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Abstract. Atmospheric correction can introduce errors in surface spectral reflectance, and hence
induces errors in plant water estimation from remote sensing water indices. We intend to develop
water indices that are less impacted by atmospheric effects for plant water content estimation based
on the 970-nm water absorption feature. A simulation study using the PROSAIL and 6S models
showed that uncertainty in atmospheric water vapor (WV) content can induce large variation in
existing 970-nm water indices, such as WI, NWI-1, and NWI-3. An attempt was made to incor-
porate atmospheric WV absorption at 940 nm to correct for the perturbation due to atmospheric
WV variability, leading to the development of improved indices, named as ARWI, NARWI-1,
and NARWI-3. The performance of these indices was evaluated using the simulated and field
spectral reflectance data, as well as Hyperion and GF5 satellite data. Results showed that the new
indices were resistant to uncertainty of WV and could be used to deliver improved estimation of
canopy water content, with a smaller root-mean-square-error (ARWI: 7.4 mg∕cm2, NARWI-1:
8.3 mg∕cm2, and NARWI-3: 8.8 mg∕cm2) compared to that obtained using the traditional
water indices (WI: 8.9 mg∕cm2, NWI-1: 9.4 mg∕cm2, and NWI-3: 16.6 mg∕cm2). The water
indices developed in this study, although needing further assessment in wide application scenarios,
have great potential for monitoring of vegetation water status using satellite hyperspectral data with
reflectance measurement around 970 nm. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.14.034504]
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1 Introduction

Information on canopy vegetation water content is important for assessing vegetation water
stress, crop yields, ecosystem functioning, and wildfire risks.1–4 Remote sensing data provide
an opportunity to determine vegetation water status at a large spatial scale. Three variables meas-
uring vegetation water content, including the fuel moisture content (FMC), the equivalent water
thickness (EWT), and the canopy water content (CWC), are often estimated from remote sensing
data. FMC is defined as the ratio between the water quantity and the dry weight (DW).5 EWT
refers to the amount of water per unit leaf area, while CWC is the total CWC per unit ground
area.6–9 CWC is also named as canopy EWT in some studies.8,10 Estimation of FMC from remote
sensing data is considered more difficult, since leaf dry matter is required for the estimation.11,12

CWC has been found to be better estimated from remote sensing data, possibly because it is
dependent on leaf area index (LAI), which contributes to total reflectance in water absorption
bands.2,13,14

Vegetation water indices are simple and are commonly used for estimating vegetation water
content from hyperspectral or multispectral remote sensing data.15,16 There are several water
absorption features in the near-infrared (NIR, 0.7 to 1.0 μm) and shortwave-infrared (SWIR,
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1.0 to 2.5 μm) regions. The normalized difference water index (NDWI) using water absorption at
1240 or 1600 nm was developed as an indicator of vegetation water content using Landsat,
SPOT, and MODIS data.17–20 However, absorption by liquid water in vegetation and background
soil is too strong in the SWIR region, hence signal returned from canopy is quite weak at these
water absorption wavelengths.21–23 Due to greater penetration of light into the vegetation canopy
in the NIR spectral range, the water absorption band at 970 nm has been found to be better for
retrieval of canopy water.5 The reflectance water index (WI, R900∕R970) developed in Ref. 21 has
been used to estimate plant water content for different vegetation types.11,22 A normalized water
index [NWI-1 ¼ ðR970 − R900Þ∕ðR970 þ R900Þ] has been proposed based on reflectance at 970
and 900 nm for wheat water status monitoring.24 Through changing the reference band at 900 nm
in NWI-1, other three normalized water indices have been proposed, e.g., NWI-2 using 850 nm,
NWI-3 using 880 nm, and NWI-4 using 920 nm, for vegetation water estimation.24,25 Among the
above indices, NWI-3 was the most effective for canopy water status monitoring.26 Indices based
on the 970-nm absorption feature are supported by some silicon photodiode sensors limited to
below 1100 nm.27–29

Knowledge of atmospheric aerosol optical thickness (AOT) and water vapor content (WV) is
needed in atmospheric correction for retrieving surface reflectance and deriving vegetation indi-
ces. However, retrievals of the two variables have considerable uncertainty. Using MODIS AOT
and WV products as an example, uncertainty in MODIS AOT product was found to be
�ð0.05þ 0.15 � AOTÞ over land,30,31 while uncertainty in MODIS WV product was found
to be 10.4%.32 Uncertainties in aerosol retrievals induces the largest error in surface reflectance
retrieval in the visible bands, which impacts the calculation of visible-NIR-based vegetation
indices, such as the normalized difference vegetation index (NDVI) and the soil-adjusted
vegetation index.33,34 To reducing this effect, the atmospherically resistant vegetation index
(ARVI)35 and the enhanced vegetation index36 have been developed to account for impacts
of aerosol on NDVI.37 Similarly, uncertainty in WV will induce uncertainty in NIR reflectance
and vegetation water indices, since absorption features of liquid water and WV overlap.38,39

