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Abstract. Phase unwrapping (PU) is one of the key processes in reconstructing the digital eleva-
tion model of a scene from its interferometric synthetic aperture radar (InSAR) data. It is known
that two-dimensional (2-D) PU problems can be formulated as maximum a posteriori estimation
of Markov random fields (MRFs). However, considering that the traditional MRF algorithm is
usually defined on a rectangular grid, it fails easily if large parts of the wrapped data are domi-
nated by noise caused by large low-coherence area or rapid-topography variation. A PU solution
based on sparse MRF is presented to extend the traditional MRF algorithm to deal with sparse
data, which allows the unwrapping of InSAR data dominated by high phase noise. To speed up
the graph cuts algorithm for sparse MRF, we designed dual elementary graphs and merged
them to obtain the Delaunay triangle graph, which is used to minimize the energy function
efficiently. The experiments on simulated and real data, compared with other existing algorithms,
both confirm the effectiveness of the proposed MRF approach, which suffers less from decor-
relation effects caused by large low-coherence area or rapid-topography variation. © The Authors.
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1 Introduction

Interferometric synthetic aperture radar (InSAR) is a powerful tool to measure the digital eleva-
tion model (DEM) of the earth’s surface.1 The InSAR system makes use of two or more SAR
images covering the same scene to generate interferograms. The acquired interferometric phase
is the principal value of the absolute phase, i.e., modulo-2π observation, which corresponds
to topography or deformation and is called the wrapped phase. Under this condition, phase
unwrapping (PU) is the process of resolving the absolute phase through the wrapped phase.
Unfortunately, from a mathematical viewpoint, PU is an ill-posed problem, whose significant
property is that there is no unique solution to it, if no further information is added. In fact, an
assumption taken by most PU algorithms is that the absolute value of phase differences between
neighboring pixels is less than π, the so-called Itoh condition.2 In essence, this assumption
requires that the measured regions have spatial continuity. The Itoh condition can be violated
if the absolute phase surface is discontinuous, or if the wrapped phase is dominated by noise. The
existence of large low-coherence regions and rapid-topography variations poses challenges to
two-dimensional (2-D) PU algorithms.
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PU approaches comprise three main classes: path following, minimum norm, and Bayesian
approaches. Path following algorithms apply line integration schemes over the wrapped phase
image, and basically rely on the assumption that the Itoh condition holds along the integration
path. This approach includes the so-called branch cuts,3,4 quality-guided,5 and minimum discon-
tinuity,6 etc. These path following algorithms, although 2π-true, are sensitive to the Itoh con-
ditions, which are often violated in the 2-D case. Minimum norm methods try to find a phase
solution for which the Lp norm of the difference between absolute phase differences and
wrapped phase differences is minimized. When p ¼ 2, the Lp norm-based PU method is trans-
formed to the least squares (LS) PU method,7 and when p ¼ 1, it is changed to the minimum-
cost flow (MCF) PU method.8 A drawback of the LS algorithm is that it tends to smooth dis-
continuities, unless they are provided as binary weights.4 The rather popular MCF algorithm
converts a 2-D PU problem to an MCF problem on a network, which connects the residues
with branch cuts and minimizes the total weighted length. The L1 norm-based criterion performs
better than the L2 norm in preserving discontinuities.4 However, the MCF approach, as a 2π-true
unwrapper, introduces integer times of 2π error on discrete points.

The Bayesian approach relies on a data observation mechanism model, as well as a priori
knowledge of the phase to be modeled.9–11 Based on this approach, Markov random fields
(MRFs) constraining global phase variations are used for solving a 2-D PU problem, which
has been proposed in several studies.12–14 Ying et al.12 proposed an MRF approach for
a 2-D PU problem. This approach utilizes an efficient algorithm for parameter estimation
using a series of dynamic programming connected by the iterated conditional modes. Dias
and Valadao13 proposed a PU algorithm based on graph cuts. This algorithm solves integer opti-
mization problems by computing a sequence of binary optimizations, which is converted to the
{0, 1} cut of graphs, so the graph cuts approach is utilized. Chen et al.14 proposed an integrated
phase denoising and unwrapping algorithm based upon MRF, the energy function of which is
defined according to the local independence property inferred from the MRF structure and then
minimized to obtain the estimate of the true phase value. Experiments on synthetic and real data
prove that this algorithm performs better than other competing algorithms.

Compared to some commonly used PU algorithms, the MRF approach for PU has two major
advantages. First, strength of the MRF approach lies in its ability to take contextual information
into account, making full use of local properties of interferograms. The pairwise difference of the
unwrapped phase over all neighbors is minimized as a global optimization. Second, some newly
developed optimization algorithms, e.g., graph cuts13 and loopy belief propagation,15 etc., have
proven to be very powerful to solving this minimization for a 2-D PU problem. However, since
the traditional MRF algorithm for PU is usually defined on a rectangular grid, such as the well-
known four-connected grid, it fails easily if large parts of the wrapped data are influenced by
high phase noise caused by a large low-coherence area or terrain with large topographic gra-
dients, which normally makes unwrapping a hard task. Therefore, the case in which data are
available on a sparse set of points is considered. Accordingly, the MCF approach has been sub-
sequently changed into the Delaunay-MCF approach in order to deal with sparse data.16–18 What
is more, multitemporal/multibaseline InSAR (i.e., persistent scatterers interferometry, PSInSAR)
attracted increasing interests,19–21 it also deals with only a sparse set of pixels, so in that case,
sparse-grid PU algorithms are indispensable.

In this paper, we propose a sparse MRF method for PU, which extends the traditional regular-
grid MRF algorithm to deal with a sparse data grid. Our proposed algorithm differs from the
regular-grid MRF algorithm mainly in two aspects. First, the proposed algorithm uses only
the subset of the data that are considered as coherent pixels, which are based on the coherence
coefficient of the SAR images. Since the selected data are no longer on a regular grid, the
Delaunay triangulation method is then used to divide the entire SAR image into a series of
2-D triangles according to the coherent pixels. Second, to speed up the graph cuts algorithm
for sparse MRF, dual elementary graphs are designed and merged to obtain the Delaunay triangle
graph, which is used to minimize energy function efficiently. The remainder of this paper is
organized as follows. In Sec. 2, we explain the formulation of the sparse MRF based on
Delaunay triangulation and describe the implementations of the graph cuts algorithm to opti-
mize. In Sec. 3, we give the two simulated experiments, in which some deeper analysis and
comparison between the proposed MRF algorithm and other existing algorithms is provided.
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In Sec. 4, two experiments using real data are carried out, and the performance of the proposed
MRF method is also compared with other existing algorithms. Finally, the study’s conclusions
are presented in Sec. 5.

