligner treatments depends on multiple factors such as the precision of the intraoral scanners
and the 3D models,6 thickness and stiffness of the aligners,13,14 and fit on the dental arches
(see Fig. 1).

Several polymeric materials are commercially available on the market. Many of them,
however, release microplastics or even cytotoxic components.15 The recently introduced
NaturAligner® (Bottmedical AG, Basel, Switzerland), which comes in two thicknesses, namely,
550 μm, denoted NA.550, and 750 μm, denoted NA.750, is prepared from a bio-based material
that avoids exposure to microplastics during treatment. Research on the interaction between
microplastics and the human body is still ongoing, and long-term effects are thus only partly
understood.16 Nevertheless, health hazards caused by immunological disturbances and chemical
toxicity are currently being discussed, as well as their risks for cancer.17,18 Consequently, there
are concerns about the effect of wearing aligners on a patient’s health, as they should be worn for
20 to 22 h a day for a total period of up to 18 months, depending on the treatment plan. The
NaturAligner® has a 25-μm-thin biopolymer coating based on cellulose acetate, which separates
the force-generating polymer from the oral mucosa—thus preventing exposure.

Aligner thickness and fitting were evaluated by means of secondary electron microscopy,19,20

a two-dimensional (2D) technique with a large depth of focus. The current study is based on
morphology measurements of the aligners using micro computed tomography, a method already
successfully applied for investigation of the thickness and other geometric parameters of
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aligners.21–24 The 3D datasets of the present study were quantitatively analyzed to determine gap
volume and local thickness changes as the result of the thermoforming process. These results
support the engineer’s work in defining the parameters relevant for aligner production.

2 Methodology

2.1 Aligner Fabrication

The upper jaw of the subject was scanned using the intraoral scanner Medit i500 (Medit Corp.,
Seoul, South Korea). The subject showed noticeable abrasion on the incisors and canines due to
bruxism. The generated data were then converted into the Standard Tessellation Language format
and processed using CAD (Medit Link, Medit Corp., Seoul, South Korea) and triangle-mesh
software (Meshmixer, Autodesk Inc., San Rafael). Artifacts caused by the scanning process were
removed, and the edges of the model were smoothed to add a base to the models to ensure
sufficient mechanical stability during the thermoforming process. Eight copies of the model
were printed using the stereolithographic printer Formlabs Form3 (Formlabs, Somerville,
Massachusetts) on the basis of the photopolymer resin Grey V4. All models were printed in
407 layers measuring 50 μm each, washed with isopropyl alcohol to remove residual liquid
resin, and post-cured with ultraviolet light at a wavelength of 405 nm for a period of 15 min
and a temperature of 60°C. This last step enhanced mechanical properties by terminating
polymerization. A series of eight NaturAligners® were thermoformed on the dental models with
a pressure molding device (Biostar, Scheu-Dental, Iserlohn, Germany). It is noteworthy that the
pressure molding device guarantees orientation and reproducibility of model placement for
thermoforming.19 The process started by placing the foil in the holder and heating it with an
infrared heater. A thermometer probe was placed right under the foil, and once the desired tem-
perature was reached, the foil was positioned over the model and molded in the integrated pres-
sure chamber by applying air pressure of 5.8 bar. After a cooling period of 1 min, the aligners
were cut at the lower edge of the models but not dismounted. Each aligner had specific proper-
ties, as the two foil thicknesses of 550 and 750 μm were used. The four selected heating temper-
atures ranged from 112°C to 201°C.

2.2 Tomographic Imaging

NaturAligner® specimens and the resin-based models exhibited similar local x-ray absorption
values, so a simple intensity-based segmentation procedure was impossible. As the materials