NDWI using SWIR water absorption band was developed to be less sensitive to atmospheric
effect through radiative transfer (RT) simulation.17

To our knowledge, uncertainty in 970-nm-based water indices due to atmospheric correction
errors has not been evaluated. It is thus important to improve the performance of these water
indices under atmospheric perturbation. The objectives of this study, therefore, were: (1) to
assess the impact of atmospheric WV content on the 970-nm-based water indices; (2) to develop
optimization method for improving these indices under atmospheric perturbation; and (3) to
assess the sensitivity of these new indices and their performance of estimating vegetation water
status. Since almost all the current water indices are more sensitive to CWC than to FMC and
EWT,2,13,14 only CWC is employed to evaluate the performance of different water indices for
estimating vegetation water status. In this paper, canopy and atmospheric RT models are used to
simulate canopy reflectance data for developing new atmospherically resistant vegetation water
indices, by integrating WV absorption peak around 940 nm (Sec. 2). The results of parameter-
ization of developed new water indices are introduced in Sec. 3.1, and the robustness of the
parameterization is assessed and presented in Sec. 3.2. The effects of atmospheric WV on the
water indices are assessed using simulated spectral reflectance data in Sec. 3.3. The water indices
are then assessed for estimation of CWC using the simulated spectral data (Sec. 3.4) and the field
spectral reflectance data (Sec. 3.5). In addition, the sensitivity of satellite-based water indices to
WVeffect is evaluated using Hyperion and GF5 hyperspectral data in Sec. 3.6. Discussion on the
uncertainties and limitations of the atmospherically resistant water-sensitive indices are pre-
sented in Sec. 4.

2 Materials and Methods

2.1 Wheat Field Dataset

Field data were collected in a winter wheat experiment in 2002 at the National Precision
Agriculture Experimental Base in Xiaotangshan, Changping District, Beijing, China (40°10.6′ N,
116°26.3′E).40 The study site is located in a warm temperature zone and has a continental
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climate. The annual mean temperature is 13.8 deg and average annual precipitation is 507.7 mm.
In the field experiment, three winter wheat varieties, Zhongyou 9507, Jing 9428, and Jingdong 8,
were seeded in 48 plots with four levels of nitrogen fertilization (N1: 0, N2: 150, N3: 300,
and N4: 450 kg∕ha) and four water application levels (W1: 0, W2: 225, W3: 450, and W4:
675 m3∕ha). Each plot is 32.4 m × 30 m. The study area and winter wheat experiment design
are shown in Fig. 1.

Canopy CWC and spectral reflectance data were collected at the tillering and stem elongation
stages, resulting a total of 96 samples. In each sample, a 1-m2 area of winter wheat was chosen
for canopy spectral reflectance measurements as well biophysical and biochemical parameter.
Canopy spectral reflectance was measured using a FieldSpec spectrometer (Analytical Spectral
Devices, Boulder, Colorado, USA), at the time between 10:00 am and 2:00 pm local time.
Leaves were sampled and taken for laboratory analysis to determine the CWC on the same day.
The CWC is the weight of foliar water per unit area of ground and is the product of the EWTand
the LAI.10,41 All fresh leaf samples within the sampling area were weighed immediately to obtain
fresh weight (FW) and then were oven-dried for 48 h at 60 deg to obtain the DW. Leaf area was
manually measured. EWT was calculated as7

EQ-TARGET;temp:intralink-;e001;116;276EWT ¼ ðFW − DWÞ∕AREALeaf ; (1)

where AREALeaf is the total area of the sampled fresh leaves, calculated as the ratio of DW to
specific leaf weight. If EWT and LAI are measured, CWC is then calculated as41

EQ-TARGET;temp:intralink-;e002;116;216CWC ¼ EWT × LAI: (2)

2.2 Satellite Hyperspectral Data

Satellite hyperspectral data covering the experiment site were acquired by the Hyperion sensor
onboard NASA’s EO-1 satellite on April 7, 2003 and May 20, 2004, and by the AHIS sensor
onboard China’s GF5 satellite on March 18, 2019 and September 1, 2019. The Hyperion
sensor collects the upwelling radiance in 242 spectral bands, with 10-nm spectral resolution,
30-m spatial resolution, and 7.5-km swath width. It has a single telescope and consists of two
spectrographs, one covering the visible and NIR wavelengths, and the other covering SWIR
wavelengths. The GF5 AHSI sensor has 330 spectral channels spanning from 0.4 to 2.5 μm

Fig. 1 The study area and winter wheat experiment plots in Xiaotangshan, Beijing, in 2002. The
numbers in the red box are the sequence numbers of plots. N1 to N4 represent nitrogen appli-
cations of 0, 150, 300, and 450 kg∕ha, respectively; W1 to W4 represent water application of
0, 225, 450, and 675 m3∕ha, respectively.
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with 30-m spatial resolution and 60-km swath width. The spectral resolution is about 5 nm in
visible-NIR range (0.4 to 1.0 μm) and 10 nm in SWIR range (1.0 to 2.5 μm).42

The Hyperion and GF5 data were processed to derive surface reflectance using the Fast
Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) module43 in the ENVI
software. The FLAASH module uses the MODTRAN RT code for atmospheric correction.
AOT was retrieved from the Hyperion data using the FLAASH module. Sensitivity of water
indices to atmospheric condition was assessed by changing WV in atmospheric correction.