2 Sparse Markov Random Field Method for Phase Unwrapping

In this section, we describe sparse MRF representation based on Delaunay triangulation for
a 2-D PU problem and implementations of the graph cuts optimization algorithm. Our method
is inspired from the fact that areas of low interferometric coherence are affected by high phase
noise and therefore are excluded during the PU process. Given this situation, a sparse set of
coherent points is generated using a coherence coefficient of the SAR images. The image coor-
dinates of the coherent points are then used to create a 2-D Delaunay triangulation. A prior of
local phase difference is computed to unwrap the phase through minimization of the local phase
difference. In particular, this prior is formed by computing a pairwise energy function induced
only by the coherent point and the triangulated grid. Moreover, the minimization of the energy
function is achieved via the graph cuts algorithm, in order to escape local minima.

2.1 Coherent Point Generation and Delaunay Triangulation

We define coherent points to be pixels that can be robustly unwrapped due to their high coher-
ence coefficient of the SAR images. We produce the interferometric coherence coefficient map
estimated from the normalized interferogram and the coregistered intensity images, which is
defined in Ref. 22. Accordingly, we generate coherent points by computing and applying
a threshold to the coherence coefficient map. The main difficulty with defining coherent points
is the selection of a threshold. If the threshold is too low, too many low-quality phase values will
be able to corrupt the unwrapped solution. On the other hand, if the threshold is too high, then
too many pixels will be masked out, and phase values on adjacent pixels will violate the Itoh
condition. Hence, for selecting the threshold, we use an automated method proposed in Ref. 4 by
examining the distribution of the coherence coefficient map, which helps to reach a balance
between quality and quantity of coherent points. Since low-coherent points are masked out,
the running time of the subsequent optimization algorithm is reduced. The 2-D triangulation
of the coherent points aims to represent the entire image with a set of 2-D triangles, which
reflects the pairwise difference of the unwrapped phase between a pixel and its neighboring
pixels. Many 2-D triangulation methods exist, and the representative method is Delaunay tri-
angulation, which can be generated by a divide and conquer algorithm for triangulations in 2-D
case.23 Accordingly, we compute a Delaunay triangulation, which involves the edges connecting
the neighboring pixels of the computed mask, as shown in Fig. 1.

Fig. 1 Pairwise sparse MRF connected through the Delaunay triangulation graph. The circles
represent Delaunay triangulation nodes and the solid lines represent Delaunay triangulation
edges. p denotes a node in a Delaunay triangulation and q denotes the neighbor node of
p on the Delaunay triangulation edge. The local adaptation of weights wpq expresses prior
knowledge of phase variability on the edge from node p to q.
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2.2 Sparse Markov Random Field Model Representation

The wrapped phase φ and the absolute unwrapped phase ϕ are related by multiples of 2π, i.e.,

EQ-TARGET;temp:intralink-;e001;116;704ϕ ¼ φþ 2πk; (1)

where the wrap count k is an integer. The PU problem determines the unknown wrap count for
each pixel. The energy function for PU based on sparse MRF can be defined as follows:

EQ-TARGET;temp:intralink-;e002;116;651EðkpjφÞ ¼
X

p∈P;q∈Np

VðΔϕpqÞ · wpq; (2)

where P are the set of nodes in the Delaunay triangulation and Np is the neighborhood system of
the Delaunay triangulation node p. φp and kp are the wrapped phase and the wrap count at
Delaunay triangulation node p; q is the neighbor nodes of p on the Delaunay triangulation
edge; Δϕpq is the phase variability, which is the pairwise difference of the unwrapped phase
between node p and neighbor q; and Vð·Þ is the edge potential, which is a real-valued function.
We use the classical Lp norm, which is the most widely used class of clique potentials in PU; it is
given by VðΔϕÞ ¼ jΔϕ −WðΔϕÞjp, whereWð·Þ is termed the wrapping operator. As defined in
Ref. 13, edge potential is convex given that p ≥ 1, while it is nonconvex given that p < 1. It is
worth mentioning that convex potential has priority over nonconvex potential both in stability
and computational efficiency. Here, we choose p ¼ 1, which exactly solves the classical mini-
mum L1 norm PU problem. wpq is the local adaptation of weights, which expresses prior knowl-
edge on phase variability between node p and its neighbor q. Here, we set the value of wpq as the
mean of coherence coefficient γp of the node p and γq of the neighbor q, which is given by

EQ-TARGET;temp:intralink-;e003;116;453wpq ¼
ðγp þ γqÞ

2
: (3)

This optimization problem can be solved by graph cuts optimization, which is explained in
Sec. 2.3. Initially, the labels of all nodes are set to zero, i.e., kt¼0

p ¼ 0, for all p. At each iteration
step, every node’s label will either be 1 (phase plus 2π) or −1 (phase minus 2π) or 0 (phase
remains unchanged), i.e., ktþ1

p ¼ ktp þ xtþ1
p , in which the superscript t denotes iteration and

xtþ1
p ∈ f0; 1;−1g. Every iteration aims to decrease the value of the energy function as much
as possible. When the energy ceases to decrease, the iteration is terminated. For a pair of neigh-
boring nodes, the edge potential to be minimized is defined as follows:

EQ-TARGET;temp:intralink-;e004;116;325Epqðxtþ1
p ; xtþ1

q Þ ¼ jϕtþ1
p − ϕtþ1

q −Wðϕtþ1
p − ϕtþ1

q Þj · wpq; (4)

EQ-TARGET;temp:intralink-;e005;116;293ϕtþ1
p ¼ φp þ 2πðktp þ xtþ1

p Þ; (5)

EQ-TARGET;temp:intralink-;e006;116;265ϕtþ1
q ¼ φq þ 2πðktq þ xtþ1

q Þ; (6)

where ϕtþ1
p and ϕtþ1

q are the unwrapped phase values of node p and neighbor q during iteration,
respectively. Considering all pairs of nodes, the energy function of each iteration is given by

EQ-TARGET;temp:intralink-;e007;116;214min
x

EðxÞ ¼
X
pq

Epqðxtþ1
p ; xtþ1

q Þ; (7)

where the summation is over all edges. The overall process of PU based on sparse MRF is shown
in Fig. 2.

