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Abstract. Linear mixtures of materials in a scene often occur because the resolution of a sensor
is relatively coarse, resulting in pixels containing patches of different materials within them. This
phenomenon causes nonoverlapping areal mixing and can be modeled by a linear mixture model.
More complex phenomena, such as the multiple scattering in mixtures of vegetation, soils,
granular, and microscopic materials within pixels can result in intimate mixing with varying
degrees of nonlinear behavior. In such cases, a linear model is not sufficient. This study considers
two approaches for unmixing pixels in a scene that may contain linear or intimate (nonlinear)
mixtures. The first method is based on earlier studies that indicate nonlinear mixtures in reflec-
tance space are approximately linear in albedo space. The method converts reflectance to single-
scattering albedo according to Hapke theory and uses a constrained linear model on the com-
puted albedo values. The second method is motivated by the same idea, but uses a kernel that
seeks to capture the linear behavior of albedo in nonlinear mixtures of materials. This study
compares the two approaches and pays particular attention to these dependencies. Both labo-
ratory and airborne collections of hyperspectral imagery are used to validate the methods. © The
Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.JRS.11.016005]
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1 Introduction

In a broad sense, spectral mixing phenomenology in multispectral and hyperspectral imagery can
be treated in two ways, depending on how the materials in a scene are presumed to be mixed. A
linear mixing model is suitable in cases where materials are presumed to be nonoverlapping
areas and can be mathematically expressed as a weighted linear combination, where the weights
are associated with the abundances of each material. The endmembers are spectra (real or ideal)
representing unique materials in a given image such as water, soil, and vegetation. Abundances
are the percentage of each endmember within a given pixel. On the other hand, it is well known
that intimately mixed materials frequently exhibit nonlinear spectral mixing. Granular materials,
such as soils, are often intimate mixtures of numerous different inorganic (minerals) and organic
(humic) substances. And since soils are often significant constituents of spectral remote sensing
scenes, intimate mixing may safely be assumed to be a common phenomenon. Another case is
the mixing of fluids, such as oil and water, as occurred during the Deepwater Horizon oil spill
disaster in 2010. We will consider this second case in more detail later.
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Linear mixing is modeled as a linear combination of the spectra of multiple endmembers. The
problem is posed in a number of ways using theory from linear statistical models with variations
that impose either physical or sparseness constraints.1–7 Sites in a scene are labeled as containing
one, two, or perhaps many endmembers. Some approaches begin with what is sometimes
referred to as a full model, where the full model contains all possible variables (endmembers),
and subsequently eliminates variables that do not contribute to the statistical significance (e.g.,
using an F-statistic) of the model.8 Alternatively, other approaches are synonymous with step-
wise regression, where the process begins with a pair of variables (endmembers) and introduces
new variables if they contribute significantly to the model.6,8

Recent research on linear unmixing has resulted in a number of alternative approaches. A
stochastic mixture model (SMM) has been proposed with the goal to incorporate inherent end-
member variance.9 Related to the SMM is a continuous version of the method, known as the
normal compositional model (NCM).10 In the NCM, the mean vectors and covariance matrices of
the endmembers are assumed adequate to capture their spectral variability. However, a big chal-
lenge to the NCM is parameter estimation. Very recently, a Bayesian algorithm called “normal
endmember spectral unmixing” has been proposed to enhance parameter estimation performed
in the NCM.11 Research has also been performed on the use of sparse modeling for modeling
linear mixtures in hyperspectral imagery,12,13 a data-driven stochastic approach,14 as well as
some advanced methods of nonnegative matrix factorization (NMF), such as projection-
based NMF,15 and an adaptive L1∕2 sparsity-constrained NMF.16

Intimate mixtures exhibit nonlinear spectral mixing behavior and are modeled as nonlinear
combinations of spectra from multiple endmembers. In cases of intimate mixing, a linear spectral
unmixing inversion applied to such nonlinear mixtures will yield subpixel material abundance
estimates that do not equal the true values of the mixture constituents. An example of this is
provided by Keshava and Mustard.17

An intimate mixture model can be described by nonlinear functions, which are justified by
Hapke scattering theory18 and photometric phase functions.19–21 In such an approach, reflectance
is converted to single-scattering albedo (SSA). An exact model can be difficult to obtain, but can
show up to 30% improvement in measurements over the linear mixing model when intimate
mixtures are present.22 Many years ago studies showed success in using a constrained energy
minimization method and other linear methods applied to reflectance spectra transformed to SSA
data.23–25

More recently, several alternative methods of spectral unmixing of nonlinear spectral mix-
tures have been proposed. Reviews of nonlinear spectral mixture analysis are given in Refs. 17,
26, 27, and 28 and references cited therein.

Examples include nonlinear unmixing based on sparse NMF,29 artificial neural networks with
polytope decomposition,30 harmonic mixture modeling,31 and kernel-based methods.32–39

Kernel functions provide a way to generalize linear algorithms to nonlinear data.32,33 In the
cases of detection and classification applications, they can induce high-dimensional feature
spaces. In these spaces, previously nonseparable classes are made linearly separable. Thus, linear
methods can be applied in this new feature space that provides nonlinear boundaries back in the
original data space. Another example is the kernel principal component analysis method.34 The
kernel, in this case, is not used to induce a high-dimensional space, but is used to better match the
data structure through nonlinear mappings. It is in this mode that kernels can be applied to obtain
abundances in nonlinear mixtures while essentially using a linear mixture model. What is more
appealing is that the physics suggests that such a method is ideal if one can model the kernel
correctly.

A limitation of earlier kernel algorithms for material detection and scene classification is that
they produced abundance estimates that did not meet nonnegativity and sum-to-one constraints.
This was overcome by the development of a kernel fully constrained least squares (KFCLS)
method that computes kernel-based abundance estimates to meet the physical (nonnegativity
and sum-to-one) abundance constraints.35 Further investigation of the KFCLS method has
resulted in (1) the development of a generalized kernel for linear and intimate (nonlinear)
mixtures37 and (2) an adaptive kernel-based technique for mapping linear and intimate nonlinear
mixtures.38 The generalized kernel and adaptive techniques provide a way to adaptively estimate
a mixture model suitable to the degree of nonlinearity that may be occurring at each pixel in a
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scene. This is important because a scene may contain both linear and intimate mixtures and it is
not always known a priori which model is appropriate on a pixel-by-pixel basis. This problem
was investigated in a study performed by Broadwater and Banerjee.38 Building upon their work,
a study investigating the behavior of the generalized KFCLS and adaptive kernel-based tech-
niques was performed using both user-defined and automatically generated endmembers deter-
mined by the support vector data description algorithm.39

An investigation using laboratory data was also performed comparing the performance of the
fully constrained least squares (FCLS) method applied to spectra converted to SSA with the
generalized KFCLS applied to reflectance spectra and another recently published kernel-
based method, the “K-Hype” kernel applied to reflectance spectra.40 One conclusion of this
study: similar accuracy in abundance estimates can be achieved using the SSA-based method
as compared to the generalized KFCLS, but with a much faster computation time. However, not
all kernel methods are the same. The study also determined the “K-Hype” kernel method was not
worth pursuing further for this type of analysis.

Overall, the impact of nonlinear spectral mixing on algorithm results must be well understood
if we are to achieve a major goal of hyperspectral imaging (HSI): the geospatial mapping and
quantification of materials that comprise remotely sensed scenes. In this study, we further this
understanding by investigating both phenomenology-based SSA and mathematical-based kernel
methods; and we investigate some issues noted while conducting earlier studies.39 The experi-
ments include both laboratory and airborne HSI.