2.3 Simulation of Spectral Reflectance Data

In order to analyze the effect of the atmospheric correction on vegetation water indices, atmos-
pheric correction was conducted using a vegetation RT model and an atmospheric RT model,
to generate an error-free canopy reflectance dataset—which assumes that the atmospheric
correction is accurate—and an inaccurately retrieved reflectance dataset. Simulation of spectra
reflectance data using RT models helps to obtain enough samples with a wide range of condi-
tions that actual field experiments cannot achieve.

First, the PROSAIL model, as a combination of the PROSPECT leaf model44 and the SAIL
canopy reflectance model,45 was used to simulate the error-free canopy reflectance for a range of
leaf and canopy parameter values. The PROSAIL model is optimized for a spatially continuous
canopy, applicable for a closed winter wheat canopy. CWC can be calculated from EWTand LAI
using Eq. (2). Both EWT and LAI are input parameters to the PROSAIL model. EWT ranged
from 4 to 24 mg∕cm2 and LAI ranged from 1 to 6 in PROSAIL model simulation. A range of
leaf dry matter (Cm) and leaf structure parameter (N) were considered in simulation experiment.
The influence of leaf chlorophyll content on reflectance in the 970-nm range is negligible.41

Thus, leaf chlorophyll parameter can be fixed to a nominal value. The average leaf inclination
angle (ALA) was set to 35 deg for winter wheat. A typical spectra of bright soil was used for
Xiaotangshan site. The Sun-sensor geometry parameters are corresponding to the location and
time of the above winter wheat field experiment. A list of the parameters used in the PROSAIL
model simulation is presented in Table 1.

The 6S model46 was then used to simulate atmospheric effect on retrieving of reflectance and
vegetation water indices. Using the forward mode of the 6S model with true values for atmos-
pheric parameters, canopy reflectance data simulated by the PROSAIL model were converted
into top-of-atmosphere spectral data. For a sunny day, a true value of AOT at 550 nm (AOT550)
was set to 0.2 and a true value of WV was set to 2.0 g∕cm2. An altitude of 40 m of Xiaotangshan
site was used. Other atmospheric parameters in the 6S model were set to their default values in
this simulation.

Table 1 Parameters used in the PROSAIL model for simulation of
canopy spectral reflectance.

Parameter Value range Unit

LAI 1 to 6, in steps of 1 —

Leaf EWT 4 to 24, in steps of 4 mg∕cm2

Leaf dry matter content (Cm) 0.004, 0.006 g∕cm2

Leaf structure parameter (N) 1.6, 1.8 —

Leaf chlorophyll-a and -b content (Cab) 50 μg∕cm2

ALA 35 deg

Soil background Bright soil —

Sun zenith and azimuth (θs;φs) (30, 0) deg

View zenith and azimuth angle (θv;φv) (0, 0) deg
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Third, inaccurate reflectance data were simulated from the top-of-atmosphere data simulated
above using the 6S model in its reverse mode. As can be seen from Fig. 2(a), the reflectance
changes due to AOT are relatively spectrally smooth and flat compared to those due to the selec-
tive absorption by atmospheric WV.47 In addition, the effect of aerosols on the shortwave infrared
bands is much smaller than that in the visible bands.17,46 Thus, atmospheric correction at around
970 nm is more sensitive to errors in WV than to errors in AOT, and the impact of AOT is
negligible to reflectance retrieval,30,32 which are also shown in Fig. 2. However, when a
20% relative error was added to WVat 2.0 g∕cm2 (i.e., 0.4 g∕cm2), large errors in the simulated
reflectance can be introduced, especially at the NIR WV absorption band [Fig. 2(b)]. We
intended to reduce atmospheric WVeffect on spectral water indices based on 970-nm absorption.
Referring to the accuracy level of MODIS WV production,32 errors in the WV were set to �0.1,
�0.2, �0.3, and �0.4 g∕cm2 for the simulation experiment in the atmospheric correction step.