Fig. 1 (a) An optically transparent aligner is a thermally processed polymer foil, which should fit
the complex human dentition. (b) Following planning, the foil should generate force and torque on
the teeth that need to be moved and rotated. Red-colored lines show the area of compression due
to the force indicated by the green-colored arrow. The fit is critical, as gaps prevent force trans-
mission, and the force amplitude correlates with the gray aligner thickness d . Therefore, the
present tomography study aims at measuring local thicknesses and identifying gaps, clearly vis-
ible in (c) the tomographic slice of an aligner suboptimal for orthodontic treatments.
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should not be modified by means of stains, this choice was a challenge of the study. Another
challenge was the potential plastic deformation of the aligners as the result of removing them
from the models. The scanning protocol was optimized to represent the aligner properly and to
rule out any mechanical damage. For each aligner and model set, two sets of tomographic data
were acquired: the aligner mounted on the model (modelþ aligner) and the model without
an aligner (model). The models were fixed on a holder, allowing us to scan them in the same
position during both scans. Subsequently, the corresponding modelþ aligner and model
images were 3D registered. Tomographic data acquisition was performed with nanotom m
(phoenix|x-ray, GE Sensing & Inspection Technologies GmbH, Wunstorf, Germany),
equipped with a nanofocus tube for a maximal acceleration voltage of 180 kVp and the ability
to generate power up to 15 W. In our case, we employed an acceleration voltage of 90 kVp
and a beam current of 200 μA. The effective pixel length of the radiographs was set to 33 μm
and resulted in (33 μm)3 voxels. The mean photon energy was increased by implementing
a 0.5-mm-thick aluminum film behind the transmission target. A set of 2000 radiographs was
taken along 360 deg with an exposure time of 2 seconds per projection. Scan duration was there-
fore ∼67 min.

2.3 Aligner Thickness Measurements

The bottom region of the modelþ aligner and the model image were rigidly registered with the
open-source software Elastix.25,26 As the resin-based models and the aligners had similar local
x-ray absorption values, aligner thickness was determined by subtracting the registered model
from the model+aligner images. The resulting aligner mask was extracted via automatic
thresholding using Otsu’s method, keeping the largest connected component and applying
morphological image-closing. By extracting 2D centerline masks from all slices in the three
orthogonal directions, and keeping centerline voxels that exist in more than one direction, the
final center surfaces were determined. They were then used as reference points to measure
thickness by calculating the distance to the nearest boundary point and multiplying it by a
factor of two. This method was validated using the visualization program VGStudio Max
2.1 (Volume Graphics, Heidelberg, Germany). Two reference aligners, i.e., NA.550 processed
at a temperature of 142°C and NA.750 processed at a temperature of 143°C, were chosen, and
a total of 10 positions were randomly selected for semi-automatic thickness measurements.
By applying an automated threshold and the function surface determination, defining the
boundary between an object and its background based on their density, we were able to display
the border of the aligner in an automated and a reproducible way. The distance between the
borders of the aligner along a manually defined line segment was then determined with a digital
measuring tool.

2.4 Gap Volume Determination

Gaps between aligner and model were extracted from the model þ aligner image, based on
thresholding the image with a fixed threshold, resulting in a binary mask. Three morphological
image operations were employed to fill the gaps in each mask: first, dilation by a sphere of radius
R, then filling holes, and finally erosion by a sphere of radius R. Gaps were defined by sub-
tracting the binary masks from the filled masks. To determine the same region of interest, a plane
2 mm below the tooth-gingiva border was defined in the reference model NA.550 and processed
at a temperature of 200°C. This plane was transferred to all model þ aligner images by image
registration, to remove image content below the plane as well as to seal the model þ aligner

image to support the hole-filling operation for the creation of the filled mask. This method was
also validated using VGStudio Max 2.1 (Volume Graphics, Heidelberg, Germany) by manually
segmenting all of the gaps in reference model NA.750 at a processing temperature of 176°C,
as well as the gap of a region of interest, i.e., the buccal gap between the central incisors, for all
models. To define this region of interest, all modelþ aligner images were aligned and cropped
by predetermined coordinates. The region-growing method was used to semi-automatically seg-
ment the gaps, thereby determining whether a voxel should be included in the segmentation by
defining a seed voxel and a suitable threshold.
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3 Results