2.3 Graph Cuts Optimization for Sparse Markov Random Fields

Because the edge potentials of Epqðxtþ1
p ; xtþ1

q Þ are convex, this optimization problem can be
solved by the standard graph cuts method. The graph cuts algorithm minimizes Eq. (7) through
a sequence of binary optimizations, with each binary problem mapped onto a certain graph
ς ¼ hυ; ξi (υ and ξ denote the set of nodes and edges, respectively) with two special terminals
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α and β. Each node p is connected to the terminals α and β by edges tαp and tβp (referred to as
a t-links), respectively. Each pair of nodes fp; qg is connected by an edge epq (referred to as an
n-link). The set of edges consists of tαp, t

β
p, and epq. The binary minimization is obtained by

computing a minimum cut on the graph. Any cut leaves each node p with exactly only one
t-link. If the cut separates p from terminal α, then node p is assigned label α. Similarly,
node p is assigned label β when the cut separates node p from terminal β.

To make the representation of the 2-D PU problem, we design dual elementary graphs shown
in Figs. 3(a) and 3(b), respectively. The first one with terminal α set as 1 (phase plus 2π) and β set
as 0 (phase remains unchanged) is illustrated in Fig. 3(a), and the weights assigned to the edges
of the elementary graph are defined in Eq. (8). The second one with terminal α as −1 (phase
minus 2πÞ and β as 0 (phase remains unchanged) is illustrated in Fig. 3(b), and the weights
assigned to the edges of the elementary graph are defined in Eq. (9). We merge the two

Fig. 3 The dual elementary graphs are designed to minimize Eq. (7). (a) The first elementary
graph for energy function is constructed, where 1 and 0 represent two terminals. In this case,
Eð1; 0Þ − Eð0; 0Þ > 0 and Eð1; 1Þ − Eð1; 0Þ > 0. (b) The second elementary graph for energy func-
tion is constructed, where −1 and 0 represent two terminals. In this case, Eð−1; 0Þ − Eð0; 0Þ > 0
and Eð−1;−1Þ − Eð−1; 0Þ > 0. (c) The Delaunay triangle graph is obtained in the end results
from the dual elementary graphs.

Fig. 2 Flowchart of the proposed sparse MRF method for a 2-D PU problem.
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elementary graphs to obtain the Delaunay triangle graph, which is illustrated in Fig. 3(c).
The Delaunay triangle graph is used to minimize Eq. (7) by choosing two of the possible swap,
0 and 1 or 0 and −1, which makes the process more efficient. Using the min-cut/max-flow
formulation, the optimal swap for the entire graph can be computed:

EQ-TARGET;temp:intralink-;e008;116;6878>>>>>>>>><
>>>>>>>>>:

jtαpj ¼ Eð1; 0Þ − Eð0; 0Þ; if ½Eð1; 0Þ − Eð0; 0Þ� > 0

jtβpj ¼ Eð0; 0Þ − Eð1; 0Þ; if ½Eð1; 0Þ − Eð0; 0Þ� ≤ 0

jtαqj ¼ Eð1; 1Þ − Eð1; 0Þ; if ½Eð1; 1Þ − Eð1; 0Þ� > 0

jtβqj ¼ Eð1; 0Þ − Eð1; 1Þ; if ½Eð1; 1Þ − Eð1; 0Þ� ≤ 0

jepqj ¼ Eð0; 1Þ þ Eð1; 0Þ − Eð0; 0Þ − Eð1; 1Þ

; (8)

EQ-TARGET;temp:intralink-;e009;116;5768>>>>>>>>><
>>>>>>>>>:

jtαpj ¼ Eð−1; 0Þ − Eð0; 0Þ; if ½Eð−1; 0Þ − Eð0; 0Þ� > 0

jtβpj ¼ Eð0; 0Þ − Eð−1; 0Þ; if ½Eð−1; 0Þ − Eð0; 0Þ� ≤ 0

jtαqj ¼ Eð−1;−1Þ − Eð−1; 0Þ; if ½Eð−1;−1Þ − Eð−1; 0Þ� > 0

jtβqj ¼ Eð−1; 0Þ − Eð−1;−1Þ; if ½Eð−1;−1Þ − Eð−1; 0Þ� ≤ 0

jepqj ¼ Eð0;−1Þ þ Eð−1; 0Þ − Eð0; 0Þ − Eð−1;−1Þ

: (9)

3 Simulated Data Experiment

In order to analyze the accuracy of the proposed MRF algorithm, simulated data are used in the
experiment, which are obtained from an interferogram simulated by the MATLAB toolbox for
InSAR.24 The function simulates an interferogram by radarcoding a fractal DEM and uses the
specified percentage to create water areas of height 0 (approximately). The phase of water areas
is uniform noise, and the coherence is Gaussian below 0.2. The geometric decorrelation noise is
modeled from the terrain slopes according to the fractal dimension of the simulated DEM and
added to the simulated interferogram. Smaller fractal dimension implies smoother surface while
higher fractal dimension means steeper topography. In order to evaluate the performance of the
proposed MRF method against two kinds of decorrelation effects (one is caused by large low-
coherence region and the other is rapid-topography variation induce geometric decorrelation),
two simulated data (A and B) are selected for analysis. Major parameters of the simulated data A
and B are listed in Table 1.

