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Abstract. Over the past 20 years, hyperspectral microscopy has grown into a robust field of
analysis for a number of applications. The visible to near-infrared (VNIR; 400 to 1000 nm)
region of the spectrum has demonstrated utility for the characterization of healthy and diseased
tissue and of biomolecular indicators at the cellular level. Here, we describe the development of
a hyperspectral imaging (HSI) microscope that is aimed at material characterization to comple-
ment traditional stand-off, earth remote sensing with hyperspectral sensors. We combine com-
mercial off the shelf technology to build an HSI microscope to collect spectral data with
illumination provided by a tunable laser. Hyperspectral imaging microscopy (HIM) facilitates
detailed examination of target materials at the subcentimeter spatial scale. The custom-built,
laser illumination HSI microscope covers the NIR to shortwave infrared (NIR/SWIR; 900 to
2500 nm) solar-reflected spectral range. It is combined with a separate VNIR sensor (400 to
900 nm) that utilizes quartz–tungsten–halogen lamps for illumination. The combined sensors
provide a means to collect >10;000 s of spectra in the full VNIR/SWIR spectral range from
both pure substances and precisely engineered linear and nonlinear mixtures. The large abun-
dance of spectra allows for a more detailed understanding of the variability and multivariate
probability distributions of spectral signatures. This additional information aids in understanding
the variability observed in ground truth spectra collected from portable spectrometers, and
it greatly enhances sample description and metadata content. In addition, HIM data cubes can
serve as proxies, as “microscenes,” for systems engineering applications such as trade studies for
HSI acquired by air- and space-borne sensors. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.12.026024]
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1 Introduction

Hyperspectral remote sensing (HRS), also known as imaging spectroscopy or hyperspectral im-
aging (HSI), is rapidly emerging as a distinct and key discipline in the science of Earth and
planetary observation. Special charge-coupled device (CCD) cameras combined with gratings,
prisms, or interferometers enable solar-reflected energy (350 to 2500 nm) and emitted (7500 to
13,500 nm) energy to be separated into hundreds of narrow, contiguous bands that capture
the interactions of photons with the atomic and molecular structure of a target material. We
focus here on visible/near-infrared to shortwave infrared (VNIR/SWIR; ∼400 to 2500 nm) HSI.
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Based on analytical chemistry and spectroscopic analysis principles utilized in the laboratory
since the nineteenth century, HRS systems generate multiple images based on narrow band-
widths, creating a coregistered “stack” of images, each with a different band-center wavelength.
When calibrated (spectrally and radiometrically) and processed to remove sensor and atmos-
pheric artifacts, each pixel in the image is expressed as a vector through the stack that represents
a spectrum essentially identical to that achieved under laboratory conditions.1 Figure 1 graphi-
cally depicts the concept of a hyperspectral image stack comprised of hundreds of bands of
imagery, collected at slightly different wavelengths across the solar reflected spectrum from
390 to 2500 nm. The data structure is commonly known as a data cube or image cube.

HSI data permit the identification of materials based on matching against a library (or data-
base) of spectral signatures. Equally important, HSI provides broad area, synoptic scale coverage
with overhead imagery for mapping the composition of large areas of the Earth’s surface with
traditional spectroscopic, statistical signal processing, chemometric, and machine-learning algo-
rithms and tools. And in addition to material identification, many biophysical, environmental,
and geological/sedimentological processes such as photosynthesis, toxic spill evolution, and
coastal erosion can be analyzed and quantified via imaging spectroscopy.

While most hyperspectral reflectance measurements are single-point samples acquired in the
field or laboratory or airborne or space-borne imagery, there have been applications, mostly in
medical research, where hyperspectral analysis is directed inward at the microscopic level.3–7

Imaging spectroscopy at the microscopic level offers the same material identification and
characterization advantages as overhead, imaging spectroscopy. However, most hyperspectral
microscopy applications have been limited to the VNIR spectral range and have focused on
very specific applications. There exists a need in the remote sensing community to characterize
materials with high spatial resolution imaging spectroscopy, and to do this over the full
solar-reflected (350 to 2500 nm) spectral range. Here, we describe the development of a hyper-
spectral microscope based on commercial off the shelf (COTS) camera and lighting systems
and a tunable laser that enables a full-range hyperspectral scan. Example applications are included.

2 Background

Contemporary microscopy, in a variety of forms, has received increased attention from the sci-
entific community. The 2014 Nobel Prize in Chemistry was awarded to E. Betzig, S. Hell, and

Fig. 1 Hyperspectral images are collections of hundreds of bands of coregistered imagery. Each
band collects reflected energy in a slightly different wavelength and results in what is called
an image cube. The image shown here, of Moffett Field, California, was collected on August 20,
1992, from a height of 20,000 m.2
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W.E. Moerner for their parallel development of super-resolved fluorescence microscopy.8

The resolution of conventional light microscopes was thought to be optically limited to
the full-width at half-maximum (FWHM) of the point spread function, as demonstrated
by Abbe.9 The optical limitation was generally reached around 250 nm. Betzig, Hell, and
Moerner independently demonstrated, using fluorescence, that the nonlinear response of
fluorophores to excitation could be exploited to enhance resolution. Using lasers and the
characteristics of specific fluorophores, they demonstrated that the strict diffraction limit
could be functionally surpassed and, although not strictly hyperspectral, this research dem-
onstrates the resurgent scientific interest in spectral microscopy for a number of biological
applications.

Over the past 20 years, hyperspectral imaging microscopes (HIM) have been successfully
developed and utilized by a number of researchers mainly for biomedical applications. Many
of the current uses of HIMs utilize fluorescence but many others involve nonfluorescent
reflectance spectra also. A variety of methods have been used to generate fine resolution
spectral data utilizing, among a variety of methods, acouto-optical tunable filters (AOTF) for
dispersing (separating) light into narrow bandwidths. This has moved imaging spectroscopy
into a new dimension where hyperspectral imagers are smaller and much more cost
effective than the early instruments that emerged circa 1990 and have also paved the way for
microscopy applications. Table 1 lists some selected early applications of hyperspectral
microscopy.

Early applications of hyperspectral microscopy include Treado et al.10 who developed a
hyperspectral microscope with an AOTF and a CCD array and observed lipid vesicle suspensions
in water and human epithelial cells. Frank et al.3 used a diode laser spectrometer to demonstrate
that NIR/Raman spectroscopy could reveal significant biochemical information from biopsy
samples.

Several fluorescence applications of hyperspectral microscopy in the VIS and VNIR ranges
have been demonstrated by, e.g., Schultz et al.6 and Huebschman et al.11 Sinclair et al.12 con-
structed and demonstrated the advantages of a hyperspectral microarray scanner that exploits
fluorescence for the separation of the emission due to green fluorescent protein in yeast cells.
Timlin et al.13 coupled the advantages of high spectral resolution sampling with multi-
variate statistical analysis to understand the interference of various organic fluorophores among
cellular proteins.

Table 1 Selected hyperspectral microscopy applications from the literature.