3.1 Validation of Automatic Measurement

The comparison of manual and automatic thickness measurements is shown in Table 1. With the
semi-automatic method, we found a mean thickness of 165 μm for the NA.550 and 194 μm for
the NA.750 aligners at five randomly selected positions each. Using the automatic measurement
method, a mean thickness of 162 μm for the NA.550 aligner fabricated with a processing temper-
ature of 142°C, and 168 μm for the NA.750 aligner prepared at a processing temperature of
143°C, was determined for the same positions. The mean absolute difference for the NA.550
aligner was found to be 15 μm, and for aligner NA.750 it amounted to 26 μm. It is worthy to
note that the isotropic voxel size for all datasets was 33 μm. The consistency between the two
measurement methods was quantified via the Pearson’s correlation coefficient ρ. They correlated
with ρ ¼ 0.828 for the NA.550 aligner fabricated with a processing temperature of 142°C and
with ρ ¼ 0.925 for the NA.750 aligner prepared at a processing temperature of 143°C.

The comparison of the automatic and manual segmentations of gaps also showed consistency
(see Table 2). Using a fixed gray-value threshold of 150 and automatic segmentation, a total gap
volume of 24.6 mm3 was determined for a selected aligner; this volume was spread over approx-
imately four dozen gaps along 14 teeth of the selected aligner NA.750 processed at a temperature
of 176°C. Manual segmentation of the same aligner resulted in a total volume of 29.4 mm3. The
difference between the two methods was found to be 4.8 mm3 (see the last column of Table 2).

The results from segmenting the buccal gap between the central incisors for all aligners are
shown in the columns headed by ROI (see Table 2). The mean gap volume for automatic

Table 1 Comparison of automatic and manual thickness measurements of the NA.550 and
NA.750 aligners fabricated at a processing temperature of 142°C and 143°C, respectively.
The results were obtained at five arbitrarily selected positions, where the aligner was clearly
separated from the model surface.

NA.550

Automatic (μm) 162 187 114 187 162

Manual (μm) 181 166 128 176 172

Difference (μm) -19 21 14 11 −10

NA.750

Automatic (μm) 187 219 114 187 132

Manual (μm) 203 237 148 195 186

Difference (μm) −16 −18 −34 −8 −54

Table 2 Automatic determination of the volume of one selected gap (ROI), the buccal gap
between the central incisors, and total gap volume (all gaps) in comparison to manual
segmentation.

Aligner

ROI All gaps

NA.550 NA.750 NA.750

Process temperature (°C) 112 142 173 200 112 143 176 201 176

Automatic (mm3) 24.8 6.9 1.7 2.2 16.7 2.2 2.0 1.2 24.6

Manual (mm3) 25.4 7.0 1.0 1.3 16.4 2.9 1.7 1.3 29.4

Difference (mm3) −0.6 −0.1 0.7 0.9 0.3 −0.7 0.3 0.1 −4.8
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segmentation totaled 8.9 mm3 for the NA.550 and 5.5 mm3 for the thicker NA.750 aligners.
Also employing the fixed gray-value threshold of 150 as a starting value for the manual
segmentation, we found mean gap volumes of 8.7 mm3 for the NA.550 and 5.6 mm3 for the
NA.750 aligners. The mean absolute difference between automatic and manual procedures was
0.6 mm3 for the NA.550 and 0.3 mm3 for the NA.750 aligners. The related Pearson’s correlation
coefficients were 1 and 0.998, respectively. Taking the correlation coefficients and mean absolute
difference values into consideration, we validated the reliability of the automatic gap volume and
aligner thickness measurement methods.

3.2 Aligner Thickness Distribution

The results of the local aligner thickness measurements are given in Table 3. Using the automatic
measurement method, the following median aligner thicknesses were determined for all center-
surface voxels. For the NA.550 aligners, the median thickness was 361 μm using a processing
temperature of 112°C, 337 μm using a processing temperature of 142°C, 330 μm using
a processing temperature of 173°C, and 330 μm using a processing temperature of 200°C.
Concerning the NA.750 aligners, we found 462 μm using a processing temperature of 112°C,
428 μm using a processing temperature of 143°C, 443 μm using a processing temperature of
176°C, and 448 μm using a processing temperature of 201°C. The overall thickness of the
aligners was therefore almost constant in the temperature range studied, but it was substantially
smaller than the thickness of the planar foils employed as the starting material in the thermo-
forming process.