There has been a relative paucity of real-spectral image data sets that contain well-charac-
terized intimate mixtures that can be used for algorithm development and testing. An important
aspect of this study is the generation of a set of HSI data that are truly nonlinear spectral mixtures
for which very precise truth information exists. Our laboratory experiment is performed on
highly controlled data containing predetermined, nonlinear (intimate) mixtures of two materials.
In addition, airborne experiments are performed on a scene of HyMap data collected over Oahu,
Hawaii, and a scene collected by the airborne visible/infrared spectrometer (AVIRIS) instrument
over the oil spill region in the Gulf of Mexico during the Deepwater Horizon oil incident.41,42

2 Description of Algorithms

2.1 Fully Constrained Least Squares and Linear Kernel-Based Mixing Models

The fully constrained least squares (FCLS)7 spectral mixing model can be expressed as

EQ-TARGET;temp:intralink-;e001;116;321x ¼ Eaþ ε with the constraints aðnÞ ≥ 0; ∀ n and
XN
n¼1

aðnÞ ¼ 1; (1)

where x is an L × 1 vector containing the spectral signature of the current image pixel, E is an
L × N matrix containing the endmember signatures thought to be within the scene (the n’th
column contains the n’th endmember spectrum), and a is an N × 1 vector containing the abun-
dances [the n’th entry represents the abundance value aðnÞ]. ϵ is an L × 1 vector containing the
error. L is the number of bands in an image spectra and N is the number of endmembers used in
the model. The abundance estimates â for the model can be computed through constrained least
squares regression.

Alternatively, the linear model can also be posed as a special case of the kernel-based mixing
model derived previously by Broadwater et al.,35 where the abundances of mixture components
are estimated through the process

EQ-TARGET;temp:intralink-;e002;116;151â ¼ argmina
1

2
½Kðx; xÞ − 2âtKðE; xÞ þ âtKðE; EÞâ� (2)

using the linear kernel Kðx; yÞ ¼ xty with the same constraints as Eq. (1). The abundance esti-
mates are computed using a quadratic programming method to enforce the nonnegativity
constraint.
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Either way, once â is obtained, the estimator vector for a mixed spectral signature is

EQ-TARGET;temp:intralink-;e003;116;723x̂ ¼ Eâ; (3)

and the estimator for the error is

EQ-TARGET;temp:intralink-;e004;116;680ε̂ ¼ x − x̂: (4)

The root mean-squared error (RMSE) between the observed and estimated spectral signature
is measured as

EQ-TARGET;temp:intralink-;e005;116;630RMSE ¼ sqrtðε̂tε̂Þ
L − 1

: (5)

FCLS has been shown to be successful for modeling linear mixing phenomenology.7 In the
present study, we will be using FCLS in two ways. The method will be used as a benchmark to
compare with the proposed nonlinear methods. The method will also be used in one of the non-
linear approaches, where we will apply the FCLS to spectra that have been converted to SSA, as
discussed below in Sec. 2.2.

2.2 Using Hapke Theory: Fully Constrained Least Squares Applied
to Single-Scattering Albedo Spectra

Previous studies indicate that intimate (nonlinear or macroscopic) spectral mixtures in reflec-
tance space may be linearized when transformed into SSA space. In order to understand this, we
first mention the relationship between reflectance and SSA. Reflectance is the ratio of reflected
radiance to incident irradiance.43 SSA is the ratio of the total amount of power scattered to the
total power removed from the wave. If we assume the materials of interest are Lambertian, then
we can consider the case of hemispherical reflectance and the mathematical relationship between
reflectance and SSA can then be written

EQ-TARGET;temp:intralink-;e006;116;392r ¼ w
4ðμþ μ0Þ

½Hðw; μÞHðw; μ0Þ�; (6)

where r is the reflectance, H is Chandrasekhar’s function for isotropic scattering, w is the SSA,
μ0 is the cosine of the angle of incidence, and μ is the cosine of the view angle.19

For a number of intimately mixed materials, the average SSA can be written as

EQ-TARGET;temp:intralink-;e007;116;321w ¼
P

kðMkwkÞ∕ðρkdkÞP
kðMkÞ∕ðρkdkÞ

; (7)

where for material k, the SSA of the material is wk, the mass fraction is Mk, the diameter of the
particles of material is dk, and the solid density of the particles is ρk.

38

According to Eq. (7), intimate mixtures are a linear mixture of the albedos wk and these are
nonlinearly mapped to reflectance by Eq. (6). This linear mixing of the SSAs can be seen trivi-
ally, as we can write Eq. (7) as

EQ-TARGET;temp:intralink-;e008;116;221w ¼
X
k

Fkwk; (8)

where

EQ-TARGET;temp:intralink-;e009;116;167Fk ¼
Mk∕ðρkdkÞP
kðMkÞ∕ðρkdkÞ

: (9)

Fk is the relative geometric cross section. 38 Noting the form of Eqs. (8) and (9) as compared to
Eq. (1) for linear mixing, the terminology for relative geometric cross section and “abundance”
can be used interchangeably.

Accordingly, we investigate this behavior by applying a linear mixing method on albedo;
specifically, by applying the FCLS method on data that has been converted to SSA.
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Conversion to SSA is described further in Resmini et al.23 and Resmini.24 Both studies follow
Hapke;18 and Mustard and Pieters19–21 assuming the reflectance spectra are bidirectional. The
expressions to transform reflectance spectra to SSA are given by Eqs. (10) and (11) for bidi-
rectional (bd) reflectance and for hemispherical-directional (hd) reflectance, respectively. In the
derivation of both expressions, the phase angle is large enough that the opposition effect is
assumed negligible.

EQ-TARGET;temp:intralink-;e010;116;663w ¼ 1.0 −
�½ðμ0 þ μÞ2Γ2 þ ð1.0þ 4.0μμ0ΓÞð1.0 − ΓÞ�0.5 − ðμ0 þ μÞΓ

ð1.0þ 4.0μμ0ΓÞ
�

2

; (10)

EQ-TARGET;temp:intralink-;e011;116;618w ¼ 1.0 −
�

1.0 − Γ
ð1.0þ 2.0μΓÞ

�
2

: (11)

In Eqs. (10) and (11), Γ is the reflectance factor (see Sec. 2.1, Hapke18); r, w, μ0, and μ are the
same as in Eq. (6). The two different equations can be used to generate the two sets of SSA
spectra for bd and hd reflectance.

In the experiments that follow, we refer to this approach as the “FCLS on SSA” method, or
simply denote it as the SSA method. The conversion of reflectance spectra to SSA using Eqs. (10)
and (11) is very fast as compared to the generalized kernel least squares (GKLS) method.

2.3 Generalized Kernel Fully Constrained Least Squares (Fixed and Automated)

Choosing the linear function Kðx; yÞ ¼ xty for the kernel in Eq. (2) works well for modeling
linear mixtures; however, it is not a suitable kernel for intimate mixtures. A physics-inspired
kernel was proposed and shown to provide significantly improved behavior to model nonlinear
mixtures, but a result of that effort was that although each kernel provides good results for the
type of mixing intended, only one kernel or the other could be used, for either linear mixtures or
intimate mixtures, but not both.36

The kernel approach was further developed by Broadwater and Banerjee37,38 into a gener-
alized method for adaptive linear and intimate mixtures. This method is motivated by attempting
to simulate Hapke theory for SSA by making use of the kernel

EQ-TARGET;temp:intralink-;e012;116;367Kγðx; yÞ ¼ ð1 − e−γxÞtð1 − e−γyÞ: (12)

The kernel in Eq. (12) can model either linear or intimate mixtures as long as the correct value of
γ is used. If γ is very small then Kγðx; yÞ approximates linear mixing. If γ is large then Kγðx; yÞ
approximates intimate mixing in cases when the reflectance occurring from intimate mixing is
modeled as in Eq. (6).