Lead author Year Spectral mode Spectral source Spectral range Applications

Treado et al., 1992 Trans/Refl AOTF/CCD 400 to 1700 Medical/biological10

Frank et al., 1994 NIR/Raman Diode laser 406 to 830 Human tissue biopsy3

Schultz et al. 2001 Fluorescence CCD array 400 to 780 Vegetation6

Huebschman et al. 2002 Fluorescence CCD array 405 to 770 Biomolecular11

Sinclair et al. 2004 Fluorescence CCD array 490 to 900 Genomics12

Timlin et al. 2004 Fluorescence CCD array 400 to 900 DNA/cellular13

Gehm et al. 2008 Reflectance Aperture coding 550 to 665 Engineering14

Anderson et al. 2008 Reflectance LCTF framing 400 to 720 Live/dead bacteria15

Horton et al. 2009 Fluorescence Grating spec 360 to 690 Tumor cells4

Bouillard et al. 2010 SNOM Optical fibers 400 to 1000 Plasmonics16

Park et al. 2011 Fluorescence AOTF 450 to 800 Foodborne pathogens17

Bertani et al. 2013 Reflectance CCD array 500 to 2500 Cancer cells18
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Gehm et al.14 described an aperture-coding approach to HSI microscopy that significantly
improved throughput and delivered 1-nm spectral resolution and a 5.4-μm spatial resolution over
a portion of the VIS range of 550 to 665 nm. This approach was important in increasing photon
efficiency which is often a problem in this type of microscopy. In a unique application for the
analysis of possible biological warfare agents, Anderson et al.15 utilized a hyperspectral camera
attached to a epifluorescent microscope to differentiate live, viable versus dead/nonviable
bacterial endospores. Thirty-two images from 400 to 720 nm, coupled with a statistical test
for spectral signature divergence, showed that the differences between viable and nonviable
endospores to be statistically significant.

In a cancer research breakthrough, Horton et al.4 utilized microfluidics and HIM to demon-
strate the ability to capture and analyze immune-phenotype circulating tumor cells which are
characteristic of early stage carcinomas and signify the presence of cancer in a patient. This
application demonstrates the tremendous potential for HSI/HIM technology to aid disease
diagnosis, treatment selection, and response monitoring.

Bouillard et al.16 demonstrated scanning near-field optical microscopy (SNOM) with a fiber-
tip-based scanning microscope that enabled the simultaneous acquisition of near-field images in
a broad spectral range (400 to 1000 nm), thus recovering near-field spectroscopic information.
This permitted the spectral characterization of plasmonic nanostructures. Park et al.17 developed
an HIM that utilized an AOTF and very sensitive lifetime fluorescence characterization
techniques to identify foodborne pathogenic bacteria. Bertani et al.18 demonstrated a near-full
range solar reflected confocal microscope, fed by a supercontinuum laser source that could
provide accurate measurements out to the limit of solar-reflected energy at about 2500 nm.
Demonstrated usefulness included engineering applications as well as the characterization of
melanoma cells.

3 Emerging Applications

Hyperspectral microscopy has recently enjoyed continued development in a number of new
fields and applications. In terms of instrumentation, microchip technologies, and computer
miniaturization, such as the raspberry pi, have generally reduced the size and shape of
hyperspectral instruments, especially in the VNIR. The introduction of laser technology has
also advanced HIM and have improved infrared detection capabilities, especially in aqueous
environments.19 VNIR hyperspectral cameras have been reduced to two to three pounds and
can capture images without scanning or movement of the camera or the target.20 Gao
et al.21 described a snapshot image mapping spectrometer with a high enough sampling density
to be used in microscopy applications. There is an amazing variety of new HSI sensors that have
been developed for microscopy and unmanned systems application and there has even been
work on developing a comparative methodology for evaluating and comparing the performance
characteristics of different hyperspectral microscopy systems.22

HIM was essentially borne of medical applications and unique systems have been
continually under development. Siddiqi et al.23 developed a hyperspectral microscopic test to
determine normal, precancerous, and cancerous cells. Li24 showed that different medical condi-
tions could be identified through hyperspectral retinal scans. Dicker25 showed that cancerous skin
cells and melanoma could be identified through HSI. Uhr et al.26 showed that HIM could precisely
identify and quantify 10 molecular markers in individual cancer cells in a single pass. Akbari
et al.27 showed the effectiveness of HIM in the detection of prostate cancer. Excellent reviews of
hyperspectral technology in the medical field can be found in Refs. 28 and 24. Although not
strictly microscopic, prostate cancer detection has been demonstrated by Akbari et al.,27 using
HIM data and least squares support vector machines that were developed and evaluated for
classifying hyperspectral data in order to enhance the detection of cancer tissue.

Hyperspectral microscopy has found many relevant applications in the detection of plant
diseases and as a quality control mechanism in factory food production. Eady et al.29 developed
a technique for detection of Salmonella with hyperspectral microscopy. Fusarium infections
in wheat have been detected using HIM.30 Several researchers have shown a direct
connection between plant hyperspectral reflectance imaging characteristics and specific plant
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pathogens.31–34 Kuska et al. showed that there is potential for automated analysis of plant
diseases using HIM data.32 Dale et al.35 outlined HIM techniques for food quality analysis
production quality control.

Identification and analysis of materials at the nanomaterial scale is another emerging appli-
cation of hyperspectral microscopy. Roth et al.36 showed that HSI with state-of-the-art optics
and computer software could enable the rapid identification of materials at the micro- and
nanoscales. Roth, Pena et al., and Grabinski et al.37–39 showed that HM could be effective at
identifying nanomaterials in biomedical research.

Patskovsky et al.40 designed a hyperspectral microscopy systems for the identification of
plasmonic nanoparticle of Au Ag and Au/Ag alloys in human cancer cell preparations and
for optical biosensing. Mortimer et al.41 showed the capability of HIM for examining cellular
uptake of different metal-based nanoparicles, including nanosized metals (silver and gold, both
citrate stabilized), metal oxides (copper oxide and titanium dioxide), and CdSe/ZnS core/shell
quantum dots at subtoxic concentrations. Badireddy et al.42 showed how HIM could be applied
water quality and especially the detection of engineered nanoparticles.

Hyperspectral microscopy has been successfully applied to the detection of explosives by
demonstrating the detection of absorption spectra of individual explosives particles and dem-
onstrate subnanogram detection limits.43

In planetary science, HIM is being planned for analysis of soils on Mars.44,45 The European
Space Agency’s MicrOmega instrument is planned to characterize in situ the composition
of samples at their grain size scale efficiently through the utilization remote sensing hyper-
spectral imagers.46 In addition to Martian soils analysis, Korablev et al.47 demonstrated the
utilization of a robotic arm with a hyperspectral microscope that could be used to analyze
lunar soils also.

4 Instrument Description

The functional HSI microscope utilizes two independent image sources. The VNIR data cubes
were acquired by a Resonon Pika II imaging spectrometer with a Xenoplan 1.4/23-0902
objective lens and is shown in Fig. 2. The Pika II is mounted nadir-looking at a mechanical
translation table on which the sample to be imaged is placed. The Pika II is a pushbroom
sensor with a slit aperture, thus the need for a translation table to move the sample to facilitate
hyperspectral image cube formation. The height of the sensor above the table is user selectable
and is dependent upon spatial resolution requirements. Significantly higher resolution has been
achieved with a higher magnificantion lens, not described in this work. Though capable of
acquiring 240 bands from 400 to 900 nm, the sensor is generally configured to acquire
80 bands by binning spectrally by three resulting in a sampling interval of ∼6.25 nm and
high signal-to-noise ratio spectra.