As the number of center-surface voxels averaged 3 million per aligner, we provide a
simplified representation of the results in Fig. 2. The diagram shows the mean thickness when
sampling 100 random points 100 times. The values were relatively stable to resampling, thus
allowing for a reasonable approximation. The NA.550 foils were on average 334-μm-thick,
while the NA.750 foils resulted in a thickness of 441 μm after the thermoforming process.
These results demonstrate a shrinkage of 60.7% and 58.8% for the NA.550 and NA.750 aligners,
respectively.

Table 3 Summary statistics of thickness distribution values for the entire datasets and for 100
randomly selected voxels on the center-surface.

NA.550 NA.750

Process temperature (°C) 112 142 173 200 112 143 176 201

All data used

Minimum (μm) 66 66 66 66 66 66 66 66

Median (μm) 361 337 330 330 462 428 443 448

Mean (μm) 336 330 329 320 440 427 429 430

Maximum (μm) 594 579 676 689 761 888 919 956

Standard deviation 99 74 73 79 87 96 114 154

100 data points

Minimum (μm) 66 162 93 66 187 148 66 66

Median (μm) 373 337 337 330 462 438 435 485

Mean (μm) 338 339 338 321 447 436 427 455

Maximum (μm) 485 480 528 568 583 590 660 717

Standard deviation 97 62 64 97 81 82 113 152
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Although the mean and median thickness values were stable, there was a difference in thick-
ness distribution after the thermoforming process. The maximum intensity projections, repre-
sented in Fig. 3, show the thickness distribution of the mounted aligners in 3D space. The
NA.550 aligners were generally thicker on the occlusal surfaces of molars and premolars but
thinner around the incisors and buccal as well as oral surfaces. Although the NA.550 produced
at a processing temperature of 112°C was slightly thicker on said zones when compared to
other NA.550 aligners, thickness distribution was fairly even across the selected temperature
range. This behavior indicates that the NA.550 aligner was hardly affected by changes in
selected processing temperatures—and thus stable in terms of the thermoforming process.
The NA.750 aligners, however, showed noticeable differences when exposed to rising process
temperatures. Visible changes occurred between 143°C and 173°C and were accentuated using
processing temperatures of 201°C. Similar to its thinner counterpart, NA.750 foils were thicker
on the occlusal surfaces of molars and premolars, but changes became clearer in line with rising
temperatures, as the foils became thicker on the palatal surface of all front teeth as well as on

Fig. 3 Color-coded aligner thickness distribution for the NA.550 aligners, row 1, and NA.750,
row 2. Color bars show thickness in μm. Processing temperatures during thermoforming are
also provided.

Fig. 2 Thickness distribution of the mean when sampling 100 center-surface voxels 100 times,
with solid lines showing the average value. The dashed lines show the thickness of the foils before
thermoforming.
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the palate itself. Therefore, we could conclude that the selected temperature of thermoforming
process has an impact on the thickness distribution of NA.750 foils, contrary to the NA.550 ones.

3.3 Gap Volume

The results of the gap segmentations are shown in Fig. 4. Selecting the proper threshold was
critical, as taking inappropriate values resulted in inaccurate segmentations. As the foils com-
pletely thinned out in some areas, there was no optimal threshold for segmenting all gaps per-
fectly; therefore, using the automatic segmentation method as mentioned above, we measured
the gaps of each aligner with three thresholds, namely, 140, 150, and 160, and calculated
the average for each processing temperature and aligner thickness. Thermoforming the aligners
on the corresponding models resulted in the following mean gap volumes: 268.9 mm3 for
the processing temperature of 112°C, 115.3 mm3 for the processing temperature of 142°C,
21.9 mm3 for the processing temperature of 173°C, and 11.2 mm3 for the processing temper-
ature of 200°C using the NA.550 foils. Using the thicker NA.750 foils, we found 191.1 mm3 for
the processing temperature of 112°C, 26.3 mm3 for the processing temperature of 143°C,
24.8 mm3 for the processing temperature of 176°C, and 15.72 mm3 for the processing temper-
ature of 201°C. Using the thermoforming temperature of 112°C, the NA.750 foil had a mean gap
volume about 30% smaller than the one for NA.550 (see Fig. 4). Increasing the temperature in
steps of about 30 K, one recognizes a reduction in the total gap volume for both foil thicknesses.
Data for the NA.550 displayed in Fig. 4 diagram correspond to percentual volume decreases to
57%, 35%, and 4%, respectively, per increasing process temperature step. The aligners made
with the 750-μm-thick foil decreased to 86%, 1%, and 5%, respectively, for the individual 30 K
process temperature steps.