In order to compare the performance of the proposed MRF algorithm to other existing ones,
the traditional regular-grid MRF (RG-MRF) algorithm is used for comparison to verify the
improvement of the proposed algorithm, and the Delaunay-MCF algorithm, which also deals
with sparse data, serves as the competing algorithms for comparison. The RG-MRF algorithm
used here is the same as in Ref. 13, in which the energy function is defined as follows:

EQ-TARGET;temp:intralink-;e010;116;234EðkjφÞ ¼
X
i;j∈P

VðΔϕh
ijÞ · vij þ VðΔϕv

ijÞ · hij; (10)

where ð·Þh and ð·Þv denote pixel horizontal and vertical phase differences, and the L1 norm poten-
tial is used, which is the same as the proposed algorithm. hij and vij are weights, which represent

Table 1 Major parameters of the simulated data A and B.

Dataset
Satellite

height (km)
Looking
angle

Wavelength
(m)

Perpendicular
baseline (m)

Water area
percentage

(%)
Fractal

dimension

Simulated data A 785 19 0.057 100 50 2.1

Simulated data B 785 19 0.057 100 10 2.4
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the local coherence coefficient at horizontal and vertical edge. Moreover, some improvements on
unwrapped accuracy can also be made by using the RG-MRF method with mask (RGM-MRF),
if we set hij and vij ¼ 0 for low-coherence areas, which is also used for comparison. The
Delaunay-MCF method is used to compare as suggested in Ref. 17, in which the optimization
objective is as follows:

EQ-TARGET;temp:intralink-;e011;116;675ε ¼
XN
i¼1

wi ·

����Δϕα þ Δϕβ þ Δϕγ

2π

����; (11)

whereΔϕα,Δϕβ, andΔϕγ represent the phase gradient at each edge of a generic triangle, respec-
tively (whose edges are labeled α, β, and γ, respectively). N represents the overall number of
edges relevant to the Delaunay triangulation, and the weight wi is the local coherence coefficient
at each edge. To quantitively analyze the performance of each algorithm, the root mean square
(RMS) error of the unwrapping accuracy is defined as follows:

EQ-TARGET;temp:intralink-;e012;116;568RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1 ðϕ̂ − ϕÞ2

N

s
; (12)

where ϕ is the vector collecting from the reference true unwrapped phase, ϕ̂ is the vector
collecting from the estimated unwrapped phase generated by each algorithm. N represents
the overall number of high-coherence pixels. It is also worth mentioning that, to fairly compare
the PU result, RMS error of each algorithm is calculated based on the same sparse data. We
implemented the algorithms in C or C++ and ran the experiments on a modern Pentium 5.
All of the experiments were run on the same machine (2.5 GHz and 8 Gbyte RAM).

3.1 Experiment on the Simulated Data A

Simulated data A has the characteristic that the area of low-coherence region is large but
the topography is comparatively flat. Figures 4(a)–4(c) show the unwrapped phase image,
the wrapped phase image, and the coherence coefficient map, respectively. In Fig. 4(b),

Fig. 4 Test on the simulated data A with a size of 512 × 512 pixels. (a) True interferometric phase
image, (b) flattened interferogram, (c) coherence coefficient map, (d) mask map of the spatially
coherent pixels where pixels with coherence higher than 0.2 (in red), and (e) Delaunay triangu-
lation involving the set of spatially coherent pixels.
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it can be noticed that the wrapped phase image is dominated by uniform phase noise induced by
the water areas. In Fig. 4(c), we can see that the coherence coefficient of the water areas is below
0.2, which normally makes unwrapping the rest of the data unfeasible. Figure 4(d) shows that
147,823 spatially coherent pixels are generated, where pixels with a coherence coefficient lower
than 0.2 are masked out. The Delaunay triangulation is computed, which involves 442,157 edges
connecting the neighboring pixels of the computed mask, as shown in Fig. 4(e).

Figure 5 illustrates the unwrapped results of simulated data A by each algorithm. In Fig. 5,
we can visually notice that among them, the proposed MRF method has the deviation error in a
smaller scale and very close to it is the Delaunay-MCF method. Otherwise, the deviation errors
of the two regular-grid MRF algorithms are higher than those of the former two, especially the
RGM-MRF algorithm, which generates an unreasonable unwrapped result. To quantitively ana-
lyze the accuracy and efficiency of each algorithm, the RMS error and running time are calcu-
lated and listed in Table 2. Furthermore, it can also be noticed that the proposed MRF algorithm
generates the lowest RMS error, followed by the Delaunay-MCF algorithm. On the contrary, the
result of the two regular-grid MRF methods has higher RMS errors compared to the other two
methods. This is because they are both based on the four-connected grid graph, different isolated
regions surrounded by low-coherence areas cannot be connected to each other, which causes
phase jumps between them easily. In addition to this, in Table 2, it is also noticed that although
the proposed MRF algorithm is more time consuming than the Delaunay-MCF algorithm,

Fig. 5 Unwrapped results on the simulated data A using the (a) proposed MRF algorithm, (b) RG-
MRF algorithm, (c) RGM-MRF algorithm, (d) Delaunay-MCF algorithm. Deviation errors between
the unwrapped result generated by the (e) proposed MRF algorithm, (f) RG-MRF algorithm,
(g) RGM-MRF algorithm, (h) Delaunay-MCF algorithm, and the reference topography phase.
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it is computationally efficient compared with the other two MRF algorithms, and the reason is
that it is based on a set of 2-D Delaunay triangles instead of the entire image, which drastically
reduces the running time of the optimization process.

In order to research into the performance of each algorithm more deeply, we calculate the
RMS error against the water percentage of the simulated DEM. The higher water percentage
means that more area in the simulated interferogram has the low coherence coefficient level.
Figure 6 shows the relationship between the RMS error and water percentage (from 10% to
70%). In Fig. 6, it can be seen that the proposed MRF algorithm (red line) generates lower
RMS error compared with the competing algorithms in the majority of the water percentage
scale and very close to it is the Delaunay-MCF algorithm (green line). The RGM-MRF algorithm
(cyan line), on the other hand, suffers the highest RMS error, followed by the RG-MRF algo-
rithm (blue line). Moreover, it can still be noticed that the error curves of the four algorithms are
similar with a low-level RMS error in the area with low water percentage (below 40%). However,
in the area with high water percentage (above 40%), the proposed MRF algorithm generates
lower RMS error than the competing algorithms, which means that it suffers less from decor-
relation effects caused by expanding of the low-coherence area.