Four quartz–tungsten–halogen lamps are used for illumination roughly approximating a
hemispherical-directional illumination/viewing geometry. Sensor and translation table operation,
data acquisition, and data calibration are achieved by the instrument manufacturer’s software.
Conversion to reflectance requires a measurement of dark frame data (i.e., acquiring a cube
with the lens cap on) and a measurement of a polytetrafluoroethylene (PTFE) reference plaque
(large enough to entirely fill the field of view). Then, for each HSI cube measured, the sensor’s
software first subtracts the dark data and then uses the PTFE data (also dark subtracted) to
ratio the spectral measurements to give relative reflectance.48,49

The SWIR data cubes were collected by a custom-built system based on monochromatic
laser illumination and an imager and used to acquire spectral imagery in the 900- to 2500-nm
spectral range. The laser used is a Continuum Surelite III-10: Q-switched Nd:YAG, 10 Hz,
850 mJ at 1064 nm and a Panther® EX PLUS: OPO; tunable from 410 to 2550 nm with
a linewidth <6.0 cm−1. The laser source is projected free space to a diffuser oriented at
an angle of 45 deg with respect to the illumination source and an equal and opposite angle
with respect to the sample of the same plane. The imager used in this study is a Xenics
Xeva 2.5-320. It is an HgCdTe (MCT)-based imager, 14 bit radiometric resolution, with
a spectral response ranging from 900 to 2500 nm. The detector array is 320 × 256 with
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a pixel pitch of 30 μm. The lens used was a 25-mm focal length, f∕1.4, optimized for use in
the NIR/SWIR. Other lenses may be used depending upon magnification requirements;
and here, too, the sensor may be moved up and down to vary the spatial resolution. A
LabVIEW program was used for operation and data acquisition. At each laser pulse, a signal
from the laser is used to trigger the camera. The program controls the laser stepping sequen-
tially through the wavelengths, triggers the camera, and collects a set of images at each
wavelength.

A sample is placed on the sample stage and the lens is focused at a wavelength near the
midpoint of the intended spectral range (∼1700 nm) (see Fig. 3). An eight step gray-scale target
was included in the field of view. Additional processing is required due to a nonlinearity in the
laser-imager system; more will be mentioned about this in a later section. The data acquisition
program scans the sample collecting 20 images at each wavelength and then saves a mean of
the 20 images. The program advances the wavelength in 5-nm increments (finer sampling is
possible) and repeats the image collection until the full NIR/SWIR spectral range is scanned.
Once the sample is scanned, a reference reflectance plaque is scanned. This provides a means to
correct for spatial nonuniformities. A dark frame is also acquired. The collection of images is
compiled into a data cube and processed for corrections in nonlinearity of the imager’s radio-
metirc response, spatial uniformity, and conversion to reflectance.

For general applications, the instrument resolution is ∼0.17 μm and the full data cube is
collected in 600 s.

Fig. 2 Photograph of the VNIR section of the HSI microscope. The Resonon Pika II is shown with
the Xenoplan 1.4/23-0902 objective lens.
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5 Applications

We review next several studies previously published that have utilized HSI microscopy and the
instruments described above. All have in common a demonstration of the unique perspective
that imaging brings to laboratory spectroscopy and how such a measurement capability is
directly relevant to studies of Earth remote sensing from traditional air- and space-borne sensors.
Indeed, we maintain that spectroscopy for ground-truth spectral measurements in support of
Earth remote sensing should, whenever possible, be acquired by imaging spectrometers (and
at a range of magnifications—to include microscopic) rather than point spectrometers alone.

5.1 Microscene for Quantifying Hyperspectral Uncertainty

While HSI can effectively detect and identify a target material embedded in background clutter,
determining how well this can be achieved as a function of various measurement conditions or
parameters can be a challenge.50 Almost all HSI sensors that are currently in use are calibrated
and characterized, producing information to assess measurement uncertainty. However, these
sensor uncertainties alone do not provide an obvious indication of the ability to detect or classify
substances of interest in a scene. Beyond sensor performance, the target material, collection
method and geometry, and choice of processing and analysis algorithms can all be significant
factors affecting the final results. Kerekes and Baum provided a template for evaluating these
factors using an end-to-end analysis model. Their model may be used as a cursory, system
design-level tool to estimate the impact of those factors that might be significant contributors
to the overall uncertainty. This model can be used as a comprehensive means to quantify and
understand which factors might be significant contributors to the overall uncertainty.50

Ideally, a test scene used in an end-to-end analysis will have the same constituents (target,
background, and confuser materials) of interest for a specific application. The materials of inter-
est (more specifically the spectral signatures) are of particular importance, since the features of a
spectral signature may or may not be highly dependent on all of the other factors in an end-to-end
analysis.

An alternative method (or complementary, if used as input data for a numerical model) is the
use of a laboratory, benchtop hyperspectral imager in which the sensor collects a hyperspectral
data cube by observing a Petri dish filled with materials of interest. Here, we describe a relatively
simple, low cost method of generating test data that can be used for system trade studies and
for algorithm development and testing. The method is facilitated by the increasing number of

Fig. 3 The tunable laser source (insert, upper right) of the HSI microscope designed to collect
spectroscopic image data from 900 to 2500 nm and complete the full solar-reflected range of
the HSI microscope. The NIR/SWIR imager and lens are on the left; the VNIR camera and
lens [not currently used routinely (see text)] are on the right. This configuration is housed in
a dark black plastic case (not shown) for laser light protection.
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compact HSI sensors that are now commercially available, enabling benchtop measurements of a
physically simulated scene in the convenience—and control—of a laboratory setting. This setup
can be considered as a means to produce a proxy data set and an alternative to a sensor collecting
imagery over a terrestrial area. The composition of the scene may be engineered to contain
the materials of interest by physically placing representative or actual classes of targets, back-
grounds, and possible confusers.

Adding materials to the microscene Petri dish may be considered analogous to applying paint
from a palette to a canvas where the different colored paints represent different distributions of
points in n-dimensional (n-D) hyperspace. In order to validate that the data set is adequately
populated with points in n-D space comparable to data acquired with airborne sensors, data
dimensionality estimates such as those derived from a principal components analysis and
box counting (yielding a fractal dimension) can be employed as quantitative metrics.

We assert that a microscene data set—and the microscene concept—is a proxy for an actual
air- or spaceborne remotely sensed multi- or hyperspectral data cube. We further assert that
a microscene is a suitable alternative data set generated by numerically modeled scenes. These
assertions may be substantiated both qualitatively and quantitatively.

Here we provide as an illustration the use of a microscene for a system trade study: the impact
of wavelength error on classification. A microscene and its reference spectra (in a microarray) are
measured and subsequently used in a straightforward scene classification analysis. The scene is
then reanalyzed but with an error in center wavelength position to assess the impact on
classification results. A wavelength shift represents one of many possible errors that might be
explored with microscene data. Classification differences are quantified using an error matrix to
determine the changes in classified and unclassified pixels, and errors of omission and commis-
sion. This allows for the establishment of factors that might affect the final data product in
a way that is application specific by direct measurement of materials of interest.

Using the Pika II system described in the previous section, hyperspectral images were col-
lected of a 96-well sample tray, painted flat black, and filled with selected materials to form
a “microarray” as shown in Fig. 4. The main purpose of the microarray was to independently
collect reference spectra of the same substances. Fourteen materials were selected and each was
placed in a well of the microarray. One well was filled with powdered PTFE for use as a white
reference and another left empty as a dark reference. Other materials selected to provide a range
of spectral signatures including some that are very unique such as neodymium (III) oxide
(Nd2O3), aquamarine blue pigment, and sulfur, along with some that are very similar such
as paprika, chili powder, and cumin. These substances were chosen to yield a data cube with
a complicated, spectral mix (in terms of their distribution in hyperspace).

The microscene was arranged with a base layer of impure quartz sand, ∼1-cm deep, with the
other substances randomly deposited in piles on top of the sand. The microscene is shown in
Fig. 5; Table 2 lists the substances and their three-letter code.

5.2 Scene Classification

The classified microscene is shown in Fig. 6(a) in which false colors are applied to each clas-
sified substance. Not all of the material patches are solidly defined such as sulfur; some are

Fig. 4 A normal color composite using spectral bands 641, 549, and 458 nm for red, green, and
blue, of the 96-well sample tray (microarray) filled with the materials used in the microscene.
The black is an empty cell in the sample tray.
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Table 2 The substances emplaced in the microscene and their three letter abbreviations.