2.4 Vegetation Water Indices

Different water indices may be impacted differently by the errors in WV for atmospheric cor-
rection. In this study, three 970-nm-based water indices, WI, NWI-1, and NWI-3, were selected
for testing their sensitivity to atmospheric WV effect. These indices use reflectance at 970 nm
and reflectance at a reference wavelength nearby: 900 nm for WI and NWI-1, 880 nm for NWI-3.
Compared to 970 nm, absorption by liquid water in vegetation canopy in these reference wave-
lengths is weaker.21,24,25 WI is calculated as the ratio of the reflectance at the 900-nm reference
wavelength to that at the water absorption peak of 970 nm:21

EQ-TARGET;temp:intralink-;e003;116;261WI ¼ R900∕R970; (3)

where R900 and R970 are the surface reflectance at 900 and at 970 nm, respectively. NWI-1 is
formulated as24

EQ-TARGET;temp:intralink-;e004;116;206NWI-1 ¼ ðR970 − R900Þ∕ðR970 þ R900Þ; (4)

and NWI-3 is formulated as25

EQ-TARGET;temp:intralink-;e005;116;163NWI-3 ¼ ðR970 − R880Þ∕ðR970 þ R880Þ: (5)

In addition, NDWI using reflectance at 1240 nm (NDWI1240) and NDWI at 1640 nm
(NDWI1640) were also selected for comparison with 970-nm-based water indices, since the two
NDWIs have been considered to be less sensitive to atmospheric effect.17–19 NDWI1240 and
NDWI1640 are calculated as

EQ-TARGET;temp:intralink-;e006;116;83NDWI1240 ¼ ðR860 − R1240Þ∕ðR860 þ R1240Þ; (6)

Fig. 2 (a) A typical AOT spectrum for AOT at 550 nm (AOT550) set to 0.2 and absorption spectra of
leaf liquid water (LW) and WV between 800 and 1000 nm; (b) surface reflectance with and without
atmospheric correction errors, obtained from the simulation experiment. The error of AOT550 is
0.08, and the error of WV is 0.4 g∕cm2.
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and

EQ-TARGET;temp:intralink-;e007;116;723NDWI1640 ¼ ðR860 − R1640Þ∕ðR860 þ R1640Þ: (7)

2.5 Approach to Compensating Atmospheric Water Vapor Effects

To reduce the effect of atmospheric WV on 970-nm-based water indices, the self-correction
approach of ARVI35 was adopted in this study by introducing WV absorption band at
940 nm. ARVI uses a combination of NDVI and the blue band reflectance to correct the atmos-
pheric effects, and the resistance of ARVI to atmospheric aerosol effect is accomplished using
the difference in sensitivity of the blue and red channels to aerosols. Even though the absorptions
of atmospheric WVand plant liquid water may overlap, their absorption peaks in 800 to 1000 nm
range are different by about 30 nm [Fig. 2(a)]. When there is error in WV used for atmospheric
correction, the changes in the retrieved surface reflectance at the 940-nm wavelength will be
larger than that in nearby wavelengths. Therefore, it is possible to separate the contributions
from canopy water absorption and reference wavelength for water index calculation by incor-
porating reflectance at 940 nm.

First, to design new spectral water indices resistant to atmospheric WVeffect, we adjusted the
reflectance at 970 nm and the reference wavelength using the reflectance at 940 nm (referred to
as R 0

λ). The WVabsorption peak at 940 nm is impacted more by WV, which can be exploited to
correct reflectance in other bands less affected by errors in atmospheric conditions. We assume
that R 0

λ obtained this way is resistant to atmospheric effects:

EQ-TARGET;temp:intralink-;e008;116;465R 0
λ ¼ Rλ − kλ × R940 ¼ Rλ;ture − kλ × R940;ture; (8)

where λ is a given wavelength in the range 800 to 1000 nm, and kλ is the correction coefficient
that makes R 0

λ resistant to WVeffect; Rλ is the surface reflectance retrieved through atmospheric
correction, which may bring errors caused by inaccurate knowledge of atmospheric WV. As a
special case of Rλ, Rλ;true is the result using the accurate WV thus represents the true surface
reflectance. In contrast to Rλ;true, the values of R 0

λ includes errors caused by the atmospheric WV
effect.

Second, it is a key step to derive the correction coefficient kλ in Eq. (8). We transformed
Eq. (8) into Eq. (9)

EQ-TARGET;temp:intralink-;e009;116;336Rλ − Rλ;ture ¼ kλ × ðR940 − R940;tureÞ: (9)

Equation (9) means that change of reflectance from its true value due to inaccurate WV
correction at any wavelength λ is proportional to that at 940 nm:

EQ-TARGET;temp:intralink-;e010;116;280ΔðRλÞ ¼ kλ × ΔðR940Þ: (10)

If the above assumption is valid, kλ can be obtained through regression analysis, using simu-
lated retrieved reflectance dataset with variable values of WV input shown in Table 2.