3.2 Experiment on the Simulated Data B

Simulated data B has the characteristic that the topography varies more drastically, which suffers
serious geometric decorrelation effect. Figures 7(a) and 7(b) show the unwrapped phase image
and the wrapped phase image, respectively. In Fig. 7(b), it can be noticed that the wrapped phase
is rather noisy, thus inducing a huge number of phase jumps (i.e., residues), making the

Table 2 Rms error and running time of each algorithm on the simulated data A.

Algorithms Time (s) RMS error (rad)

Proposed MRF 14.19 2.15

RG-MRF 24.92 2.8

RGM-MRF 18.14 14.36

Delaunay-MCF 10.24 2.25

Fig. 6 Relationship between the unwrapped RMS error (rad) of each algorithm and the water
percentage of the simulated DEM (%).
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unwrapping a hard task. Figure 7(c) shows the coherence coefficient map, which is computed
from the terrain slopes (geometric decorrelation). Figure 7(d) shows that 239,870 spatially coher-
ent pixels are generated, where pixels with a coherence coefficient lower than 0.5 are masked
out. The Delaunay triangulation is computed, which involves 717,804 edges connecting the
neighboring pixels of the computed mask, as shown in Fig. 7(e).

Figure 8 shows the unwrapped results of simulated data B by each algorithm. In Fig. 8, it is
illustrated visually that the unwrapped result using the proposed MRF and RGM-MRF algo-
rithms has lower deviation error than that of the Delaunay-MCF and RG-MRF algorithms.
Table 3 shows the corresponding RMS errors and running time of each algorithm. Among
them, the proposed MRF algorithm suffers from the lowest RMS error. For the Delaunay-
MCF algorithm, on the contrary, it abnormally generates the highest RMS error. Moreover,
the performance of the two regular-grid MRF algorithms is very distinctive from each other.
The RG-MRF algorithm generates very high RMS error, while the RGM-MRF algorithm
has much lower RMS error and the reason may be that low-coherence pixels are excluded during
the PU process. In addition, Table 3 also demonstrates that the proposed MRF algorithm is more
efficient than other two MRF algorithms.

Here, we calculate the RMS error against the fractal dimension of the simulated DEM for
further analysis. The higher fractal dimension means local topography varies more drastically,
which results in low-coherence induced by geometric decorrelation. The relationship between
the RMS error and fractal dimension (between 2 and 3) is shown in Fig. 9. It can be observed
that, in the area with low fractal dimension (below 2.3), meaning that the topography is com-
paratively flat, the four algorithms have identical error curves and have a low-level RMS error.
However, in the area with high fractal dimension (above 2.3), meaning that the topography varies
drastically, the behavior of these curves is very distinctive from each other. The Delaunay-MCF
algorithm (green line) generates the highest RMS error, followed by the RG-MRF algorithm
(blue line). On the opposite, the proposed MRF algorithm (red line) introduces the lowest
RMS error in the majority of the fractal dimension scale and very close to it is the RGM-
MRF algorithm (cyan line), which demonstrates that the performance of the proposed MRF
algorithm suffers less from decorrelation effects caused by topography variation.

Fig. 7 Test on the simulated data B with a size of 512 × 512 pixels. (a) True interferometric phase
image, (b) flattened interferogram, (c) coherence coefficient map, (d) mask map of the spatially
coherent pixels where pixels with coherence higher than 0.5 (in red), and (e) Delaunay triangu-
lation involving the set of spatially coherent pixels.

Zhou et al.: Interferometric synthetic aperture radar phase unwrapping based on sparse Markov random. . .

Journal of Applied Remote Sensing 015006-10 Jan–Mar 2018 • Vol. 12(1)



4 Real Data Experiment

In this section, the performance of the proposed method is tested on two real applications, which
both intend to reconstruct the real DEM. The two experiments are applied to two interferometric
pairs of TerraSAR-X, respectively, which are both downloaded from the Infoterra website.
The major parameters of the two interferometric pairs are listed in Table 4. Moreover,
the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global (ASTER G)

Table 3 RMS error and running time of each algorithm on the simulated data B.

Algorithms Time (s) RMS error (rad)

Proposed MRF 15.20 1.49

RG-MRF 24.36 5.72

RGM-MRF 17.98 1.57

Delaunay-MCF 11.84 5.80

Fig. 8 Unwrapped results on the simulated data B using the (a) proposed MRF algorithm,
(b) RG-MRF algorithm, (c) RGM-MRF algorithm, and (d) Delaunay-MCF algorithm. Deviation
errors between the unwrapped result generated by the (e) proposed MRF algorithm, (f) RG-
MRF algorithm, (g) RGM-MRF algorithm, and (h) Delaunay-MCF algorithm and the reference
topography phase.

Zhou et al.: Interferometric synthetic aperture radar phase unwrapping based on sparse Markov random. . .

Journal of Applied Remote Sensing 015006-11 Jan–Mar 2018 • Vol. 12(1)



DEM covering the same area is used to simulate the topography phase, which is, as the reference,
compared with every unwrapped result generated by different algorithms.

4.1 Experiment on the Real Data of the Uluru

In the first real data experiment, the performances of the four methods are tested on two
TerraSAR-X spotlight images covering the Uluru, in Australia. Figure 10(a) shows the SAR
intensity image of this data, which is geographically featured by an isolated hill that rises
abruptly from and is surrounded by relatively flat lowlands. Figure 10(b) shows the topography
phase simulated by ASTER G DEM, which is used as the reference topography phase. We use
the two SLC images of the Uluru to generate a flattened interferogram [see Fig. 10(c)] with eight
looks in the range and azimuth direction, having a pixel spacing of approximately 8 × 8 m.
The Goldstein interferogram filter is applied to reduce the phase noise before the competing
unwrapper. In Fig. 10(c), we can notice that it presents large phase rates to produce aliasing
between isolated hill and flat lowlands; in addition, the back of the isolated hill has the character-
istic that the coherence coefficient is low due to the shadow, such that the unwrapping becomes
a hard task. Figure 10(d) shows the coherence coefficient map using the adaptive estimation
window size of 7 × 7. We generate the mask map of the pixels by considering those pixels
with an estimated coherence value greater than a selected threshold 0.3, as shown in Fig. 10(e).
The number of selected coherent sparse pixels is 542,392. The Delaunay triangulation is then
generated to define the neighbor nodes in the set of the identified coherent sparse pixels, which is
shown in Fig. 10(f). The number of edges relevant to the Delaunay triangulation is 1,624,132.