In this study, we investigate a fixed-γ generalized kernel least square” (fixed-γ GKLS). The
computation is similar in form to Eq. (2) except the minimization is done according to

EQ-TARGET;temp:intralink-;e013;116;265â ¼ argmina
1

2
½Kγðx; xÞ − 2âtKγðE; xÞ þ âtKγðE; EÞâ�; (13)

using Eq. (12) for a user-defined γ, and the same constraints as Eq. (1).
For a specified γ, we implement this by transforming the observed x and E into kernel space

EQ-TARGET;temp:intralink-;e014;116;200xγðlÞ ¼ 1 − e−γxðlÞ; (14)

EQ-TARGET;temp:intralink-;e015;116;167Eγðl; nÞ ¼ 1 − e−γEðl;nÞ; (15)

where xγ and Eγ are presumed to satisfy the linear model described by

EQ-TARGET;temp:intralink-;e016;116;127xγ ¼ Eγaþ εγ: (16)

Equation (16) has the same constraints as Eq. (1) and the abundance estimates â can be
computed in the same manner as Eq. (1). The estimated mixed spectra in kernel space is com-
puted as
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EQ-TARGET;temp:intralink-;e017;116;735x̂γ ¼ Eγâ: (17)

The estimated error in kernel space is

EQ-TARGET;temp:intralink-;e018;116;700ε̂γ ¼ xγ − x̂γ: (18)

The estimated error vector ε̂ in the original space is computed as Eq. (4), where the com-
ponents of the estimated mixed spectra x̂ðnÞ are computed using the inverse transform of
Eq. (14). The RMSE is computed by Eq. (5).

In addition to a fixed-γ GKLS implementation, an automated GKLS method is investigated
that attempts to select the most appropriate gamma according to

EQ-TARGET;temp:intralink-;e019;116;607γ̂ ¼ argminγ
1

2
½Kγðx; xÞ − 2âtγKγðE; xÞ þ âtγKγðE; EÞâγ�; (19)

where âγ is the abundance estimate and Kγðx; yÞ is the kernel evaluated with the parameter value
γ. A numerical optimization based on the golden search method can be used to minimize
Eq. (19).44 In computing the optimization, we seek to achieve a minimum of the model’s
RMSE. In this manner, at least theoretically, the automated GKLS method has the ability to
respond differently to differing degrees of nonlinearity to select the best gamma and compute
more precise estimates of abundance.

3 Description of Experiments

3.1 Overview of Experiments

Three experiments are performed in this study. The first is an experiment conducted in the labo-
ratory. This is an important aspect of our investigation: a set of HSI data is generated that are
truly nonlinear spectral mixtures for which very precise truth information is documented. The
laboratory experiment is performed on highly controlled data containing predetermined, non-
linear (intimate) mixtures of two materials. In this experiment, two granular materials were cus-
tom fabricated and mechanically mixed to form intimate mixtures. The materials are spherical
beads of didymium glass and soda-lime glass, both ranging in particle size from 63 to 125 μm.
The glass beads materials are both translucent. Their chemical composition, densities, and par-
ticle size range are well known. The mixtures, which exhibit largely nonlinear spectral mixing,
were then observed with a visible/near-infrared (VNIR; 400 to 900 nm) HSI microscope. The
second and third experiments are conducted in the field with airborne hyperspectral imagery: the
second experiment is performed using data from the HyMap sensor acquired during a campaign
by the Navy Research Laboratory (NRL) over Oahu, Hawaii, from January 24 to February 1,
2009. The third experiment utilizes AVIRIS data collected over the oil spill region in the Gulf of
Mexico during the Deepwater Horizon oil incident. The SSA, FCLS, and GKLS methods are
each applied to data from the three collections.

3.2 Experiment 1: Laboratory Experiment

A Resonon Pika II imaging spectrometer with a Xenoplan 1.4/23-0902 objective lens shown in
Fig. 1(a) is used to measure the didymium and soda-lime glass bead mixtures.45 We also used an
Edmund Optics Gold Series 1.0× telecentric lens. However, this lens gives ∼8 μm∕pixel data,
providing a spatial resolution higher than what was required for the analyses. Consequently, the
Edmund data are not reported in our results.

The Pika II is mounted nadir-looking at a mechanical translation table on which the sample to
be imaged is placed. This device is a pushbroom sensor with a slit aperture, thus the need for a
translation table to move the sample to facilitate hyperspectral image cube formation. The height
of the sensor above the table is user selectable; a height was chosen such that all mixtures are
captured in the same scene so that the data have a ground sample distance of ∼75 μm∕pixel.
Though capable of acquiring 240 bands from 400 to 900 nm, the sensor was configured to
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acquire 80 bands by binning (spectrally by three) resulting in a sampling interval of ∼6.25 nm

and high signal-to-noise ratio spectra. Four quartz–tungsten–halogen (QTH) lamps are used for
illumination approximating a hemispherical-directional illumination/viewing geometry.

Sensor and translation table operation, data acquisition, and data calibration are achieved by
software that runs on a laptop computer. Calibration consists of a measurement of dark frame
data (i.e., acquiring a cube with the lens cap on) and a measurement of a polytetrafluoroethylene
(PTFE) reference plaque (large enough to entirely fill the field-of-view). Then, for each HSI cube
measured, the sensor’s software first subtracts the dark data and then uses the PTFE data (also
dark subtracted) to ratio the spectral measurements to give relative reflectance (also known as
reflectance factor: Hapke18 and Schott43).

Three binary mixtures (and the two endmembers) are constructed and emplaced in the wells
of a 96-well sample plate: 0/100%, 25/75%, 50/50%, 80/20%, and 100/0% of didymium/soda-
lime (percentages by volume). This was done as follows: five cells of a 96-well sample plate,
spray-painted flat black, were filled with the various glass bead mixtures; this is shown in Fig. 2.
The volume of each cell is 330 μL (0.33 mL). Three binary mixtures and the two 100% end-
members are constructed and emplaced in five of the wells of the 96-well sample plate: 0/100%,
25/75%, 50/50%, 80/20%, and 100/0% didymium/soda-lime. The glass beads and their mixtures
also display subtle, though interesting, gonioapparent changes in color. We remark that the glass
bead particle size range is much larger than the VNIR wavelengths used in this analysis.

Fifteen data Pika II HSI cubes were acquired; however, we focus here on the analysis of one
cube comprised of 640 samples, 400 lines, and 75 bands ranging from 0.434 to 0.885 μm. Of the
80 bands acquired the first five were discarded due to noise content.

Training and test data were extracted from the selected hyperspectral cube. Figure 2 shows
polygons defining the training and test regions drawn on top of a red–green–blue (RGB) color
composite context image. The training regions are shown in Fig. 2(a) and the test regions are
shown in Fig. 2(b). Note that none of the test regions overlapped the training regions. Figure 2(a)
shows the small training polygon regions defining the three training endmembers: DiDy (100%),
lime (100%), and background. Figure 2(b) shows the test areas used to quantitatively measure
the performance of the algorithms. Five regions were defined, corresponding to the five mixtures
100% DiDy, 75/25% DiDy/lime, 50/50% DiDy/lime, 25/75% DiDy/lime, and 0/100% DiDy/
lime. Two additional test regions of background spectra were also extracted.

Figure 3 shows plots of the mean vectors of the spectral data extracted within the training
polygons shown in Fig. 2(a). These image-derived training endmembers, as just described, are
used to investigate the three methods described in Sec. 2: (1) FCLS applied in reflectance space,
(2) GKLS applied in reflectance space, and (3) FCLS applied in SSA space. For purposes of

Fig. 1 The laboratory apparatus is shown: (a) a photograph of the VNIR HSI microscope. The
Resonon Pika II is used with the Xenoplan 1.4/23-0902 objective lens; (b) 35-mm digital sin-
gle-lens reflex camera photograph of the 96-well plate containing the glass beads. (Source of
photo: taken by coauthor Dr. David Allen, NIST, property of U.S. government).
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conciseness in reporting results, these methods henceforth will be referred to as the FCLS,
GKLS, and SSA methods, respectively.