Following the above steps, we developed a new simple ratio index based on WI through
integration of the band at 940 nm, named as an atmospherically resistant water index (ARWI),
which is the ratio of R 0

900 to R 0
970. This ARWI index can be calculated using the surface reflec-

tances retrieved using atmospheric correction at 900, 940, and 970 nm, expressed as

EQ-TARGET;temp:intralink-;e011;116;176ARWI ¼ R 0
900

R 0
970

¼ R900 − k900 × R940

R970 − k970 × R940

: (11)

A new normalized, atmospherically resistant water index based on NWI-1 (NARWI-1) using
the band at 940 nm also is designated as

EQ-TARGET;temp:intralink-;e012;116;106NARWI-1 ¼ R 0
970 − R 0

900

R 0
970 þ R 0

900

¼ R970 − R900 − ðk970 − k900Þ × R940

R970 þ R900 − ðk970 þ k900Þ × R940

: (12)
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Another new normalized, atmospherically resistant water index based on NWI-3 (NARWI-3)
using the reference wavelength of 880 nm is calculated as

EQ-TARGET;temp:intralink-;e013;116;518NARWI-3 ¼ R 0
970 − R 0

880

R 0
970 þ R 0

880

¼ R970 − R880 − ðk970 − k880Þ × R940

R970 þ R880 − ðk970 þ k880Þ × R940

: (13)

3 Results and Analysis

3.1 Determination of Correction Coefficients

Using simulated data, the relationship between reflectance changes at 970 and 940 nm due to
atmospheric WV perturbation is shown in Fig. 3. In the simulation, WV was changed in a range
0.4 g∕cm2 above and below the true WV at 2.0 g∕cm2. It can be observed that the reflectance
changes at 970 nm from the true values were strongly correlated with that at 940 nm
(R2 ¼ 0.998). The correction coefficient in Eqs. (8)–(10) for 970 nm (k970) was 0.394.

Using the same approach, the correction coefficients kλ in Eqs. (8)–(10) for any wavelength
between 860 nm and 1000 nm can also be determined, and the results are shown in Fig. 4. The
correction coefficient at different wavelengths varies between 0 and 2.8. As shown by the coef-
ficient of determination, the linear relationships are strong between reflectance changes at
940 nm and at most of wavelengths below 860 nm. The coefficient was 0.534 for 900 nm
(k900), whereas 0 for 880 nm (k880), which means that reflectance at 880 nm is hardly affected
by variation in WV. The results for the three wavelengths are reported in Table 3, and the values
of k970, k900, and k880 can be used to derive the improved water indices given in Eqs. (11)–(13).

Fig. 3 The relationship between reflectance changes induced by the WV effect at 940 nm and that
at 970 nm, illustrated by the WV content error.

Table 2 Parameters used in the 6S model for atmospheric correction simulation.

Parameter Value range Unit

WV content 1.6 to 2.4, in steps of 0.1 g∕cm2

AOT at 550 nm (AOT550) 0.2, 0.28, 0.44 —

Aerosol type Land, ocean, city —

Ozone content 0.3 atm-cm

Sensor height 700 Km

Altitude 40 M

Sun zenith and azimuth (θs;φs) (30, 0) deg

View zenith and azimuth angle (θv;φv) (0, 0) deg
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3.2 Influences of Atmospheric Correction Inputs in Parameterization
of New Water Indices

3.2.1 Influence of true water vapor content

Compared with the fixedWV true value of 2.0 g∕cm2 for simulation in Sec. 3.1, we changed true
values for the WV (1.6, 2.0, 2.4 g∕cm2). Figure 5 shows the calculation results of k970 with
variations in settings of true value of WV.

Variation in WV true value only makes small changes of the correction coefficients
(k970 ¼ 0.390) in Fig. 5, compared to that result (k970 ¼ 0.394) for the fixed WV true value of
2.0 g∕cm2 in Fig. 4 and Table 3. Thus, it implies that variations in settings of true value of
WV true in simulation have little influence on parameterization of the new water spectral indices
in Eqs. (11)–(13).

Fig. 4 The correction coefficients (k λ) against WV effect at different wavelengths and the corre-
sponding significant coefficient of determination (R2) calculated based on the simulations using
the PROSAIL model and the 6S model. In simulation, WV content is set to 2.0� 0.4 g∕cm2.

Table 3 The correction coefficients for new 970-nm-based
atmospherically resistant water indices using WV absorption
wavelength at 940 nm.

Correction coefficient Value R2

k970 0.394 0.998

k900 0.534 0.998

k880 0.000 —

Fig. 5 The relationship between the reflectance changes induced by atmospheric WV content at
940 nm and the changes at 970 nm, as characterized by the true value of WV. The true values of
WV are set to 1.6, 2.0, and 2.4 g∕cm2, respectively.
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3.2.2 Influence of water vapor errors

The influence of WV in the parameterization of the new water indices was tested, and the results
were shown in Fig. 6. The strong linear relationship indicates that the correction efficient is stable
for different levels of WV error (ranging from −0.8 to 0.8 g∕cm2).

3.2.3 Influence of aerosol errors

The influence of aerosol in the parameterization of the new water indices was also tested, and the
results were shown in Fig. 7. Aerosol will influence the assumed relationship in Eqs. (9) and (10)
but is acceptable if the AOT550 error is retained below 0.1.