Fig. 9 Relationship between the unwrapped RMS error (rad) of each algorithm and the fractal
dimension (between 2 and 3) of the simulated DEM.

Table 4 Parameters of two interferometric pairs of TerraSAR-X.

Dataset Wavelength (m) Resolution (m) Polarization Orbit
Looking
angle Date

Uluru 0.031 1 HH Descending 45.8 February 12, 2009

February 23, 2009

Grand 0.031 3 HH Descending 39.2 March 10, 2008

Canyon March 21, 2008

Zhou et al.: Interferometric synthetic aperture radar phase unwrapping based on sparse Markov random. . .

Journal of Applied Remote Sensing 015006-12 Jan–Mar 2018 • Vol. 12(1)



Figure 11 shows the unwrapped results obtained by the four algorithms, and Table 5 shows
the corresponding RMS errors and running time of each algorithm. In Fig. 11, we can notice that
one obvious vertical discontinuity is seen in the unwrapped result generated by the RG-MRF
algorithm, and the unwrapped result obtained by RGM-MRF algorithm shows that the disconti-
nuities problem becomes much more serious. In Fig. 11, it is also shown visually that the pro-
posed MRF and Delaunay-MFC algorithms both alleviate the discontinuities successfully and
keep the continuity of the unwrapped result in the whole image. The relative performance of
the four algorithms can also be seen in the metrics in Table 5, where the proposed MRF and
Delaunay-MCF algorithms suffer less from RMS error in comparison with the reference, while
the two regular-grid MRF algorithms have a higher RMS error level than that of the former two,
and the reason is given in the end of Sec. 3.1. In Table 5, we can see that the proposed MRF
algorithm’s execution time is smaller than that needed in the other two MRF algorithms.

4.2 Experiment on the Real Data of the Grand Canyon

In the second real data experiment, the performances of the four methods are tested on two
TerraSAR-X stripmap images covering the Grand Canyon, in the United States. We remark
that the selection of this Grand Canyon test-site area is related to the difficulty in the unwrapping
operation, where some regions have the characteristic that the coherence coefficient is very low
and the topography varies drastically since it is located across the canyon. The SAR intensity
image of this data is illustrated in Fig. 12(a). Figure 12(b) shows the topography phase simulated

Fig. 10 Test on the real data of the Uluru, which is a TerraSAR-X phase image with a size of
1274 × 680 pixels. (a) SAR intensity image, (b) topography phase simulated by ASTER G
DEM, which is used as the reference topography phase, (c) flattened filtered interferogram,
(d) coherence coefficient map, (e) mask map of the spatially coherent pixels where pixels with
coherence higher than 0.3 (in red), and (f) Delaunay triangulation involving the set of spatially
coherent pixels.
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Fig. 11 Unwrapped results on the real data of the Uluru using the (a) proposed MRF algorithm,
(b) RG-MRF algorithm, (c) RGM-MRF algorithm, (d) Delaunay-MCF algorithm. Deviation errors
between the unwrapped result generated by the (e) proposed MRF algorithm, (f) RG-MRF algo-
rithm, (g) RGM-MRF algorithm, and (h) Delaunay-MCF algorithm and the reference topography
phase.

Table 5 RMS error and runtime of each algorithm on the real data of the Uluru.

Algorithms Time (s) RMS error (rad)

Proposed MRF 86.67 3.14

RG-MRF 235.46 5.31

RGM-MRF 120.54 11.91

Delaunay-MCF 52.45 3.88
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by ASTER G DEM, which is used as the reference topography phase. Figure 12(c) shows the
flattened interferogram with 10 looks in the range and azimuth direction, with a pixel spacing of
approximately 30 × 30 m. Before processing two algorithms, a Goldstein interferogram filter is
used for phase denoising. Figure 12(d) shows the coherence coefficient map using the adaptive
estimation window size of 7 × 7. Figure 12(e) shows that 969,868 spatially coherent pixels
are generated, where pixels with a coherence coefficient lower than 0.3 are masked out. The
Delaunay triangulation is computed, which involves 5,813,674 edges connecting the neighbor-
ing pixels of the computed mask, as shown in Fig. 12(f).

The unwrapped results obtained by the four algorithms are illustrated in Fig. 13, and Table 6
shows the corresponding RMS errors and running time of each algorithm. In Fig. 13, the
unwrapped result by the proposed MRF and RGM-MRF algorithms seems more credible
and seamless than that of the other two algorithms, while the unwrapped result by the RG-
MRF and Delaunay-MCF algorithm has the 2nπ unwrapping errors accumulated throughout
the whole image. As indicated by the metrics in Table 6, the proposed MRF and RGM-
MRF algorithms perform better in generating the lower RMS error, while the Delaunay-
MCF algorithm abnormally generates the highest RMS error, and close to it is the RG-MRF
algorithm. This is partly because topography varies drastically around the canyon while the
phase fringes break and generate a lot of residues, which degrades the accuracy of the
Delaunay-MCF and RG-MRF algorithms. On the contrary, the proposed MRF algorithm suffers
less from the decorrelation effects caused by topography variation. Table 6 also demonstrates
that the proposed MRF algorithm is more efficient in comparison with the other two MRF
algorithms.