Numerous factors affect the performance of the methods. In particular, three factors affecting
the performance of all the methods are: (1) the number the endmembers used in a model, (2) how
well these endmembers span the space in which the mixing occurs, and (3) the RMSE threshold
for eliminating bad fits between the observed and model-estimated spectra. In addition, the
GKLS method uses a parameter γ to determine the nonlinear behavior introduced by the kernel.
We test the GKLS method at fixed values of γ: 0.1, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0, as well as
the automated GKLS method. For the SSA method, performance may be affected by the type of
SSA conversion: hemispherical or bidirectional. If bidirectional, the view and illumination
angles are factors. Although the laboratory instrument has approximately hemispherical illumi-
nation, we will conduct trials for SSA conversions made assuming both bidirectional reflectance
with nadir view and illumination angles as defined by Eq. (10), denoted as SSA, as well as
hemispherical reflectance as defined by Eq. (11), which we will refer to as SSA-H.

The algorithms are applied to the entire scenes. Both qualitative results (shown by images of
the algorithm output) and quantitative results (applied in the test regions) are given.

3.3 Experiment 2: Airborne Experiment in Hawaii

Experiment 2 tests the proposed methods using a cube of HyMap data collected during a cam-
paign by the NRL over Oahu, Hawaii. Flight line Az148 (acquired on February 1, 2009) was
selected and analysis was performed on a subscene of the original scene with a size of 400
samples by 250 lines over government-owned property near the Waimanalo region of Oahu.
The imagery consists of 125 bands, has a spectral range of 0.45 to 2.48 μm with a spectral
resolution of about 0.01 μm, and a ground sampling distance (GSD) of ∼4 m. The calibrated,
at-aperture radiance data were converted to reflectance by the NRL using their Tafkaa,46 atmos-
pheric compensation tool. Tafkaa is a heavily modified version of ATREM.47 The reflectance
spectra are scaled by a factor of 10,000 and converted to 16-bit integers. An RGB normal-color
composite of this scene is shown in Fig. 4.

Fig. 3 Mean spectra for the three endmembers (DiDy, lime, and dark background) are shown.

Fig. 2 RGB composite images of the hypercube showing the training and test regions used in the
experiment trials. Figure 2(a) is an RGB composite of the HSI cube showing training regions.
Figure 2(b) is an RGB normal color composite of the HSI cube showing test regions.
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Ten fabric panels of varying size were placed at three different sites (and in varying local
backgrounds) prior to the image collection. These panels are impermeable Tyvek-like house
wrap, near white in appearance. The sizes of these panels are listed in Table 1. Figure 5
shows aerial photographs of the three sites. The locations of the panels at each site are annotated.
Numerous ground photos were also taken of the panels. Figure 6 shows ground-truth photos for
three of these panels (TY-4, TY-5, and TY-7).

Site 1 contains 6 of the 10 panels (TY-4, TY-5, TY-6, TY-7, TY-8, and TY-9). TY-7 is
expected to be difficult to detect because of its subpixel size in the HyMap scene and because
it is partially occluded by trees. Notice that TY-7 is somewhat difficult to see in the aerial photo
shown in Fig. 1; however, it is considerably more difficult to see in the HyMap data because of
the reduced spatial resolution. TY-5 is expected to be difficult because of size and shading. Site 2
contains three Tyvek panels (TY-1, TY-2, and TY-3). Site 3 contains one Tyvek panel. During the
campaign, spectral measurements were acquired by the USGS and NGA using an ASD spec-
trometer. However, these field measurements were not used for training in this study. Instead
image-derived spectra were used.

Fig. 4 An RGB composite of the HyMap scene used in the experiment. This subset contains 400
samples by 250 lines. [Source of imagery: U.S. Naval Research Laboratory (NRL).]

Table 1 Target sizes: the sizes of the 10 target panels are listed in this table. The measurements
were made in units of feet, but converted to meters for easier comparison to the estimated 4.0 GSD
of the airborne HyMap scene.

Panel Size Panel Size

TY01 2.7 m × 3.0 m TY06 5.5 m × 5.5 m

TY02 2.7 m × 1.4 m TY07 2.7 m × 3.2 m

TY03 2.7 m × 1.5 m TY08 2.7 m × 3.4 m

TY04 2.7 m × 3.2 m TY09 2.7 m × 7.6 m

TY05 2.7 m × 3.0 m TY10 2.7 m × 7.6 m
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Figure 7 shows four of the eight endmember spectra used in experiment 2. Similar to the
procedure used in the previous experiment, training regions for eight classes of materials in the
scene were defined for use as endmembers. Seven of these belonged to naturally occurring
classes, such as sand, gravel, water, and different types of vegetation having regional extent
(e.g., multiple pixels). These endmembers were computed as mean spectra within regions
defined by polygon overlays (similar to the overlays shown in Fig. 2). However, as shown
in Table 1, the Tyvek panels are comparably small and mostly subpixel in extent. TY-6 is
the largest panel and is just slightly larger than a full pixel (5.5 × 5.5 m). The spectral vector
from the center point of TY-6 was extracted and used as the Tyvek endmember.

Fig. 5 Aerial photos of the panel study sites are shown: (a) the configuration of six Tyvek panels at
site 1, denoted TY-4, TY-5, TY-6, TY-7, TY8, and TY-9; (b) the three Tyvek panels at site 2
denoted TY-3, TY-2, TY-1; and (c) the Tyvek panel at site 3 denoted as TY-10. [Source of imagery:
U.S. Naval Research Lab.]

Fig. 6 Ground photos of three Tyvek panels located at site 1: (a) TY-4, (b) TY-5, and (c) TY-7.
(Source of photos: USGS and NGA.)
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3.4 Experiment 3: Airborne Experiment: Deep Water Horizon

Experiment 3 uses a scene that was extracted from AVIRIS data collected during a JPL/USGS
airborne campaign during the Deep Water Horizon (DWH) oil spill incident.41,42 As a part of
these studies, during the DWH campaign, USGS collected numerous oil samples for laboratory
measurements.41 Although precise ground truth is not available due to the dynamically changing
environment of an oil spill on water, previous studies using feature-based spectroscopy methods
determined the locations of three predominant oil thicknesses in the region.42

Out of the numerous flight lines of AVIRIS acquired on May 17, 2010, run 11 of AVIRIS was
selected, which includes the actual incident site of the oil spill. This run was collected at an altitude
of 28,000 feet resulting in a GSD of∼9 m. The AVIRIS scene is 677 samples by 16,835 lines with
224 bands of reflectance data from 0.365 to 2.49 μm. As part of the calibration to reflectance, the
USGS scaled the imagery by a factor of 20,000. The experiment focused on a subset scene of size
500 pixels by 500 lines by 224 bands. Out of the 224 bands, 97 bands were excluded: The first 39
bands (0.365 to 0.714 μm) were excluded to focus the algorithm on the longer wavelengths away
from the visible, the last 10 bands (2.407 to 2.496 μm) were excluded because of low signal-to-
noise, and the remaining bands were excluded because of atmospheric absorption.

Figure 8 shows a true-color RGB composite of the subset scene. The scene is mostly water
with large portions containing a great diversity of oil thicknesses. Different states of the oil can
be seen visibly, appearing in different colors ranging from almost black, to dark brown, to light
brown, and to orange.

Figure 9 shows laboratory-measured reflectance spectra of four oil samples at differing thick-
nesses. Absorption features due to C-H with band centers (bc) at 1.2 and 1.73 μm are labeled as
F1 and F2.

For purposes of training and defining the endmembers, laboratory spectra for pure oil sam-
ples with 4-mm thickness and 1.85-mm thickness are used, as well as an oil/water emulsion
having a thickness of 1.0 mm. Because much of the emulsion behavior is difficult to model
in the laboratory, user-defined image spectra are also used: orange-colored spectra (in the
RGB true-color composite) and water spectra with trace oil.

The FCLS, GKLS, and SSA methods are applied to the AVIRIS data, reporting on the results
using the fixed-γ implementation and the SSA conversion made assuming bidirectional reflec-
tance with nadir input and output angles.

4 Results

4.1 Overview of Results

The results for the three experiments are presented below, showing tables with model diagnostics
that provide estimated abundance values for the estimated models and RMSE values for the
model errors; abundance maps that provide a visual representation of the abundances of materi-
als found in the scenes; and graphs showing a comparison of the estimated (simulated) spectra
estimated by the computed models and the observed spectra at selected points.