Substance Abbreviation Substance Abbreviation

1. Parsley veg 8. Sulfur sul

2. Paprika pap 9. Aquamarine blue blu

3. Chili powder chl 10. Quartz sand snd

4. Cumin cmn 11. Asphalt asp

5. Turmeric tmr 12. Neodymium oxide ndo

6. Iron irn 13. Copper cop

7. Clay cly 14. Coffee cof

Fig. 5 A normal color composite of the hyperspectral microscene using spectral bands 641, 549,
and 458 nm for red, green, and blue. The scene is masked to eliminate the edges of the Petri dish
and the translation table platform. The key listing each of the substances is provided in Table 2.

Fig. 6 The classified microscenes are shown with false colors representing each class. (a) The
original microscene and (b) the wavelength error classified microscene.
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nearly solidly filled, others have misclassified pixels (i.e., paprika, chili powder, and cumin), and
some not classified, shown as black. The classification of the microscene was repeated with an
induced wavelength error of 7 nm and is shown in Fig. 6(b) using the same color scheme.
Significant differences can be observed for this extreme example, including misclassifications
and substances that are unclassified (errors of omission and commission).

5.3 Discussion of Hyperspectral Quality Assessment

The wavelength error is only one of the factors that might be considered. For sensors, the signal-
to-noise ratio, stray light, and radiance responsivity are just a few of several additional factors to
be considered. The scene environment is also amenable to adding the effects of moisture, glint,
adjacency, and variable illumination, to name a few factors. In addition, this example used clas-
sification of the substances as the data product and an error matrix (not shown here but given in
the results of Ref. 50).

We have described a method for generating a hyperspectral scene that can be used for evalu-
ating system level performance and for algorithm development and testing. The microscene
approach is a data simulation capability based on the engineering of the geometry of points
in hyperspace—the space in which many key HSI algorithms actually work and in which
they “see” the data. It is the building of data sets that have specifically engineered signal-to-
clutter ratios and confuser signature distributions. It is making laboratory HSI measurements
of purposefully chosen and strategically placed materials (with diverse spectral signatures
and their mixtures) at the Petri dish scale that capture the complexities of the radiative transfer,
spectral mixing, etc., interactions that actually occur in a real remote sensing scenario. We main-
tain that even at the Petri dish scale, there are complexities in radiative transfer that are not yet
adequately captured by current models.

There are several key advantages of the microscene approach. The low cost and the ease of
which the scene can be measured is in stark contrast to the expense and planning involved in
setting up a field deployment involving the use of aircraft. The scale also is favorable for experi-
ments involving substances that are difficult to obtain or expensive when, for a microscene, only
small quantities are needed. Generating test data that include materials specific to an application
means that the factors likely to impact the accuracy of the final data product will realistically be
assessed. This is due to the fact that substances with different spectral distributions have different
levels of sensitivity to sensor wavelength error, stray light, and sensor noise, among many
possible factors.

5.4 Analyzing Nonlinear Spectral Mixing

It is well known that intimately mixed materials frequently exhibit nonlinear spectral mixing.
Granular materials, such as soils, are often intimate mixtures of numerous different inorganic
(minerals) and organic (humic) substances.51 And since soils are often significant constituents of
spectral remote sensing scenes, intimate mixing may safely be assumed to be a common phe-
nomenon. Thus, the impact of nonlinear spectral mixing on algorithm results must be well under-
stood if we are to achieve a major goal of HSI: the areal mapping and quantification of materials
that comprise remotely sensed scenes.

It is also very common, as part of the data analysis process, to apply linear spectral unmixing
(LSU) to imaging spectrometer data. However, an LSU inversion applied to an intimate mixture
exhibiting nonlinear spectral mixing will yield subpixel material abundance estimates that do not
equal the true values of the mixture’s constituents. An example of this is provided by Keshava
and Mustard.52 To address this, several methods of spectral unmixing of nonlinear spectral
mixtures have been proposed. Examples include Hapke theory, the extended endmember matrix
method, kernel-based methods, and Gaussian processes. Reviews of nonlinear spectral mixture
analysis are given in Refs. 52–54.

Using the hyperspectral microscope described in Sec. 2, three binary mixtures (and the two
endmembers) of glass beads were constructed and emplaced in the wells of a 96-well sample
plate: 0%/100%, 25%, 75%, 50%/50%, 80%/20%, and 100%/0% of didymium/soda-lime
(percentages by volume). We describe here the results of analyses of the HSI microscopy data
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(in reflectance) of the intimate mixtures. Analysis methods applied to the reflectance data are
LSU; LSU applied to reflectance converted to single-scattering albedo (SSA) using Hapke
theory; and two kernel-based methods (those of Broadwater and Banerjee55 and Chen et al.56).

Some results are shown in Figs. 7–10. The five regions of interest (ROI) mean spectra of the
didymium and soda-lime glass beads (endmembers and mixtures) are shown in Fig. 8. The ROIs
from which these mean spectra were derived are shown in Fig. 7. Note that the didymium
spectrum has many features in the VNIR region of the spectrum in stark contrast to that of
the soda-lime (Fig. 8).

The testing of the LSU models yielded variable results. Figure 10 shows one of the best
results as demonstrated by the generalized kernel fully constrained least squares (GKLS)
model developed by authors of Ref. 55. Other models, such as the SSA, sum-to-one, and
fully constrained least squares show slightly higher error rates. But our main purpose here is
simply to demonstrate the utility of hyperspectral microscopy to model and evaluate various
complex processing methods that might be used in airborne or spaceborne hyperspectral
data. A more complete discuss of the these results can be found in Ref. 51.

Fig. 7 (a) 35-mm digital single-lens reflex (DSLR) camera photograph of the 96-well plate con-
taining the glass beads, and (b) an HSI microscope normal color composite image (2% linear
stretch of the bands used in the RGB image). All percentages are by volume of glass bead
type indicated.

Fig. 8 Mean spectra from the ROI shown in Fig. 9. Plot color corresponds to ROI color in Fig. 9.
Fractions are by volume; “DiDy” = didymium; “Lime” = soda-lime.
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Fig. 9 A graph of the results for the FCLS, GKLS at different levels of nonlinearity at measured by
the parameter γ, and SSA methods is displayed. Higher values of γ correspond to greater degree
on nonlinearity.41

Fig. 10 The observed and estimated spectra at location ðx; yÞ ¼ ð324; 49Þ within the 50/50%
mixed region using the FCLS, GKLS, and SSA methods. The y -axis of (a) and (b) is in reflectance
units; the y -axis of (c) is in albedo units.41
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5.5 Mineralogy and Petrology

A commercially obtained cut-and-polished slab of coarse-grained pink granite was imaged with
the tunable laser HSI microscope. The rock is from the Fujian Province of China, a large region
of granitic magmatism.57 A 35-mm photograph of the slab is shown in Fig. 11 along with a
grayscale image from the HSI cube at 2010 nm. An eight-step gray calibration target is imaged
alongside the slab and is required for converting the image data to reflectance. The slab is square
with a side length of ∼7.6 cm (∼3 in.); the region imaged by the HSI microscope is indicated by
the red rectangle.

The microscope measures biconical reflectance—the realization of a bidirectional reflectance
measurement geometry.57 The cube is 320 samples by 256 lines by 306 bands from 906 to
2500 nm. The granite is covered by 170 samples by 256 lines.

In addition to an image cube of the granite slab, a dark current cube and a cube of a 12% gray
reflectance standard (and which completely fills the field of view of the microscope) are
acquired. The 12% gray reflectance standard is utilized for correction to reflectance. The abso-
lute reflectance (biconical—as the laboratory realization of bidirectional) of the 12% gray panel
is determined by independent measurement.