3.3 Water Vapor Effect Assessment on Calculation of Water Indices
Using Simulated Spectra

The root mean square error (RMSE) is regularly employed in accuracy evaluation. Relative root
mean squared error (RRMSE) can be considered as a normalized RMSE metrics. Because differ-
ent water indices own different value ranges, RRMSE is a better matrix to increase the com-
parability of the sensitivity of calculation of different water indices to the WVeffect. The values
of water indices with atmospheric WV errors were compared to those corresponding error-free
values, and R2 and RRMSE were calculated in Table 4.

Fig. 6 The relationship between the reflectance changes induced by atmospheric WV content at
940 nm and the changes at 970 nm, as characterized by the WV error ranging from −0.8 to
0.8 g∕cm2.

Fig. 7 The relationship between the reflectance changes induced by both WV and aerosol effect
at 940 nm and the changes at 970 nm, with different AOT at 550 nm (AOT550) error of (a) �0.08
and (b) �0.24.
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Table 4 shows that there is little difference between NDWI1240 with atmospheric correction
errors and the error-free NDWI1240, and a similar situation occurred with NDWI1640. That
implies that NDWIs using SWIR water absorption band are hardly affected by WV input error
in atmospheric correction. However, all of three existing 970-nm water indices (WI, NWI-1, and
NWI-3) are more sensitive to WV errors in atmospheric correction process than NDWIs.

Table 4 also shows that all three improved water indices including ARWI, NARWI-1, and
NARWI-3 can minimize their WV effect as NDWIs. The linear regression between the values
between ARWI, NARWI-1, and NARWI-3 with atmospheric correction errors and their error-
free values shows a high correlation (R2 more than 0.99), with the better RRMSE (less than 3%)
than the RRMSE results (more than 10%) of WI, NWI-1, and NWI-3.

NWI-3 is most affected by the WVeffect. The R2 of regression between NWI-3 values with
atmospheric correction error and error-free NWI-3 values is only 0.856 with the largest RRMSE
of 41.0%. Compared with NWI-3, the RRMSE calculated between NARWI-3 with atmospheric
correction errors and its error-free values was improved to 2.8%. The scatter plot between NWI-3
with atmospheric correction errors and its error-free values appears more discrete than its
improved index NARWI-3, as shown in Fig. 8. It means that the improvement of NARWI-3
from NWI-3 against atmospheric WV effect is rather obvious.

Table 4 Errors between vegetation water indices with atmos-
pheric correction errors and the corresponding error-free water
indices. ARWI is improved from WI, NARWI-1 is improved from
NWI-1, and NARWI-3 is improved from NWI-3.

Vegetation water index R2 RRMSE (%)

WI 0.985 12.0

ARWI 1.000 2.7

NWI-1 0.985 12.0

NARWI-1 0.999 2.6

NWI-3 0.856 41.0

NARWI-3 0.999 2.8

NDWI1240 0.999 0.7

NDWI1640 1.000 0.2

Fig. 8 Scatter plots of (a) NWI-3 and (b) NARWI-3 with atmospheric correction errors caused by
inaccurate WV content inputs against error-free values of the two water indices, as characterized
by the WV input error.
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3.4 Performance of Water Indices for Vegetation Water Content Estimation
Using Simulated Spectra

Based on simulated datasets without atmospheric correction errors, regression models were built
to assess relationships between CWC and water indices. The results in Fig. 9 show all of these
eight water indices had high correlations with CWC (R2 more than 0.94), when the atmospheric
correction is error-free.

Based on simulated dataset with atmospheric correction errors, scatter plots of the CWC and
the selected eight water spectral indices were built (Fig. 10). The three existing water indices
with atmospheric correction errors have lower correlations with the CWC (WI: R2 ¼ 0.937,
NWI-1: R2 ¼ 0.929, NWI-3: R2 ¼ 0.807) than those result of their improved water indices
(ARWI: R2 ¼ 0.958, NARWI-1: R2 ¼ 0.946, NARWI-3: R2 ¼ 0.942). In addition, all of the
three improved water indices with atmospheric correction errors have similarly good correlations
with the CWC (Fig. 10), compared with their result without atmospheric correction errors
(Fig. 9). Like the three improved 970-nm-based water indices, the two NDWIs also keep high
correlations with CWC, whether there is atmospheric correction error or not.

Using models presented in Fig. 9, CWC was estimated from the simulated datasets with and
without atmospheric correction errors (Table 5). When there are no atmospheric WV errors in
simulated dataset, both the existing and developed 970-nm-based water indices produced similar
results of CWC estimation with R2 from 0.942 to 0.958 and RMSE from 7.3 to 8.6 mg∕cm2.
The two NDWIs also obtained good R2 in CWC estimation, and only NDWI1640 produced
a large CWC RMSE more than 10 mg∕cm2.