Fig. 7 Plots of four (out of the eight) endmember spectra used in experiment 2 are shown. The
Tyvek endmember is the spectrum extracted from the image at the center point of TY-6. The others
are mean spectra computed over polygon regions extracted from the image.
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4.2 Results of Experiment 1

The results for experiment 1 (the laboratory experiment) are shown in Figs. 10 and 11, as well as
Tables 1 and 2. Figure 10 shows RGB color abundance maps for four of the trials (red ¼ DiDy,
green ¼ lime, blue ¼ background). Qualitatively, Figs. 10(a) and 10(b) show poor correspon-
dence to the known mixtures shown in Fig. 2. Figures 10(c) and 10(d) show much better cor-
respondence to the actual abundances given in Fig. 2. The variations in color within the discs
containing the three mixtures (75/25, 50/50, and 25/75) are noteworthy. These variations indicate
the methods are detecting notable variance in the abundance proportions. This indicates that the
attempt to prepare mixture proportions that are as uniform as possible were not completely suc-
cessful. These variations are real and the abundance estimation methods (particularly, GKLS and
SSA) are responding correctly. Static clinging and other interparticle interactions likely account
for the clumping and variations observed. Nonetheless, overall population averages captured by
regions of interest delineated in Fig. 2(b) covering a large portion of the individual cells yield
averages close to those intended in the experiment design phase.

Table 2 lists the average estimated abundances for the FCLS, GKLS, SSA, and SSA-H meth-
ods in the five test regions. The “truth” (actual physically measured) percent by volume of DiDy
for these regions varied slightly from the goal of 100%, 75%, 50% 25%, and 0%. In reality, these
were measured as 100%, 78.8%, 50.5%, 24.2%, and 0% for DiDy100, DiD075, DiDy050,
DiDy025, and DiDy000, respectively. Results for the GKLS method using a fixed gamma
of γ ¼ 0.1, γ ¼ 0.5, γ ¼ 1.0, γ ¼ 2.0, γ ¼ 3.0, γ ¼ 4.0, γ ¼ 5.0, and γ ¼ 6.0 are given, as

Fig. 9 Spectra of three oil samples at differing thicknesses are shown. Absorption features at F1
and F2 are due to C-H with band centers (bc) at 1.2 and 1.73 μm.

Fig. 8 An RGB composite scene (500 samples by 500 lines) from a portion of AVIRIS Run 11 is
shown in (a). The corresponding center wavelengths for the red (R), green (G), and blue (B) layers
are 0.658, 0.541, and 0.472 μm, respectively. (Source of imagery: U.S. Geological Survey.)
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well as for the automated GKLS. This table shows FCLS to be poor at predicting the abundances
for DiDy075 (93.11% predicted versus 78.8% truth) and DiDy050 (74.97% predicted versus
50.5% truth), as well as very poor at predicting DiDy025 (63.88% predicted versus 24.2%
truth). The results of GKLS for small values of γ agree with theoretical expectations of an
approximately linear model. Specifically, the prediction of GKLS at γ ¼ 0.1 is almost exactly
the same as the FCLS method.

Out of the eight γ values tested, GKLS at γ ¼ 5.0 provides the closest prediction for DiDy50
(49.08% versus 50.5%) and is only slightly worse at predicting the correct abundance than
GKLS at γ ¼ 6.0.

Figure 11 shows the observed and estimated mixture (averaged) spectra of the 50/50% region
using the FCLS, GKLS, and SSA-H methods. Visually, we can see both the GKLS (γ ¼ 5) and
SSA-H methods provide a better fit as compared to the FCLS method.

Table 3 lists the RMSE of the fit between the estimated and observed spectral mixtures for
selected points in the scene. Except for DiDy at 25% (0.242), the RMSE errors for FCLS were
not considerably larger than the errors for the other methods. Yet we know FCLS is poorly
predicting the known abundances for these samples. We conclude RMSE is not necessarily
a good indicator of a method’s accuracy to predict abundance.

The results in Tables 2 and 3 also show that the automated implementation of the GKLS
method was not as successful as the fixed-γ GKLS (γ ¼ 3, 4, 5, or 6) for estimating the correct
abundance. The automated GKLS method attempts to select the most appropriate γ based on
achieving a minimum of the model’s RMSE. This metric seems to respond to linear and non-
linear mixtures; however, it does not appear to be a reliable metric to determine the degree of
nonlinear behavior. RMSE also cannot be used to achieve the most accurate estimate of abun-
dance. Consequently, an alternative approach should be sought for implementing an auto-
mated GKLS.

Determining which value of γ gives the best result for this experiment is difficult. In terms of
abundance, γ ¼ 5.0 clearly provides the best estimate for the DiDy50 mix (49% abundance).
However, γ ¼ 6.0 provides slightly better estimates of abundance for the DiDy75 and DiDy25

Fig. 10 RGB composite images showing color abundance maps for four of the trials (red ¼ DiDy,
green ¼ lime, blue ¼ background). Abundance maps are shown for (a) FCLS method (linear),
(b) GKLS at γ ¼ 0.1 (linear), (c) GKLS at γ ¼ 5.0 (nonlinear), and (d) SSA method (nonlinear).
Figures (a) and (b) show poor correspondence to the known mixtures shown in Fig. 2.
Figures (c) and (d) show much better correspondence to the actual abundance values.
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Fig. 11 The observed and estimated mixture spectra (averaged) of the 50/50% region using the
FCLS, GKLS, and SSA-Hmethods. The y -axis of (a) and (b) is in reflectance units with a range 0.0
to 1.0; the y -axis of (c) is in albedo units with a range 0.0 to 1.0. The GKLS results are shown for
γ ¼ 5.

Table 2 Abundance results: the average estimated abundances are listed for the FCLS, GKLS,
and SSAmethods in the five test regions. The “truth” for these regions (actual physically measured
proportions by volume) is 1.0, 0.788, 0.505, 0.242, and 0.0 for DiDy100, DiD075, DiDy050,
DiDy025, and DiDy000, respectively. Results for the GKLS method using a fixed gamma of
γ ¼ 0.1, γ ¼ 0.5, γ ¼ 1.0, γ ¼ 2.0, γ ¼ 3.0, γ ¼ 4.0, γ ¼ 5.0, and γ ¼ 6.0 are given, as well as
for the automated GKLS.

FCLS γ ¼ 0.1 γ ¼ 0.5 γ ¼ 1 γ ¼ 2 γ ¼ 3 γ ¼ 4 γ ¼ 5 γ ¼ 6 γ ¼ Auto SSA SSA-H

DiDy100 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.97 0.98 0.98

DiDy075 0.93 0.93 0.93 0.92 0.91 0.89 0.88 0.86 0.84 0.90 0.82 0.85

DiDy050 0.75 0.75 0.73 0.70 0.65 0.59 0.54 0.49 0.44 0.55 0.40 0.48

DiDy025 0.64 0.63 0.61 0.58 0.52 0.47 0.41 0.36 0.31 0.33 0.30 0.34

DiDy000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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mixes, (84% and 0.31%, respectively). In terms of RMSE, γ ¼ 5.0 provides a better fit than γ ¼
6.0 in most (but not all) cases. Noting that γ ¼ 5 provides the highly close prediction of abun-
dance for the DiDy50 mixture and the RMSE fits are better, we henceforth consider γ ¼ 5.0 to
provide the best GKLS result as compared to the others (although only slightly better
than γ ¼ 6.0).

The processing times on the data consisting of 256,000 pixel vectors (640 samples by 400
lines) were recorded for each of the methods. The FCLS, SSA, and fixed-γ GKLS runs were
completed in 9 s, 9 s, and 12 s, respectively. The automated GKLS run finished in 228 s. Note the
automated GKLS method was slower by a factor of 19.