The need for the eight-step gray calibration target is to correct for nonlinearity in the response
of the Xenics Xeva SWIR camera due to the short (5 ns) high intensity laser pulse. When not
outright saturated, the imager response is nonlinear with a reduced dynamic range. This effect
necessitated the use of a 12% reflectance standard versus the more typical 99% reflectance refer-
ence panel. It is worth noting that the HSI microscope seems to counter common experience.
Very good, high signal-to-noise ratio spectra are generated by materials with lower reflectance;
noise content increases with reflectance (because of the higher signal strength entering and
overwhelming the sensor).

The straightforward calculation of reflectance by a ratio of the subject cube to the reflectance
standard cube (both dark current subtracted) followed by multiplication by the reflectance stan-
dard is not sufficient to generate reflectance from the laser HSI microscope cubes (though it is
standard practice for typical spectral signature measurements with point and close-range labo-
ratory imaging spectrometers). An empirical line method-like procedure is required but since
the camera response is nonlinear, a custom program was created to apply an “empirical cubic
method.” Cubic (i.e., third-order polynomial) correction equations are generated from ROI on
the eight-step gray calibration panels combined with their laboratory-measured truth spectra
(biconical reflectance with a spectral evolution spectrometer). Retrieval of reflectance from a
third-order polynomial equation is not as direct as from a linear equation; the bisection method
root-finding algorithm was implemented to achieve this.

In practice, there are additional processing steps applied to generate the data shown in
Fig. 11. Following measurement of the three cubes mentioned above, the precise procedure is
as follows: (1) apply a spectral calibration correction to the data. This is merely assigning each

Fig. 11 Granite images. (a) A 35-mm true-color DSLR photograph of the slab. (b) The HSI micro-
scope captures the area indicated by the red box. A grayscale image from the HSI cube at
2010 nm. An eight-step gray calibration target is captured in the scene. The image is displayed
with an arbitrarily chosen linear stretch (to maximize image quality).
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band its proper wavelength based on independent spectral calibration measurements of the
tunable laser using a point spectrometer measurement of laser light in an integrating sphere.
(2) Calculate reflectance using the usual spectroscopy method discussed above; i.e., obtain
the ratio of the subject cube to the reflectance standard cube (both dark current subtracted);
postmultiply by the spectrum of the standard. (3) Apply a mask to eliminate the bad/dead pixels
that commonly occur with MCT detectors. (4) Create a spectral subset cube that eliminates bad/
noisy bands. Bands with not-a-number values disrupt the empirical cubic method reflectance
retrieval. (5) Apply a 3 × 3-pixel median filter to each image. This is largely a cosmetic step to
mitigate the presence of the masked bad pixels (which would show as a “peppering” of dark
pixels). (6) Apply the empirical cubic method correction using ROI on the eight-step calibration
panels and their truth reflectance spectra.

The granite slab sample has medium grained phaneritic (granitic) texture as is evident in the
photograph in Fig. 11. It is comprised of alkali feldspar (pink and buff; largely subhedral),
plagioclase feldspar (white; subhedral to euhedral), quartz (clear, gray; anhedral), and biotite
(black; subhedral to euhedral) as the predominant Fe/Mg-rich mafic mineral. Though a petrographic
analysis of a thin-section has not, thus far, been performed, zoning and alteration are apparent in
hand sample and confirmed via inspection with a hand lens. Other textural features are evident as
well such as a glomeroporph of plagioclase laths. The plagioclase feldspars most likely have albite
and Carlsbad twinning and contain patches altered to serricite and/or sausserite; the alkali feldspars
likely show perthitic texture and tartan twinning. The biotite grains are undoubtedly pleochroic.
Although these textural features are not observable at the hand sample scale (with the exception
of suspected patches of alteration), they are essentially ubiquitous in granitic rocks and can be
assumed to be present and will contribute to spectral signature diversity (next section). The wide-
spread anhedral quartz grains are translucent to transparent; in many instances, minerals beneath are
discernible through them. It is not known if the quartz grains show undulatory extinction (common
in granitic rocks); the presence of myrmekitic and granophyric textures (also common in granitic
rocks) is unknown. These features, too, if present, will contribute to spectral signature diversity.

5.5.1 Spectral signatures

The relatively straightforward mineralogical makeup of granites, in general, and of this sample in
particular (i.e., alkali and plagioclase feldspar, quartz, and biotite) notwithstanding, there is an
astonishing diversity of spectral signatures. And because spectral signature quality is very good,
differences in the spectral signatures exceed the noise and are discernible. Several single-pixel
spectra are shown in Fig. 12. Three-by-three pixel ROI mean spectra around the locations of

Fig. 12 Single pixel spectra randonly selected from the granite slab HSI cube.
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the spectra in Fig. 12 are given in Fig. 13. The nine pixel average spectra are somewhat smoother,
as expected. Contrast Figs. 12 and 13 with Fig. 14: a plot of the slab mean spectrum compared
to a point spectrometer measurement of the slab. A single point spectrum of a granite is not
indicative of the true range of spectral signatures actually present in the rock. Though not
shown, the spectra of Fig. 14 match quite closely the spectra of microcline (for the laboratory
point spectrometer spectrum), an alkali feldspar, and albite (for the scene mean spectrum),
a plagioclase feldspar, in the USGS mineral spectral library.58 Both feldspars (i.e., microcline
and albite), although perhaps good proxies for granitic rocks, do not portray the wide range of
spectral signatures as they occur in the rock nor yield information on the mafic (and, in the

Fig. 13 Three-by-three pixel ROI mean spectra around the locations of the single-pixel spectra in
Fig. 12. The nine-pixel ROI mean spectra are smoother, as expected, than their counterparts
shown in Fig. 12.

Fig. 14 A plot of the slab mean spectrum (black; a mean of all spectra in the laser HSI microscope
cube) and a point spectrometer measurement of the slab (blue).
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present sample, hydroxide-bearing) mineral content. Additional spectral signatures are shown
in Fig. 15.

5.5.2 Mapping the minerals

It is challenging to generate a classification map due to the variability in spectral signatures.
A spectrum from a plagioclase grain (or an ROI mean spectrum from a grain), for example,
does not adequately capture all of the variability plagioclase presents in the rock. Numerous
attempts to generate a classification image using spectral angle mapping (SAM) and
LSU were made. A representative result is shown in Fig. 17. A spectral angle mapper was
applied with several spectra such as those shown in the plots above. The results from
three spectra are used to build a false color composite (Fig. 16). The blue regions correspond
to plagioclase feldspar (the white minerals in the normal color digital image), the reddish/
purplish regions are quartz, the tan/buff/orange regions are alkali feldspar, and the white
regions are biotite.

Although not shown here, several individual SAM and LSU output planes highlight
the zoning and other compositional variability shown by most of the crystals in the rock.
Indeed, spectral signature variability is likely complicated by mixing effects between grains
at their boundaries and the transmission of signature information through transparent and
translucent grains (introducing nonlinear spectral mixing effects that could mimic or appear
to be zoning).

5.5.3 VNIR data of granite

The granite sample can also be classified with the VNIR portion of the spectrum. LSU is used to
map each of the major mineral phases in granite: quartz, plagioclase feldspar, alkali feldspar, and
biotite/other Fe–Mg phases. Figure 17 shows a normal color composite image.

The mean spectra of the ROI contain very little in terms of distinct or remarkable spectra of
the major rock-forming minerals (Fig. 18). Nonetheless, the differences evident here are effective
for a spectral unmixing analysis (Fig. 19).