Finally, we give the comparison between simulated and real data experiments. In the experi-
ment on the simulated data A, interferograms are simulated with lots of low-coherence regions
caused by water areas. In this case, it can be noticed that the proposed algorithm generates the
lowest error level, with the Delaunay-MCF algorithm resulting in a slightly larger error.
However, the two regular-grid algorithms have the high error level. The relative performance

Fig. 12 Test on the real data of the Grand Canyon, which is a TerraSAR-X phase image with a
size of 1171 × 1283 pixels. (a) SAR intensity image, (b) topography phase simulated by ASTER G
DEM, which is used as the reference topography phase, (c) flattened filtered interferogram,
(d) coherence coefficient map, (e) mask map of the spatially coherent pixels where pixels with
coherence higher than 0.3 (in red), and (f) Delaunay triangulation involving the set of spatially
coherent pixels.
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of the four algorithms is also found in the real-data experimental result of the Uluru, where
the area of the decorrelation region is also large due to shadow. The two experimental results
both demonstrate that the proposed algorithm suffers less from the influence of expanding of
the low-coherence area. In the experiment on the simulated data B, interferograms with lots of
low coherence caused by rapid-topography variation are simulated. In this condition, it generates

Fig. 13 Unwrapped results on the real data of the Grand Canyon using the (a) proposed
MRF algorithm, (b) RG-MRF algorithm, (c) RGM-MRF algorithm, (d) Delaunay-MCF algorithm.
Deviation errors between the unwrapped result generated by the (e) proposed MRF algorithm,
(f) RG-MRF algorithm, (g) RGM-MRF algorithm, and (h) Delaunay-MCF algorithm and the refer-
ence topography phase.

Table 6 RMS error and runtime of each algorithm on the real data of the Grand Canyon.

Algorithms Time (s) Rms error (rad)

Proposed MRF 316.31 10.37

RG-MRF 658.97 20.01

RGM-MRF 430.43 10.48

Delaunay-MCF 250.25 30.66
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the similarity between the proposed and RGM-MRF algorithms, and they both have lower error
level compared with other two algorithms. The similar results also can be noticed in the real-data
experimental result of the Grand Canyon, where the terrain changes fiercely across the canyon.
The two experimental results both confirm that the proposed algorithm suffers less decorrelation
effects caused by topography variation.

5 Conclusions

We proposed a PU solution based on sparse MRF for extending the traditional regular-grid MRF
PU algorithm dealing with a sparse data to process InSAR interferograms for the generation of
DEM. Our method is inspired by the fact that areas of low interferometric correlation are affected
by high phase noise and therefore are excluded during the PU process. The proposed algorithm
involves three main steps. Initially, Delaunay triangulation is computed based on a sparse set of
coherent points using a coherence coefficient of the SAR images. Following this step, a sparse
MRF representation based on the Delaunay triangulation is defined. Finally, to speed up the
graph cut algorithm for sparse MRF, we design dual elementary graphs and merge them to
obtain the Delaunay triangle graph, which is used to minimize energy function efficiently.
The experiments are carried out both on simulated and real data, compared with the other
existing algorithms. All the experimental results confirm that the proposed MRF method is
an effective PU method, which suffers less from decorrelation effects caused by a large low-
coherence area and rapid-topography variation. We underline that the proposed solution is
based on a set of 2-D Delaunay triangles instead of the entire image, which reduces the running
time of the optimization process drastically. Accordingly, the overall approach is computation-
ally efficient.

It is worth mentioning that we focus only on DEM extraction using the proposed algorithm,
but InSAR is also useful to measure ground deformation, for instance, due to subsidence
(volcanic or fluid extraction/injection) or coseismic/postseismic deformation. In the future,
we will research the application of the proposed algorithm for those problems, especially in
coseismic deformation, where the interferograms suffer from large gradients in ground defor-
mation near the fault rupture and discontinuities in phase across the rupture. Furthermore,
although the algorithm is developed mainly for the single-pass interferometry or short-period
singlebaseline interferometry, which is used for the generation of topography or deformation
map, the proposed algorithm can be extended into the three dimensions (3-D) to solve the multi-
baseline interferometry PU problem. In a future study, we will utilize 3-D Delaunay triangulation
to extend this algorithm for the interferogram series reconstruction problem.

Acknowledgments

This research was jointly supported by the National Natural Science Foundation of China
(Grant No. 41501461), the sponsorship of Jiangsu Overseas Research and Training Program
for University Prominent Young and Middle-aged Teachers and Presidents, the Natural Science
Foundation of Jiangsu Province of China (Grant No. BK20140419). The authors would like to
thank the anonymous reviewers for their constructive comments, which were taken into account
in revising this paper.

References

1. H. Zebker and R. Goldstein, “Topographic mapping from interferometric SAR observa-
tions,” J. Geophys. Res. 91, 4993–4999 (1986).

2. K. Itoh, “Analysis of the phase unwrapping problem,” Appl. Opt. 21(14), 2470 (1982).
3. S. Madesn, H. Zebker, and J. Martin, “Topographic mapping using radar interferometry:

processing techniques,” IEEE Trans. Geosci. Remote Sens. 31(1), 246–256 (1993).
4. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms

and Software, Wiley-Interscience, New York (1998).
5. W. Xu and I. Cunning, “A region growing algorithm for InSAR phase unwrapping,” IEEE

Trans. Geosci. Remote Sens. 37(1), 124–134 (1991).

Zhou et al.: Interferometric synthetic aperture radar phase unwrapping based on sparse Markov random. . .

Journal of Applied Remote Sensing 015006-17 Jan–Mar 2018 • Vol. 12(1)

http://dx.doi.org/10.1029/JB091iB05p04993
http://dx.doi.org/10.1364/AO.21.002470
http://dx.doi.org/10.1109/36.210464
http://dx.doi.org/10.1109/36.739143
http://dx.doi.org/10.1109/36.739143


6. T. Flynn, “Two-dimensional phase unwrapping with minimum weighted discontinuity,”
J. Opt. Soc. Am. A 14(10), 2692–2701 (1997).

7. D. Fried, “Least-squares fitting a wave-front distortion estimate to an array of phase
difference measurements,” J. Opt. Soc. Am. A 67(3), 370–375 (1977).

8. M. Costantini, “A novel phase unwrapping method based on network programming,” IEEE
Trans. Geosci. Remote Sens. 36(3), 813–821 (1998).

9. J. Marroquin and M. Rivera, “Quadratic regularization functionals for phase unwrapping,”
J. Opt. Soc. Am. A 12(11), 2393–2400 (1995).