4.3 Results of Experiment 2

Results for experiment 2 are shown in Tables 4–7 and Figs. 12 and 13, showing the behavior for
the FCLS, GKLS, and SSA methods, quantitatively and visually. The SSA method in this experi-
ment is synonymous to the SSA method discussed in the first experiment, which is defined by
Eq. (10) assuming bidirectional reflectance with nadir view and illumination angles.

The abundance maps for experiment 2 are shown in Figs. 12 and 13. Figure 12 shows maps
for the Tyvek panels using the GKLS and SSA methods. The map for the FCLS method is not
shown because this map is almost identical to the GKLS method. The colored circles show where
the panels are located. Due to limited dynamic range in the printed version, some of the low
abundance panels (T02, T03, T04, and T07) cannot be seen, but the detection can be verified by
noting the abundances shown in Table 6. The RGB color composite maps in Fig. 13 show the
differences in vegetation modeling for the three methods. The overall greater abundance of grass
predicted by the GKLS as compared to FCLS method can be seen by comparing Figs. 13(a) and
13(b). An even greater abundance of grass is predicted by the SSA method, as shown by
Fig. 13(c).

The abundance retrieval capability of all methods is good; however, a moderate advantage is
shown for the SSA and GKLS methods. Tables 4 and 5 list the model diagnostics for selected
points in the scene. The entries in Table 4 list the results for many of the Tyvek panels. The
entries in Table 5 list results for selected mixes of vegetation with other backgrounds. Note
the RMSE for the GKLS is always less than or equal to the RMSE of the FCLS. This is to
be expected since the GKLS algorithm iterates with increasing γ until the RMSE converges

Table 3 Model diagnostics: the RMSE results of the fit between the estimated and observed
spectral mixtures are listed for selected points in the scene. The first column lists the location
and planned percentage mix of DiDy for these points. The actual physically measured mixes
were 100%, 78.8%, 50.5%, 24.2%, and 0.0%. Bold values indicate lowest RMSE value retrieved
for the indicated pixel.

ðx; yÞ DiDy % FCLS GKLS γ ¼ 5 GKLS γ ¼ 6 SSA SSA-H

(585, 248) 100% 0.0141 0.0293 0.0369 0.0315 0.0320

(400, 228) 75% 0.0245 0.0244 0.0248 0.0351 0.0388

(418,239) 75% 0.0183 0.0177 0.0324 0.0262 0.0283

(405,251) 75% 0.0179 0.0196 0.0205 0.0255 0.0273

(324, 049) 50% 0.0357 0.0225 0.0222 0.0129 0.0190

(313, 062) 50% 0.0359 0.0318 0.0390 0.0118 0.0175

(328, 067) 50% 0.0333 0.0294 0.0533 0.0223 0.0294

(223, 314) 25% 0.0526 0.0380 0.0379 0.0140 0.0241

(224, 327) 25% 0.0495 0.0383 0.0384 0.0186 0.0298

(246, 330) 25% 0.0420 0.0289 0.0636 0.0121 0.0197
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to a minimum RMSE. A higher value of γ corresponds to greater nonlinearity in the model. The
RMSE values of the SSA method are almost always higher than either of the other methods;
however, they were still in an acceptable range. The higher values may be attributed to SSA
spectra having overall higher values than reflectance.

Figure 14 shows plots of observed and estimated spectra, as computed by the three methods,
for one of the Tyvek panel (TY-5) mixtures with background at location ðsample; lineÞ ¼
ðX; YÞ ¼ ð212; 76Þ and one of the vegetation mixtures at ðX; YÞ ¼ ð99; 79Þ. Observed spectra
(labeled as “O”) are displayed in dark gray and estimated modeled spectra (labeled as “E”) are
displayed in lighter gray.

Table 5 Model diagnostics of vegetation mixes for experiment 2. The RMSE values of the FCLS,
SSA, and GKLSmethods are listed for selected pixels containing vegetation mixtures in the scene,
as well as the corresponding γ value chosen by the GKLS method at these points.

Vegetation FCLS SSA GKLS GKLS

Mix ðx; yÞ RMSE RMSE RMSE γ

(277, 50) 0.003 0.013 0.003 2.272

(277, 60) 0.004 0.012 0.004 0.149

(248, 68) 0.006 0.013 0.006 2.415

(99, 79) 0.009 0.018 0.007 6.440

(134, 117) 0.011 0.027 0.011 4.810

(233, 141) 0.005 0.014 0.004 1.611

(234, 141) 0.006 0.013 0.005 2.685

(270, 178) 0.005 0.013 0.005 2.129

(274, 179) 0.006 0.019 0.006 1.011

(275, 180) 0.005 0.012 0.005 3.069

Table 4 Model diagnostics of panels for experiment 2. The RMSE values of the FCLS, SSA, and
GKLS methods are listed for selected panel pixels in the scene, as well as the corresponding γ
value chosen by the GKLS method at these points.

Panel Location FCLS SSA GKLS GKLS Panel Location FCLS SSA GKLS GKLS

Name ðx; yÞ RMSE RMSE RMSE γ Name ðx; yÞ RMSE RMSE RMSE γ

T01 (369, 126) 0.007 0.017 0.007 6.440 T06A (211, 62) 0.016 0.018 0.011 6.440

T02A (365, 128) 0.020 0.022 0.017 4.569 T06B (211, 63) 0.000 0.000 0.000 5.126

T02B (365, 129) 0.021 0.029 0.020 3.413 T06C (212, 63) 0.010 0.017 0.009 6.440

T03A (363, 182) 0.020 0.014 0.020 6.440 T07 (187, 99) 0.005 0.018 0.005 0.002

T03B (362, 182) 0.039 0.024 0.039 6.440 T08 (201, 64) 0.004 0.014 0.004 0.006

T03C (363, 181) 0.004 0.004 0.004 0.005 T09A (163, 33) 0.007 0.010 0.007 2.838

T04A (209, 79) 0.005 0.021 0.005 0.002 T09B (164, 33) 0.007 0.024 0.007 0.002

T04B (209, 80) 0.003 0.007 0.003 1.778 T10A (43, 106) 0.008 0.014 0.008 3.459

T05A (212, 76) 0.008 0.017 0.007 5.321 T10B (43, 107) 0.007 0.010 0.006 2.479

T05B (212, 77) 0.003 0.014 0.003 1.714 T10C (44, 107) 0.006 0.013 0.006 0.002
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Figures 14(a)–14(c) show results for the T05A panel mixed with background as computed by
the FCLS, GKLS, and SSA methods, respectively. The GKLS result is reported for γ ¼ 5.32.
Note there are diagnostic Tyvek features located at 1.72 and 2.31 μm (see Fig. 9). Overall, the
fits between the observed and estimated spectra are good for the three methods, especially near
the diagnostic Tyvek features. Note the GKLS improves the fit as compared to the FCLS method
in agreement with the numerical results listed in Table 2.

Figures 14(d)–14(f) show results for the vegetation mix as computed by the FCLS, GKLS,
and SSA methods. The GKLS result from γ ¼ 6.43 is shown. The fits between the observed and

Fig. 13 A false-color RGB composite abundance map of the subset scene for the vegetation end-
members using the FCLS method is shown in (a). Composite RGB abundance maps using the
GKLS and SSA methods are shown in (b) and (c), respectively. Notable differences in pattern
between the GKLS and SSAmethods can be observed. These maps are generated with the abun-
dance layers corresponding to the grass (red), trees (green), and brush (blue). If the RMSE was
greater than the threshold value, RMSEMAX ¼ 0.015, then the computed abundances for that
pixel were rejected and set to zero.

Fig. 12 A true color composite of the subset of the scene containing sites 1–3 is shown in
(a) (source of imagery: NRL). The abundance maps corresponding to Tyvek are displayed in
(b) and (c), respectively, for the GKLS and SSA methods. If the RMSE was greater than the
chosen threshold value, RMSEMAX ¼ 0.015, then the computed abundances for that pixel
were rejected and set to zero. The circles image shows the location of the tyvek panels. A number
of false alarms are also made at this RMSE threshold.
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estimated spectra were good for the three methods. As with the Tyvek panel, the GKLS improves
the fit as compared to the FCLS method in agreement with the numerical results listed in Table 2.
However, in this case, the SSA method was slightly better.