The rendering of Fig. 5 shows the gap size distribution for the selected process temperatures.
It is distinctly visible that the areas where gaps form throughout the selected temperature
range are between the teeth and at the tooth-gum border. At low processing temperatures, areas
around the palate also show larger gaps. The buccal and palatal tooth surfaces show no visible
gaps at higher processing temperatures. This experimental result is important, as those surfaces
are central to orthodontic tooth movements. We can therefore conclude that aligners made
with NA.750 foils have smaller gaps at the same process temperature. The rise in temperature
affects the gap volume as expected. Although the difference becomes negligible at higher
processing temperatures, where the remaining gaps seem to be inevitable, due to the morphology
of teeth.

Fig. 4 Total volume statistics for all gaps derived from the automatic method. The error bars were
determined using the three threshold values 140, 150, and 160. The dotted lines, which connect
the data, should just guide the eyes.
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4 Discussion

4.1 Clinical Perspective

In patients undergoing orthodontic treatment using aligners, the vast majority of orthodontic
tooth movement, during any 2-week aligner prescription cycle, occurs during the first week
of the cycle.27 This varied tooth movement is due to the type of material, thickness, and gap
volume. The most common approaches for aligner treatment are: (i) implementing smaller tooth
movements in each setup, which results in more treatment steps, or (ii) using thinner and less stiff
aligners while maintaining the tooth movement recommendation of 0.2 to 0.5 mm. In our study,
however, we explored an alternative approach based on the thickness of the foils to negate factors
such as gap volumes and intensity of forces. We found that the use of both foil thicknesses might
be beneficial in achieving the best outcomes in an individual patient plan. In the initial phase of
an orthodontic treatment, mild forces should be applied, to avoid any adverse effects on the teeth
and the surrounding tissue, by choosing the right aligner stiffness and also taking gap volumes as
well as their position into consideration. Choosing an aligner that does not apply too much force
on teeth, therefore, seems central to this matter. While comparing thinner and thicker aligners, a
study found that the latter will deliver significantly greater forces.28 The authors concluded that
there was a strong correlation between foil thickness and delivered forces, in that thinner foils are
more flexible and therefore better suited for the initial phase of an aligner treatment. Once this
phase is over, higher orthodontic forces can be applied using thicker foils. Practitioners should be
aware that the thickness distribution of NA.750 is altered when processing temperatures above
170°C are employed. They can use this information to take advantage, as higher forces can be
applied vertically on upper molars and incisors, thus making intrusions and protrusions easier.
Intrusive forces from the aligner are critical;29 and root resorption is a common adverse effect of
orthodontic tooth movement and can occur in all types of tooth movements, especially intrusion
and uncontrolled tipping, while most corrections require a combination of these movements.30

Bruxism caused the subject’s abrasion of incisors and canines. Patients affected by this oral
parafunction grind and press their teeth with elevated forces for a prolonged period of time. The
use of an aligner reduces tooth abrasion, but generates microplastics within the oral cavity, which
eventually reaches the blood stream. Practitioners should take this danger into consideration
when choosing the aligner system.

4.2 Aligner Fitting Precision

A study investigating aligner fitting accuracy with laboratory-based micro computed tomogra-
phy found that six commercially available aligners had a gap volume ranging between 107 and

Fig. 5 Rendering of the projected gap lengths for the NA.550 aligners (top row) and NA.750
aligners (bottom row). The selected processing temperatures are indicated.
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402 mm3 in the studied temperature range but with a region of interest that did not include the
entirety of teeth.22 In our study, a plane 2 mm under the lowest tooth-gum border was defined,
allowing us to broaden the region of interest to all teeth. Even with a larger region of interest, the
NaturAligner® gaps were at least similar to or substantially smaller than the six aligner brands
included in the study mentioned previously. Another important step regarding aligner fitting
accuracy during the manufacturing process could be the dismounting of the aligner from the
models. Using high forces can lead to plastic deformation—and thus to permanently damaged
aligners. This in turn could affect force delivery, as they will no longer fit properly on the dental
arch.