10. G. Nico, G. Palubinskas, and M. Datcu, “Bayesian approach to phase unwrapping:
theoretical study,” IEEE Trans. Image Process. 48(9), 2545–2556 (2000).

11. J. Dias and J. Leitao, “The ZM algorithm for interferometric image reconstruction in
SAR/SAS,” IEEE Trans. Image Process. 12(4), 408–422 (2002).

12. L. Ying et al., “Unwrapping of MR phase images using a Markov random field model,”
IEEE Trans. Med. Imaging 25(1), 128–136 (2006).

13. J. Dias and G. Valadao, “Phase unwrapping via graph cuts,” IEEE Trans. Image Process.
16(3), 698–709 (2007).

14. R. Chen et al., “Integrated denoising and unwrapping of InSAR phase based on Markov
random fields,” IEEE Trans. Geosci. Remote Sens. 51(8), 4473–4485 (2013).

15. J. Frey, R. Koetter, and N. Petrovic, “Very loopy belief propagation for unwrapping phase
images,” in Advances in Neural Information Processing Systems (NIPS), pp. 737–743 (2001).

16. M. Costantini and P. A. Rosen, “A generalized phase unwrapping approach for sparse data,”
in Proc. IEEE Int. Geoscience and Remote Sensing Symp., Hamburg (1999).

17. A. Pepe and R. Lanari, “On the extension of the minimum cost flow algorithm for phase
unwrapping of multitemporal differential SAR interferograms,” IEEE Trans. Geosci.
Remote Sens. 44(9), 2374–2383 (2006).

18. A. Shanker and H. Zebker, “Edgelist phase unwrapping algorithm for time series InSAR
analysis,” J. Opt. Soc. Am. A 27(3), 605–612 (2010).

19. A. Ferretti, C. Prati, and F. Rocca, “Permanent scatterers in SAR interferometry,” IEEE
Trans. Geosci. Remote Sens. 39(1), 8–20 (2001).

20. A. Hooper et al., “A new method for measuring deformation on volcanoes and other natural
terrains using InSAR persistent scatters,” Geophys. Res. Lett. 31, L23611 (2004).

21. B. Kampes and R. Hanssen, “Ambiguity resolution for permanent scatterer interferometry,”
IEEE Trans. Geosci. Remote Sens. 42(11), 2446–2453 (2004).

22. R. Hanssen, Radar Interferometry—Data Interpretation and Error Analysis, Kluwer,
Norwell (2002).

23. L. Guibas and J. Stolfi, “Primitives for the manipulation of general subdivisions and
the computation of Voronoi diagrams,” ACM Trans. Graphics 4(2), 74–123 (1985).

24. B. Kampes and S. Usai, “Doris: the Delft object-oriented radar interferometric software,” in
2nd Int. Symp. on Operationalization of Remote Sensing, Enschede (1999).

Lifan Zhou is a lecturer at the Changshu Institute of Technology. He received his BS degree in
geographic information systems from Wuhan University in 2006 and his PhD degree in
geographic information systems from Zhejiang University in 2014. He is the author of more than
10 journal papers. His main research interests are in the fields of phase unwrapping and
synthetic aperture radar interferometry signal processing and applications.

Dengfeng Chai received his BS degree in surveying engineering from Wuhan University, his
MS degree in photogrammetry and remote sensing from Wuhan University, and his PhD in
applied mathematics from Zhejiang University in 1997, 2000, and 2006, respectively. He is
an associate professor at Zhejiang University. He is the author of more than 20 journal papers.
His research interests include developing statistical approaches for object recognition and
extraction from remotely sensed images.

Yu Xia is an associate professor at the Changshu Institute of Technology. He received his MS
degree in computer science and PhD in computer vision both from Jiangnan University in 2009
and 2013, respectively. He is the author of more than 20 journal papers. His research interests
include computer vision, digital image processing, and pattern recognition.

Zhou et al.: Interferometric synthetic aperture radar phase unwrapping based on sparse Markov random. . .

Journal of Applied Remote Sensing 015006-18 Jan–Mar 2018 • Vol. 12(1)

http://dx.doi.org/10.1364/JOSAA.14.002692
http://dx.doi.org/10.1364/JOSA.67.000370
http://dx.doi.org/10.1109/36.673674
http://dx.doi.org/10.1109/36.673674
http://dx.doi.org/10.1364/JOSAA.12.002393
http://dx.doi.org/10.1109/78.863057
http://dx.doi.org/10.1109/TIP.2002.999675
http://dx.doi.org/10.1109/TMI.2005.861021
http://dx.doi.org/10.1109/TIP.2006.888351
http://dx.doi.org/10.1109/TGRS.2013.2268969
http://dx.doi.org/10.1109/IGARSS.1999.773467
http://dx.doi.org/10.1109/TGRS.2006.873207
http://dx.doi.org/10.1109/TGRS.2006.873207
http://dx.doi.org/10.1364/JOSAA.27.000605
http://dx.doi.org/10.1109/36.898661
http://dx.doi.org/10.1109/36.898661
http://dx.doi.org/10.1029/2004GL021737
http://dx.doi.org/10.1109/TGRS.2004.835222
http://dx.doi.org/10.1145/282918.282923


Peifeng Ma is a postdoctor at the Chinese University of Hong Kong. He received his MS degree
in signal and information processing from the Chinese Academy of Sciences in 2012, and the
PhD in earth system and geoinformation science from the Chinese University of Hong Kong in
2016. He is the author of more than 10 journal papers. His research interests include SAR
tomography and persistent scatterer interferometry and their application to infrastructural health
monitoring.

Hui Lin is a professor at the Chinese University of Hong Kong. He received his MS degree in
cartography and remote sensing from the Chinese Academy of Sciences in 1983, and his MA
and PhD degrees in geographic information systems from the University at Buffalo in 1987 and
1992, respectively. He is the author of more than 200 journal papers. His research interests are in
satellite remote sensing for cloudy and rainy environments and GIS applications.

Zhou et al.: Interferometric synthetic aperture radar phase unwrapping based on sparse Markov random. . .

Journal of Applied Remote Sensing 015006-19 Jan–Mar 2018 • Vol. 12(1)