Tables 6 and 7 show the abundance results of experiment 2 for the three methods. Table 6
shows these results for the panels. At least one pixel location is listed for each Tyvek panel
shown. Although most panels are subpixel, the ground resolution distance of the sensor can
cause the panel’s signature to occur over multiple pixels. Not all locations are listed due to
an uncertainty factor of the actual sample and also because of space limitations. We notice
there is not always a significant difference in abundances between the FCLS and GKLS meth-
ods, such as with T04A (one of the pixels in TY-4) and T09B (one of the pixels in TY-9).
However, at these locations, the SSA method actually does estimate significantly higher abun-
dances. Overall, the abundances estimated by the SSA method are higher, and for the case of T07
it is sufficiently high to trigger the detection of that panel. The abundance estimates from the
other methods applied to T07 are too low to be considered significant.

Fig. 14 Plots of observed and estimated spectra are shown for a Tyvek panel mixture with back-
ground and a vegetation mixture. Observed spectra (labeled as “O”) are displayed in dark gray and
estimated modeled spectra (labeled as “E”) are displayed in lighter gray. Plots for the Tyvek panel
T05A mixture with background at location ðX; Y Þ ¼ ð212; 76Þ as computed by the FCLS, GKLS,
and SSA methods are shown in (a), (b), and (c), respectively. Plots for the vegetation mixture at
location ðX;Y Þ ¼ ð99; 79Þ are displayed in (d), (e), and (f). Diagnostic Tyvek features are located
at 1.72 and 2.31 μm. The shaded areas in the 1.33 to 1.50 μm and 1.79 to 2.01 μm regions indi-
cate where bad bands have been removed because of atmospheric absorption.
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Table 7 shows the results for vegetation mixtures. The vegetation abundance estimates are
notably different for each method. It is difficult to quantitatively assess the results in Table 7
because of a lack of ground truth. However, they corroborate with the qualitative results shown in
Fig. 13 and indicate that the SSA method is preferable over the FCLS for better characterizing
the nonlinear mixtures of vegetation in the scene.

4.4 Results of Experiment 3

The results for experiment 3 (airborne HSI data) are shown in Figs. 15–17 and Tables 8 and 9.
Figure 15 shows an RGB composite abundance map and five single-layer abundance maps for

Fig. 15 Fraction-plane false-color composites and single-plane abundance maps, using the
GKLS method, are shown for five of the six endmembers (water endmember not shown):
(a) RGB layer (R ¼ 4 mm,G ¼ 1.85 mm, R ¼ 1.0 mm); (b) single layer (4-mm-thick oil); (c) single
layer (1.85-mm-thick oil); (d) single layer (1.0-mm-thick oil); (e) single layer (0.5-mm-thick oil); and
(f) single layer (orange oil).
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Fig. 16 Abundance maps (fraction planes) of the 4.0-mm-thick oil are shown for the FCLS and
GKLS (γ ¼ 5) methods: (a) FCLS method: single layer map for 4-mm-thick oil and (b) GKLS
method (γ ¼ 5): single layer map for 4-mm-thick oil.

Fig. 17 Plots of the observed and estimated spectra at two selected locations: the results for the
FCLS, GKLS, and SSA methods at location ðx; yÞ ¼ ð401; 375Þ are shown in (a), (b), and (c),
respectively. The results for the FCLS, GKLS, and SSA methods at location ðx; yÞ ¼
ð323; 203Þ are shown in (d), (e), and (f), respectively. The results for the GKLS methods in (b)
and (e) are for γ ¼ 5.0. F1 and F2 are diagnostic oil features located at 1.2 and 1.73 μm, respec-
tively. Bad bands caused by atmospheric absorption regions are indicated with the pink-colored
strips at 1.10 to 1.16 μm, 1.32 to 1.48 μm, and 1.79 to 1.96 μm.
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the fixed-γ GKLS method (γ ¼ 5). The composite abundance map visually shows the method’s
response to three thicknesses of oil: the R layer depicts the abundance of 4.0-mm-thick oil; the G
layer depicts the abundance of 1.85-mm-thick oil; and the B layer depicts the abundance of 1.00-
mm-thick oil. The single-layer abundance maps show the results for five of the six endmembers.
Due to the small size of these photos in the report, it is difficult to see the detailed patterns, but it
is possible to get a sense of the method’s behavior. The oil is expected to spread out in a certain
pattern from thick to thin, which is indeed what occurs. In the original photos of the three methods
(not shown here but available in supplemental material), there is little difference in the patterns
observed between the GKLS and SSA methods. However, there is a notable difference in the
patterns seen for the 4.0-mm-thick oil between the FCLS and GKLS (or FCLS and SSA) methods.

Figure 16 shows the single-layer abundance maps of the 4.0-mm-thick oil for the FCLS and
fixed-γ GKLS (γ ¼ 5) method. The FCLS method shows much of the same large area of thick oil
in the central-right side of the scene as the GKSL (and SSA, not shown). However, these maps
also show a notable difference in pattern between the FCLS and GKLS methods, as just men-
tioned above. The linear FCLS indicates a significant amount of 4.0-mm-thick oil throughout the
scene in areas that would not be expected. Physically we expect the oil to spread out in a certain
pattern from thick to thin. There is isolated 4.0 mm oil scattered throughout the area in the FCLS
photo not seen in the GKLS photo. Neither the GKLS nor the SSA methods indicate much 4.0-
mm-thick oil in these regions.

Tables 8 and 9 show the abundance results and RMSE values, respectively, for the three
methods at selected locations of the AVIRIS scene. In Table 8, the abundance estimates are
not very different for the first three locations. Interestingly, the RMSE values in Table 9 indicate
the mixtures are likely to be linear at these locations. The abundance estimates listed in Table 8

Table 8. Abundance results: estimated abundance values of the methods are listed for selected
locations (pixels) in the AVIRIS DWH scene.

Lab Lab Lab Lab Img Img

Location DWH oil DWH oil DWH oil DWH oil (546, 481) (1154, 112)

Method ðx; yÞ 4.0 mm 1.85 mm 1.0 mm 0.5 mm Orange Water

FCLS (317, 202) 0.965 0.000 0.000 0.000 0.000 0.035

GKLS γ ¼ 5 (317, 202) 0.956 0.000 0.000 0.000 0.000 0.044

SSA (317, 202) 0.951 0.000 0.000 0.000 0.000 0.049

FCLS (318, 202) 0.988 0.000 0.000 0.000 0.000 0.012

GKLS γ ¼ 5 (318, 202) 0.973 0.000 0.000 0.000 0.000 0.027

SSA (318, 202) 0.965 0.000 0.000 0.000 0.000 0.035

FCLS (323, 203) 0.966 0.043 0.000 0.000 −0.009 0.000

GKLS γ ¼ 5 (323, 203) 0.956 0.044 0.000 0.000 0.000 0.000

SSA (323, 203) 0.952 0.048 0.000 0.000 0.000 0.000

FCLS (410, 375) 0.133 0.000 0.171 0.000 0.187 0.508

GKLS γ ¼ 5 (410, 375) 0.137 0.000 0.230 0.052 0.201 0.380

SSA (410, 375) 0.177 0.000 0.082 0.339 0.108 0.294

FCLS (441, 441) 0.119 0.000 0.142 0.000 0.293 0.445

GKLS γ ¼ 5 (441, 441) 0.073 0.000 0.181 0.094 0.303 0.349

SSA (441, 441) 0.075 0.000 0.000 0.460 0.177 0.288

The bold values indicate the best fitting model for each location.

Rand, Resmini, and Allen: Modeling linear and intimate mixtures of materials in hyperspectral imagery with. . .