4.3 Mechanical Properties

The oral cavity creates a particular environment, as it is close to body temperature, humid, and
subject to mechanical as well as chemical stress caused by teeth, saliva, food, and beverages. The
protocols of many commercially available aligners state that they should be worn 20 to 22 h a day
and changed after 1 to 2 weeks. Each aligner is therefore exposed to conditions in the oral cavity
for about 140 to 310 h. An ideal aligner should be able to exert a constant and an equal force over
this period of time. Therefore, it seems important that mechanical properties, including stiffness,
hardness, and elasticity, do not significantly change due to intraoral conditions and regular usage.
Although it is recommended to study the mechanical properties of thermoplastic foils after the
thermoforming process,31 preliminary results show that foils are subject to a substantial stress
decrease in the hours following the application of an initial force.32 Cyclic forces, which emulate
forces occurring during chewing and swallowing movements, also appear to have an impact on
the delivered forces, as mechanical properties are altered.33 Changes include decreased wear
resistance, increased brittleness, and stiffness as well as deformation.34,35 Also, aligners need
to be inserted and removed several times daily before and after meals, as well as for oral hygiene.
Study conclusions on the effects of removal frequency on deformation, and thus force delivery,
are not unanimous.33,36 Although the clinical relevance of the change in mechanical properties
has to be demonstrated, as most studies have an in vitro design, possible differences in force
delivery during intraoral use must be taken into consideration when choosing an aligner brand.
Our study also falls into this category, as all measurements were made on a resin cast. Building
on the insights gained in this study, further research with adapted study designs could be con-
ducted to measure the effect of the in vivo usage of NaturAligner® and the possible consequences
on the predictability of an orthodontic treatment.

4.4 Attachments

Certain types of orthodontic movements, such as extrusion, mesio-distal root tip, and rotation of
lateral incisors, canines or first premolars, are poorly predictable with aligners. In those cases,
auxiliaries called “attachments” can help make a treatment outcome more predictable. They are
made out of composite, fixed on teeth, and allow aligners to exert torque and tooth rotation,
which would be impossible otherwise.6 Dental composites are a type of material primarily used
for dental fillings, and their mechanical and optical properties depend on their composition.
Examples with a high percentage of filler are called packable composite and with a low per-
centage flowable composite. Considering the fact that an aligner needs to fit the dental arch
precisely, it seems evident that it should also do so for attachments. Even though the shape of
an attachment and the type of composite seems to play a central role in retention—and thus force
and torque delivery—aligners generally fit attachments quite well.37 Therefore, we can hypoth-
esize that the NaturAligner® remains similar to other aligners. Nevertheless, further investigation
should be conducted to assess the fitting precision of NaturAligner® to such attachments.

4.5 Optical Properties

The visibility of orthodontic devices can influence the way a person is perceived and may
influence a patient’s choice of appliance.2 An aligner’s transparency appears to be a key feature
for patients opting for an aligner treatment. However, the optical properties of aligners can
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change due to pigments from food and beverages.38,39 As the outcome of an aligner treatment is
heavily influenced by the numbers of hours a patient wears them,3 it seems important that
patients do not feel any social discomfort, as it might influence their compliance. For this reason,
the stability of optical properties of NaturAligners® should be taken into consideration for further
studies.

5 Conclusion

Advanced laboratory-based hard x-ray tomography is a reliable method to measure aligner gap
volume and thickness distribution. The segmentation procedure is challenging, though, since the
x-ray absorption values of the models and aligners are similar. The proposed procedure can be
used for any other aligner and similar device. NaturAligner® fits dental arches with high levels
of precision, and the selected foil thicknesses make differential orthodontic tooth movements
possible. The initial phase of orthodontic treatment can be better accomplished with NA.550,
while the later phase of tooth movement is viable with NA.750.
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