The seemingly unremarkable spectra of the granite ROIs are shown in Fig. 18. However,
using LSU, the major mineral phases are successfully identified and mapped. Red is quartz,
green is plagioclase feldspar, and blue is alkali feldspar. Three of the four endmember fraction

Fig. 15 Several additional spectral signatures in the HSI data. The spectra are vertically offset for
clarity of presentation.
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planes are utilized here to display the image shown. The four endmembers are effective at
separating and highlighting the major two-feldspar plus quartz mineralogy of a granite.

5.5.4 Cyanobacteria and harmful algal blooms

Harmful algal blooms (HAB) are a growing water quality problem worldwide. Generally
composed of strains of various types of cyanobacteria, HABs often contain toxin-producing

Fig. 17 (a) A normal color composite image of the granite slab acquired with the PikaII VNIR HSI
sensor. (b) A grayscale image also from the PikaII and showing four ROI—one for each of the
major mineral phases in granite: red, quartz; green, plagioclase feldspar; yellow, alkali feldspar;
and blue, biotite/other Fe-Mg phases. ROI mean spectra are used in LSU.

Fig. 16 Representative classification results. (a) A 35-mm normal-color DSLR photo. (b) A false
color composite based on spectral angle mapper results. The red circles correspond to the same
locations on the slab; the corresponding minerals are also indicated.
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varieties that pose a threat to human and aquatic life, in addition to being a nuisance to
navigation and esthetics.59 Hyperspectral microscopy affords a unique analysis of this
phenomenon and may hold the key to separating toxic from nontoxic strains of bacteria,
which could be critically important in setting remediation priorities. Figure 20 shows an example
of hyperspectral microscope images of Microcystis and Aphanizomenon, two genera of cyano-
bacteria, at three different scales of magnification. An LSU algorithm applied to the spectral
derivative of the images shows promise in spectrally separating and identifying each genera.
One genus (Microcystis) often produces a toxin while the other does not. Being able to use
remote sensing to separate these two species could have important consequences for remediation
efforts (Fig. 21).

Fig. 19 (a) The same normal color composite image of the granite slab shown in Fig. 18.
(b) A false-color composite of the spectral unmixing fraction planes.

Fig. 18 ROI mean spectra for the ROIs shown in Fig. 17.
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6 Conclusion

There are distinct advantages to characterizing sample using HIM. A key advantage is better
spectral characterization of target materials. A fundamental part of the imaging spectroscopy
process is matching imagery-derived spectra with laboratory spectra for a given material.
But this can be complicated by the variability in the composition of the material as well as
the variability encountered in real-life mixtures and background interferences.

Fig. 20 Images of the cyanobacteria. (a) Normal-color composites of Microcystis and
Aphanizomenon. (b) The corresponding false-color composites of LSU results, where endmem-
bers (red: Microcystis, green: Aphanizomenon, blue: background) were identified based on
the first derivative of the spectrum at each pixel. Scale bars from left to right are 100, 50,
and 20 μm.

Fig. 21 First derivative spectra of the two genera of cyanobacteria showing the inherent sepa-
rability of the two species.
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A second advantage relates to the ability to separate constituents of a composite sample.
As shown in the granite example above, the major mineral phases are identified and mapped
based on ROI mean spectra and are done using in LSU.

A final important characteristic of hyperspectral microscopy, especially as it related to
overhead remote sensing, is the addition of a new scale in identifying materials and processes.
Scale is a fundamental concept in remote sensing and geography in general. In the strictly quan-
titative sense, scale is a mathematical relationship between an actual ground distance and the
representative fractional distance of a geographic object such as an image or map. But the term
also has other important meanings, not the least of which is related to ecological processes and
understandings. Scale is intimately related to concepts of pattern and process and in that sense is
deliberately void of strict definitions and is even sometimes tied to perceptual perspectives.60

However, even in remote sensing and geography, events such as changes in biological distri-
bution, as might be expected from climate change, are intimately dependent on scale and
processes important at one scale may not be as predictive at another scale.61

This leads us to the major point that, even with the current maturing of hyperspectral tech-
nology, spectroscopic analysis and understanding of material and processes at the Petri dish level
is not fully understood and research in this area can only add to our understanding of multiple
scales of geographic phenomenon. This continues a trend that is emerging with unmanned aerial
systems (UAS) development which is bringing hyperspectral analysis down to the submeter
level. Soon remote sensing science will be able to apply imaging spectroscopic analysis
from the Petri dish (microscope) to the submeter (UAS) to the meter (aircraft) to the decameter
(satellite) scales and understanding the connection between pattern and processes at those scales
will be an important challenge to remote sensing science.

We have demonstrated the utility of hyperspectral imaging microscopy (HIM) as an inves-
tigational tool for remote sensing. More specifically we provided examples over the full solar-
reflected range using both COTS systems and a custom laser-based system. The examples are
intended to demonstrate the ability to address common remote sensing changes including
material detection and classification, nonlinear mixture analysis, and species level discrimina-
tion, at the sub-cm spatial scale. These demonstrations are not intended to be interpreted as fully
implemented best practices, as significant refinement is still necessary. Rather, it is intended to
stimulate interest and adoption of HIM as a means to evaluate materials in order to make better
use of their inherent spectral signatures.

Acknowledgments

This research was funded by the MITRE Innovation Program of the MITRE Corporation, and
by the National Institute Standards and Technology, Sensor Sciences Division, and the United
States Geological Survey, Land Remote Sensing Program, under Interagency Agreement
G15PG00045.

References

1. R. O. Green et al., “Imaging spectroscopy and the airborne visible/infrared imaging spec-
trometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).

2. NASA, “AVIRIS Moffett field image cube,” 2010, http://aviris.jpl.nasa.gov/html/aviris.cube
.html (5 January 2014).

3. C. J. Frank et al., “Characterization of human breast biopsy specimens with near-IR Raman
spectroscopy,” Anal. Chem. 66(3), 319–326 (1994).

4. A. Horton et al., “Quantitative immunophenotyping of circulating tumor cells in blood using
microfluidic screening chip integrated with hyperspectral microscope,” in Int. Solid-State
Sensors, Actuators and Microsystems Conf. (TRANSDUCERS), IEEE (2009).

5. D. S. Lidke et al., “Exploring membrane protein dynamics by multicolor single quantum dot
imaging using wide field, TIRF, and hyperspectral microscopy,” Proc. SPIE 6448, 64480Y
(2007).

6. R. A. Schultz et al., “Hyperspectral imaging: a novel approach for microscopic analysis,”
Cytometry 43(4), 239–247 (2001).

Slonecker et al.: Full-range, solar-reflected hyperspectral microscopy to support. . .

Journal of Applied Remote Sensing 026024-20 Apr–Jun 2018 • Vol. 12(2)

https://doi.org/10.1016/S0034-4257(98)00064-9
http://aviris.jpl.nasa.gov/html/aviris.cube.html
http://aviris.jpl.nasa.gov/html/aviris.cube.html
http://aviris.jpl.nasa.gov/html/aviris.cube.html
http://aviris.jpl.nasa.gov/html/aviris.cube.html
http://aviris.jpl.nasa.gov/html/aviris.cube.html
http://aviris.jpl.nasa.gov/html/aviris.cube.html
https://doi.org/10.1021/ac00075a002
https://doi.org/10.1109/SENSOR.2009.5285561
https://doi.org/10.1109/SENSOR.2009.5285561
https://doi.org/10.1117/12.718464
https://doi.org/10.1002/(ISSN)1097-0320


7. H. R. Garner and R. A. Schultz, “Light imaging microscope having spatially resolved
images,” Google Patents (2002).

8. L. Möckl, D. C. Lamb, and C. Bräuchle, “Super-resolved fluorescence microscopy: nobel
prize in chemistry 2014 for Eric Betzig, Stefan Hell, and William E. Moerner,” Angew.
Chem. Int. Ed. 53(51), 13972–13977 (2014).

9. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,”
Arch. Mikrosk. Anat. 9(1), 413–418 (1873).

10. P. J. Treado, I. W. Levin, and E. N. Lewis, “Near-infrared acousto-optic filtered spectro-
scopic microscopy: a solid-state approach to chemical imaging,” Appl. Spectrosc. 46(4),
553–559 (1992).

11. M. L. Huebschman, R. A. Schultz, and H. R. Garner, “Characteristics and capabilities of
the hyperspectral imaging microscope,” IEEE Eng. Med. Biol. Mag. 21(4), 104–117
(2002).

12. M. B. Sinclair et al., “Hyperspectral confocal microscope,” Appl. Opt. 45(24), 6283–6291
(2006).

13. J. A. Timlin et al., “Hyperspectral imaging of biological targets: the difference a high
resolution spectral dimension and multivariate analysis can make,” in IEEE Int. Symp. on
Biomedical Imaging: Nano to Macro, IEEE (2004).

14. M. E. Gehm et al., “Static two-dimensional aperture coding for multimodal, multiplex
spectroscopy,” Appl. Opt. 45(13), 2965–2974 (2006).

15. J. Anderson et al., “Differentiation of live-viable versus dead bacterial endospores by
calibrated hyperspectral reflectance microscopy,” J. Microsc. 232(1), 130–136 (2008).

16. J.-S. Bouillard et al., “Hyperspectral imaging with scanning near-field optical microscopy:
applications in plasmonics,” Opt. Express 18(16), 16513–16519 (2010).

17. B. Park et al., “AOTF hyperspectral microscopic imaging for foodborne pathogenic bacteria
detection,” Proc. SPIE 8027, 802707 (2011).

18. F. R. Bertani et al., “Living matter observations with a novel hyperspectral supercontinuum
confocal microscope for VIS to near-IR reflectance spectroscopy,” Sensors 13(11), 14523–
14542 (2013).

19. B. Hapke, “Bidirectional reflectance spectroscopy: 1. Theory,” J. Geophys. Res. B Solid
Earth 86(B4), 3039–3054 (1981).

20. A. Bodkin et al., “Snapshot hyperspectral imaging: the hyperpixel array camera,” Proc.
SPIE 7334, 73340H (2016).

21. L. Gao et al., “Snapshot image mapping spectrometer (IMS) with high sampling density for
hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).

22. N. S. Annamdevula et al., “An approach for characterizing and comparing hyperspectral
microscopy systems,” Sensors 13(7), 9267–9293 (2013).

23. A. M. Siddiqi et al., “Use of hyperspectral imaging to distinguish normal, precancerous, and
cancerous cells,” Cancer Cytopathol. 114(1), 13–21 (2008).

24. Q. Li et al., “Study on microscope hyperspectral medical imaging method for biomedical
quantitative analysis,” Chin. Sci. Bull. 53(9), 1431–1434 (2008).

25. D. T. Dicker et al., “Differentiation of normal skin and melanoma using high resolution
hyperspectral imaging,” Cancer Biol. Ther. 5(8), 1033–1038 (2006).

26. J. W. Uhr et al., “Molecular profiling of individual tumor cells by hyperspectral microscopic
imaging,” Transl. Res. 159(5), 366–375 (2012).

27. H. Akbari et al., “Hyperspectral imaging and quantitative analysis for prostate cancer
detection,” J. Biomed. Opt. 17(7), 076005 (2012).

28. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901
(2014).

29. M. Eady, B. Park, and S. Choi, “Rapid and early detection of Salmonella serotypes with
hyperspectral microscopy and multivariate data analysis,” J. Food Prot. 78(4), 668–674
(2015).

30. E. Bauriegel et al., “Early detection of Fusarium infection in wheat using hyper-spectral
imaging,” Comput. Electron. Agric. 75(2), 304–312 (2011).

31. A. K. Mahlein, “Plant disease detection by imaging sensors–parallels and specific demands
for precision agriculture and plant phenotyping,” Plant Dis. 100(2), 241–251 (2016).

Slonecker et al.: Full-range, solar-reflected hyperspectral microscopy to support. . .

Journal of Applied Remote Sensing 026024-21 Apr–Jun 2018 • Vol. 12(2)

https://doi.org/10.1002/anie.v53.51
https://doi.org/10.1002/anie.v53.51
https://doi.org/10.1007/BF02956173
https://doi.org/10.1366/0003702924125032
https://doi.org/10.1109/MEMB.2002.1032647
https://doi.org/10.1364/AO.45.006283
https://doi.org/10.1109/ISBI.2004.1398842
https://doi.org/10.1109/ISBI.2004.1398842
https://doi.org/10.1364/AO.45.002965
https://doi.org/10.1111/jmi.2008.232.issue-1
https://doi.org/10.1364/OE.18.016513
https://doi.org/10.1117/12.884012
https://doi.org/10.3390/s131114523
https://doi.org/10.1029/JB086iB04p03039
https://doi.org/10.1029/JB086iB04p03039
https://doi.org/10.1117/12.818929
https://doi.org/10.1117/12.818929
https://doi.org/10.1364/OE.18.014330
https://doi.org/10.3390/s130709267
https://doi.org/10.1002/cncr.23286
https://doi.org/10.1007/s11434-008-0199-3
https://doi.org/10.4161/cbt
https://doi.org/10.1016/j.trsl.2011.08.003
https://doi.org/10.1117/1.JBO.17.7.076005
https://doi.org/10.1117/1.JBO.19.1.010901
https://doi.org/10.4315/0362-028X.JFP-14-366
https://doi.org/10.1016/j.compag.2010.12.006
https://doi.org/10.1094/PDIS-03-15-0340-FE


32. M. Kuska et al., “Hyperspectral phenotyping on the microscopic scale: towards automated
characterization of plant-pathogen interactions,” Plant Methods 11(1), 28 (2015).

33. A. K. Mahlein et al., “Hyperspectral imaging for small-scale analysis of symptoms caused
by different sugar beet diseases,” Plant Methods 8(1), 3 (2012).

34. A. K. Mahlein et al., “Recent advances in sensing plant diseases for precision crop protec-
tion,” Eur. J. Plant Pathol. 133(1), 197–209 (2012).

35. L. M. Dale et al., “Hyperspectral imaging applications in agriculture and agro-food product
quality and safety control: a review,” Appl. Spectrosc. Rev. 48(2), 142–159 (2013).

36. G. A. Roth et al., “Hyperspectral microscopy as an analytical tool for nanomaterials,”
Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(4), 565–579 (2015).

37. G. A. Roth et al., “Identification of metal oxide nanoparticles in histological samples by
enhanced darkfield microscopy and hyperspectral mapping,” J. Visualized Exp. (106),
53317 (2015).

38. M. D. P. S. Pena et al., “Hyperspectral imaging of nanoparticles in biological samples:
simultaneous visualization and elemental identification,” Microsc. Res. Tech. 79(5),
349–358 (2016).

39. C. Grabinski, J. Schlager, and S. Hussain, “Hyperspectral microscopy for characterization of
gold nanoparticles in biological media and cells for toxicity assessment,” in Nanomaterial
Interfaces in Biology, P. Bergese and K. Hamad-Schifferli, Eds., pp. 167–178, Humana
Press, Totowa, New Jersey (2013).

40. S. Patskovsky et al., “Hyperspectral reflected light microscopy of plasmonic Au/Ag alloy
nanoparticles incubated as multiplex chromatic biomarkers with cancer cells,” Analyst
139(20), 5247–5253 (2014).

41. M. Mortimer et al., “Potential of hyperspectral imaging microscopy for semi-quantitative
analysis of nanoparticle uptake by protozoa,” Environ. Sci. Technol. 48(15), 8760–8767
(2014).