As shown in Table 5, the three developed atmospherically resistant water indices improve
estimation of the CWC, compared with their three original water indices against to the WV
effect. Compared with their results based on simulated dataset without atmospheric correction

Fig. 9 Relationship between CWC and vegetation water indices (a) WI and ARWI, (b) NWI-1
and NARWI-1, (c) NWI-3 and NARWI-3, and (d) NDWI based on a simulated dataset without
atmospheric correction errors.
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Fig. 10 Relationship between CWC and vegetation water indices (a) WI and ARWI, (b) NWI-1 and
NARWI-1, (c) NWI-3 and NARWI-3, and (d) NDWI based on simulated dataset with atmospheric
correction errors.

Table 5 Accuracy assessment for the estimation of CWC by vegetation water indices based on
simulated datasets with and without WV content errors. The used water index-CWC regression
relations from error-free data simulated using PROSAIL model (as shown in Fig. 9) were shown
(y denotes CWC and x denotes water index).

Vegetation
water index

Water index-
CWC relation

Simulated dataset without
WV errors

Simulated dataset with
WV errors

R2 RMSE (mg∕cm2) R2 RMSE (mg∕cm2)

WI y ¼ 697.77x − 695.69 0.952 7.9 0.938 8.9

ARWI y ¼ 464x − 352.57 0.958 7.3 0.958 7.4

NWI-1 y ¼ −1496.3x þ 1.1687 0.944 8.5 0.931 9.4

NARWI-1 y ¼ −813.12x þ 109.05 0.946 8.3 0.946 8.3

NWI-3 y ¼ −1412.3x þ 4.169 0.943 8.6 0.807 16.6

NARWI-3 y ¼ −1075.1x − 262.84 0.942 8.6 0.942 8.8

NDWI1240 y ¼ 12.467e14.42x 0.958 10.1 0.958 10.0

NDWI1640 y ¼ 4.2735e8.4895x 0.953 7.8 0.953 7.8

Jiao et al.: Atmospherically resistant vegetation water indices using the 970-nm water absorption feature

Journal of Applied Remote Sensing 034504-12 Jul–Sep 2020 • Vol. 14(3)



errors, WI, NWI-1, and NWI-3 have much poorer performance of CWC estimation based
on simulated dataset with atmospheric correction errors. However, all of three new water
indices (ARWI, NARWI-1, and NARWI-3) obtain better estimation of the CWC than their
original water indices, for both the simulated dataset with and without atmospheric correction
errors. When there are atmospheric correction errors, RMSE of CWC estimation by ARWI is
7.4 mg∕cm2 less than WI (RMSE ¼ 8.9 mg∕cm2), and the CWC estimation result of NARWI-1
(RMSE ¼ 8.3 mg∕cm2) is better than NWI-1 (RMSE ¼ 9.4 mg∕cm2). NARWI-3 has the most
improvements of CWC estimation (RMSE: 8.8 mg∕cm2) compared with NWI-3 (RMSE:
16.6 mg∕cm2).

The trend betweenWVerror and the RMSE of CWC estimated using NWI-3 versus NARWI-3
is shown in Fig. 11. The RMSE in the CWC estimated using NWI-3 increases greatly with the
increasing error in the atmospheric WVand the maximum RMSE value reach about 25 mg∕cm2,
while the RMSE values in the CWC estimated by NARWI-3 remain <10 mg∕cm2. Compared
to the estimation of the CWC made using NWI-3, the CWC values estimated by NARWI-3 were
more resistant to the WV input errors in atmospheric correction. It can be implied that the greater
the error of WV in atmospheric correction, the greater the influence on the CWC estimation
by existing 970-nm-based water index; while the result of CWC estimation using new
970-nm-based water index could be resistant to the WV effect.

3.5 Validation of Vegetation Water Content Estimation Using Field Dataset

The previously recalibrated formulae for estimating the CWC derived from the error-free
simulated dataset (Fig. 9) were validated with the field data obtained in the Beijing study area.
Field reflectance data are regarded as having no atmospheric correction errors. Figure 12
shows the results of CWC accuracy assessment from the observations of winter wheat.
All six 970-nm-based water indices can get good CWC estimation with RMSE less than
8 mg∕cm2 and R2 higher than 0.8. The results of simulated dataset without WV errors
(Table 5) and field dataset (Fig. 12) show that both the existing and developed 970-nm-based
water indices produced good estimation of the CWC when these error-free reflectance data
were used.

Figure 12 also shows that all of six 970-nm-based water indices got a little better estimation of
CWC based on the field measured reflectance data than the two NDWIs. The NDWI1640−CWC
formula produced the CWC estimation with a maximum RMSE, and NDWI1240 followed with a
second largest RMSE. The validation results of CWC estimation using the two NDWIs also
yielded lower R2 than that using either existing or developed 970-nm-based water indices.