Journal of Applied Remote Sensing 016005-23 Jan–Mar 2017 • Vol. 11(1)



for the locations at ðx; yÞ ¼ ð410; 375Þ and ðx; yÞ ¼ ð441; 441Þ are in agreement with Figs. 15
and 16. The smaller RMSE value for the GKLS at this location indicates the mixture is likely to
be nonlinear.

Figure 17 shows plots of the observed and estimated spectra for a thinner layer of oil at
ðsample; lineÞ ¼ ð410; 375Þ and a thicker layer of oil at ðsample; lineÞ ¼ ð323; 203Þ. The fits
are qualitatively good except for a significant difference in the F2 diagnostic region for the
FCLS method and in the F1 diagnostic region for the SSA method. However, overall the
fits are quite good. The larger values of RMSE listed for the SSA method are likely a conse-
quence of the magnitude of the SSA spectra as compared to the normalized reflectance values
used in the FCLS and GKLS methods (see range of the y-axis in Fig. 17).

5 Conclusion

This study has investigated the use of a GKLS method applied to reflectance data, and an SSA
method for nonlinear mixture analysis. In the case of the SSA method, an FCLS method is
applied to data that have been converted from reflectance space to SSA space. Our baseline
method was the FCLS method applied to reflectance data. Our hypothesis is that, for intimate
(nonlinear) mixtures, both of these methods will provide improved modeling and abundance
estimates as compared to the baseline FCLS method. Three scenarios are tested on different
scenes: laboratory, aerial over land, and aerial over oil-contaminated seawater.

Overall the results for experiment 1 using laboratory data from the Pika II sensor indicate the
FCLSmethod has a poor capability for modeling intimate mixtures. In contrast, both the GKLS and
SSA methods are much better at retrieving actual material abundances. Whether or not one is better
than the other is not conclusive. However, we conclude that our hypothesis is confirmed and that
both of these methods provide a better estimate of abundance for mixtures exhibiting nonlinearity.
For the laboratory experiment of known abundance quantities, the SSA and GKLS methods
responded well to the nonlinearity present in a mixture of materials and provide better estimates
of abundance than the linear FCLS method for the DiDy and soda-lime glass bead mixtures.

The GKLS γ parameter determines the degree of nonlinear behavior exhibited by the GKLS
method and affects its accuracy for estimating abundances. The automated GKLS method
attempts to select the most appropriate gamma based on achieving a minimum of the model’s
RMSE. We conclude the RMSE metric seems to respond to a mixture being linear and nonlinear,
but is not a reliable metric to determine the degree of nonlinearity present. It could not be used to
achieve the most accurate estimate of abundance and an alternative approach should be sought to
automate the GKLS method.

For mixtures known to be nonlinear, the fixed-γ implementation of GKLS with γ ¼ 5 or 6
provides a good estimate of abundance. The fixed-γ GKLS and the SSA methods can be com-
puted in approximately the same amount of time and provide approximately the same accuracy
for estimating abundances. Compared to the fixed-γ GKLS method, the automated GKLS was
much slower to compute by a factor of about 19 and did not really achieve better accuracy.

Table 9 Model diagnostics: RMSE values computed for the fit between the observed and esti-
mated mixed spectra are listed for selected locations of the AVIRIS DWH scene.

Location RMSE

ðx; yÞ FCLS GKLS γ ¼ 5 SSA

(317, 202) 0.0060 0.0064 0.0274

(318, 202) 0.0070 0.0073 0.0286

(323, 203) 0.0026 0.0027 0.0133

(410, 375) 0.0092 0.0073 0.0287

(441, 441) 0.0132 0.0118 0.0484
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For experiments 2 and 3 using the airborne data from HyMap (scene over land) and AVIRIS
(scene over water), we also conclude that our hypothesis is confirmed and that either of these
methods provides a better estimate of abundance for mixtures exhibiting nonlinearity.
Unfortunately, the data set used in experiment 2 was from a collection campaign not particularly
focused on nonlinear mixing problems, and although it contained many nonlinear mixtures, pre-
cise ground truth is not available. However, the data provide good opportunity to observe that
linear mixtures did not significantly degrade the performance of the nonlinear GKLS and SSA
methods. In experiment 3 (Deepwater Horizon oil spill), the SSA and GKLS methods performed
equivalently and appeared to respond better to the nonlinear mixtures of oil thicknesses in the
water than the linear method. Specifically, the linear method appears to be predicting too much of
the thicker oils. This can only be assessed qualitatively because, here, too, there is a lack of
ground truth. Additional analysis should be performed on scenes containing a variety of
known nonlinear mixtures that are well documented with ground truth.

Appendix provides information about obtaining data from the first experiment. All of the data
as well as dark field data cubes (with 80, 120, and 240 bands) and some additional information
[e.g., the ENVI ROI files and an ENVI ‘Spectral Math’ expression file for implementing Eqs. (2)
and (3)] are available for download as one compressed (.zip) file.

Additional experiments are recommended that investigate the effects of adding endmembers
to the models and also to the physical mixtures in a controlled environment. In experiment 1, the
number of controlled endmembers was limited to two.

Appendix: Obtaining the Data
The focus of the first experiment discussed in this study has been on the analysis of a single Pika
II HSI data cube (file: 20130521_sphere_array_2.bil). However, 15 measurements, in total, of
the glass beads in the 96-well sample plate were acquired as listed in Table 10. Two are simply

Table 10 A list is shown of the available Pika II data sets of the glass beads. (File
20130521_sphere_array_shifted_8.bil is the same as file 20130521_sphere_array_8.bil except
it has been shifted so that some regions of interest defined in other cubes in the data set also
apply.)

File Samples Lines Bands Lens Comments

20130521_sphere_array.bil 640 500 80 Xenoplan

20130521_sphere_array_2.bil 640 500 80 Xenoplan

2Q130521_sphere_array_3.bil 640 500 80 Xenoplan

20130521_sphere_array_4.bil 640 500 240 Xenoplan

2013052l_sphere_array_5.bil 640 500 240 Xenoplan

20130521_sphere_array_6.bil 640 500 240 Xenoplan

20130521_sphere_array_7.bil 640 500 120 Xenoplan

20130521_sphere_array_8.bil 640 500 120 Xenoplan

20130521_sphere_array_shifted_8.bil 640 500 120 Xenoplan

20130521_sphere_array_9.bil 640 500 120 Xenoplan

20130521_sphere_array_10.bil 640 700 80 Xenoplan Closer-in

20130521_sphere_array_11.bil 640 700 80 Xenoplan Closer-in

20130521_sphere_array_12.bil 640 700 80 Xenoplan Closer-in

20130701_sphere_array.bil 640 600 80 Xenoplan Replicates

20130702_sphere_array.bil 640 600 80 Xenoplan Replicates
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redundant measurements (640 samples × 500 lines × 80 bands prior to spectral subsetting in
ENVI). Six others are of the same sample plate and glass bead mixtures but with 120 and
240 bands. These data are somewhat noisier than those with 80 bands but were acquired to assess
the impact of an increased noise level on abundance estimations. Three cubes are with the sensor
moved closer to the sample plate (still with the Xenoplan objective lens) and with 80 bands. Two
additional cubes contain two replicate sets of glass bead mixtures placed in adjacent empty cells
of the plate (for a total of 15 filled cells). These cubes, too, contain 80 bands. All of the data sets
are with four QTH lamps and nadir-looking sensor configuration shown in Fig. 1. To date, no data
have yet been acquired with a line-light source to yield true bidirectional reflectance spectra. All
of these data sets as well as dark field data cubes (with 80, 120, and 240 bands) and some addi-
tional information [e.g., the ENVI ROI files and an ENVI “spectral math” expression file for
implementing Eqs. (2) and (3)] are available for download as one compressed (.zip) file.
Send an e-mail to rresmini@mitre.org requesting the data; a link for downloading will be
sent in return. All questions and comments about these data should be addressed to R.G. Resmini.
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