42. A. R. Badireddy, M. R. Wiesner, and J. Liu, “Detection, characterization, and abundance of
engineered nanoparticles in complex waters by hyperspectral imagery with enhanced
darkfield microscopy,” Environ. Sci. Technol. 46(18), 10081–10088 (2012).

43. M. C. Phillips, J. D. Suter, and B. E. Bernacki, “Hyperspectral microscopy using an external
cavity quantum cascade laser and its applications for explosives detection,” Proc. SPIE
8268, 82681R (2012).

44. C. Pilorget and J. P. Bibring, “NIR reflectance hyperspectral microscopy for planetary
science: application to the MicrOmega instrument,” Planet. Space Sci. 76, 42–52 (2013).

45. N. Bost et al., “Testing the ability of the ExoMars 2018 payload to document geological
context and potential habitability on Mars,” Planet. Space Sci. 108, 87–97 (2015).

46. V. Leroi, J. P. Bibring, and M. Berthe, “Micromega/IR: design and status of a near-infrared
spectral microscope for in situ analysis of Mars samples,” Planet. Space Sci. 57(8–9), 1068–
1075 (2009).

47. O. Korablev et al., “Development of a mast or robotic arm-mounted infrared AOTF
spectrometer for surface Moon and Mars probes,” Proc. SPIE 9608, 960807 (2015).

48. J. R. Schott, Remote Sensing: The Image Chain Approach, Vol. 2, Oxford University Press,
New York (2007).

49. J. P. Kerekes and J. E. Baum, “Hyperspectral imaging system modeling,” Lincoln Lab. J.
14(1), 117–130 (2003).

50. D. W. Allen and R. G. Resmini, “A microscene approach to the evaluation of hyperspectral
system level performance,” Proc. SPIE 8743, 87431M (2013).

51. R. G. Resmini et al., “An analysis of the nonlinear spectral mixing of didymium and
soda-lime glass beads using hyperspectral imagery (HSI) microscopy,” Proc. SPIE 9088,
9088OZ (2014).

52. N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal Process. Mag. 19(1),
44–57 (2002).

53. N. Dobigeon et al., “Nonlinear unmixing of hyperspectral images: models and algorithms,”
IEEE Signal Process. Mag. 31(1), 82–94 (2014).

54. R. Close et al., “Using physics-based macroscopic and microscopic mixture models for
hyperspectral pixel unmixing,” Proc. SPIE 8390, 83901L (2012).

Slonecker et al.: Full-range, solar-reflected hyperspectral microscopy to support. . .

Journal of Applied Remote Sensing 026024-22 Apr–Jun 2018 • Vol. 12(2)

https://doi.org/10.1186/s13007-015-0073-7
https://doi.org/10.1186/1746-4811-8-3
https://doi.org/10.1007/s10658-011-9878-z
https://doi.org/10.1080/05704928.2012.705800
https://doi.org/10.1002/wnan.1330
https://doi.org/10.3791/53317
https://doi.org/10.1002/jemt.v79.5
https://doi.org/10.1039/C4AN01063A
https://doi.org/10.1021/es500898j
https://doi.org/10.1021/es204140s
https://doi.org/10.1117/12.907488
https://doi.org/10.1016/j.pss.2012.11.004
https://doi.org/10.1016/j.pss.2015.01.006
https://doi.org/10.1016/j.pss.2008.12.014
https://doi.org/10.1117/12.2190450
https://doi.org/10.1117/12.2015834
https://doi.org/10.1117/12.2051434
https://doi.org/10.1109/79.974727
https://doi.org/10.1109/MSP.2013.2279274
https://doi.org/10.1117/12.919583


55. J. Broadwater and A. Banerjee, “Mapping intimate mixtures using an adaptive kernel-based
technique,” in 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in
Remote Sensing (WHISPERS), IEEE (2011).

56. J. Chen, C. Richard, and P. Honeine, “Nonlinear unmixing of hyperspectral data based on
a linear-mixture/nonlinear-fluctuation model,” IEEE Trans. Signal Process. 61(2), 480–492
(2013).

57. G. Schaepman-Strub et al., “Reflectance quantities in optical remote sensing—definitions
and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).

58. R. F. Kokaly et al., “USGS Spectral Library Version 7: U.S. Geological Survey Data Series
1035,” p. 61 (2017).

59. E. Paine et al., “Hyperspectral microscopy of cyanobacterial blooms: a novel approach to
the collection of spectral data for the development of remote sensing algorithms,” in
HyspIRI Science and Applications Workshop, California Institute of Technology, Pasadena,
California (2016).

60. D. W. Meinig, “The beholding eye: ten versions of the same scene,” in The Interpretation of
Ordinary Landscapes: Geographical Essays, D. W. Meinig, Ed., pp. 33–48, Oxford
University Press, New York (1979).

61. M. G. Turner, “Landscape ecology: the effect of pattern on process,” Annu. Rev. Ecol. Syst.
20, 171–197 (1989).

E. Terrence Slonecker holds his master’s degree in geography and his doctorate in environ-
mental science, both from George Mason University. He is a research geographer with the
USGS. He specializes in remote sensing and other geospatial analyses of hazardous waste
and other fugitive contaminants. His current research interests include VIS/NIR/FTIR spectros-
copy and imaging spectroscopy. With 30+ years of experience with the U.S. Air Force, the U.S.
Environmental Protection Agency and the U.S. Geological Survey, he has served on many
special assignments including the Gore-Chernomrydin Commission, the U.S. Group on Earth
Observations, the Civil Application Committee, the Spring Valley World War 1 chemical
weapons cleanup and has recently served as a remote sensing instructor in Afghanistan.

David W. Allen holds his bachelor’s degree in chemistry and his master’s degree in environ-
mental biology, both from Hood College, and his PhD in Earth systems and geoinformation
science (remote sensing) from George Mason University. He is a research chemist at the
National Institute of Standards and Technology, (NIST), in Gaithersburg, Maryland. Currently,
he works in the sensor sciences division at NIST and leads research in the areas of medicine,
environment, and defense using hyperspectral imaging for detection and quantitative analysis.

Ronald G. Resmini is a research scientist in the advanced ISR Department of the MITRE
Corporation and an adjunct associate professor in the College of Science at George Mason
University, Fairfax, Virginia. He specializes in visible to infrared multi- and hyperspectral
imagery remote sensing; the geological and geophysical sciences; the analysis, design, and
development of algorithms for processing and analysis of remotely sensed information; and
modeling of natural processes observed in remotely sensed data.

Robert S. Rand received his BS degree in physics from the University of Massachusetts at
Lowell, and his PhD in engineering physics from the University of Virginia. He is a founder
and president of R3-Expert Analytics, Inc., currently exploring methods in spectral/spatial
data analysis and analytics using machine learning for interpreting remote sensing imagery.
He has worked as a government employee and contractor supporting organizations within
the U.S. Department of Defense during the period 1977–2018.

Emily Paine earned her bachelor’s of science in Earth science from Rice University. She
recently went on to work with the U.S. Geological Survey on a project to identify the spectral
characteristics of cyanobacteria using hyperspectral microscopy. She now works as a lab
technician.

Slonecker et al.: Full-range, solar-reflected hyperspectral microscopy to support. . .

Journal of Applied Remote Sensing 026024-23 Apr–Jun 2018 • Vol. 12(2)

https://doi.org/10.1109/WHISPERS.2011.6080881
https://doi.org/10.1109/WHISPERS.2011.6080881
https://doi.org/10.1109/TSP.2012.2222390
https://doi.org/10.1016/j.rse.2006.03.002
https://doi.org/10.1146/annurev.es.20.110189.001131