3.6 Sensitivity of Water Index on Atmospheric Correction Errors
Using Satellite Data

The impact of atmospheric WV on the selected existing and new water indices was assessed
using different satellite hyperspectral data, including the Hyperion and GF5. For calculation

Fig. 11 The RMSE of CWC estimated by NWI-3 and NARWI-3 plotted against the error in the
value of the atmospheric WV content in atmospheric correction.
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of the water indices from Hyperion imagery, the wavelength of the channel correspondent to WV
absorption peak is 943 nm, and that of vegetation water absorption is 973 nm. The reference
channel at 895 nm is chosen for WI, ARWI, NWI-1, and NARWI-1, and 885 nm for NWI-3 and
NARWI-3. Figure 4 shows the correction coefficient kλ at different wavelengths. kλ for a specific
satellite hyperspectral sensor (e.g., Hyperion) could be determined through spectral sampling
using the spectral response function, for example 0.187 at 973 nm band, 0.145 for 895 nm band,
and 0 for 883 nm band. Using these correction coefficients, the three new atmospherically
resistant water indices for Hyperion data are given in Table 6. For GF5 data, the WVabsorption
peak is at the 942-nm channel, and vegetation water absorption peak is at the 973-nm channel.
The reference channels at 899- and 886-nm channels were selected for the water indices. The
coefficients for the GF5 are determined as 0.208 for k972, 0.313 for k899. The results are also
given in Table 6.

Reflectance was retrieved from the Hyperion and the GF5 hyperspectral data using the
FLAASH atmospheric correction module, with the WV parameters set to a range of 0.5 to
2.5 g∕cm2. All the selected 970-nm-based water indices were calculated from the Hyperion and
GF5 reflectance data retrieved with WV varying within the given ranges following a normal
distribution. Figure 13 shows the calculation results of standard deviation (SD) of the water
indices induced by inaccurate atmospheric WV inputs in the FLAASH atmospheric correction
module for three land cover types (shown in Fig. 14) of crop (green), grass (blue), and sparse
forest (yellow) in the Hyperion and GF5 images. As shown in Fig. 13, the existing 970-nm-based
water indices (WI, NWI-1, and NWI-3) are more affected by atmospheric WV effect than the

Fig. 12 Scatter plots of CWC predicted by (a) WI, (b) ARWI, (c) NWI-1, (d) NARWI-1, (e) NWI-3,
(f) NARWI-3, (g) NDWI1240, and (h) NDWI1640 against the in situ CWC measurements. The field
measured reflectance data are regarded as error-free in atmospheric effects.
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Table 6 Parameterization expressions of 970-nm-based atmospherically resistant water indices
for Hyperion and GF5 satellite hyperspectral data.

Satellite data New water index Formula Correction coefficient WV channel

Hyperion ARWIHyperion
ðR895 − k895 × R943Þ
ðR973 − k973 × R943Þ

k973 ¼ 0.187 943 nm for
Hyperion

NARWI-1Hyperion
½R973 − R895 − ðk973 − k895Þ × R943�
½R973 þ R895 − ðk973 þ k895Þ × R943�

k895 ¼ 0.145

NARWI-3Hyperion
½R973 − R883 − ðk973 − k883Þ × R943�
½R973 þ R883 − ðk973 þ k883Þ × R943�

k883 ¼ 0.000

Gf5
ARWIGF5

ðR899 − k899 × R942Þ
ðR972 − k972 × R942Þ

k972 ¼ 0.208 942 nm
for Gf5

NARWI-1GF5
½R972 − R899 − ðk972 − k899Þ × R942�
½R972 þ R899 − ðk972 þ k899Þ × R942�

k899 ¼ 0.313

NARWI-3GF5
½R972 − R886 − ðk972 − k886Þ × R942�
½R972 þ R886 − ðk972 þ k886Þ × R942�

k886 ¼ 0.000

Fig. 13 Calculation result of 970-nm based water indices (a) WI, (b) ARWI, (c) NWI-1, (d) NARWI-1,
(e) NWI-3, and (f) NARWI-3 from Hyperion and GF5 retrieved reflectance data against the inaccu-
rate atmospheric water vapor content (WV) inputs in FLAASH module.
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respective improved indices (ARWI, NARWI-1, and NARWI-3), as indicated by the much
smaller SD of the improved indices derived for both Hyperion and GF5 satellite data.

Using the developed CWC estimation equations built from error-free simulated data pre-
sented in Fig. 9, the SD of CWC derived using different indices from the two Hyperion images
and the two GF5 images are calculated (Fig. 14). The results showed that different water indices
have different CWC SD. For Hyperion data, most of CWC SD values range between 30 and
50 mg∕cm2 for WI and NWI-1 and are more than 60 mg∕cm2 using NWI-3. When using ARWI,
NARWI-1, and NARWI-3, most of CWC SD values are between 0 and 20 mg∕cm2. Similar
results can be observed for GF5 (Fig. 14).

The results of both Hyperion and GF5 showed that our three improved 970-nm-based water
indices could bring lower uncertainty in CWC estimation against WV effect in atmospheric
correction.

4 Discussion

4.1 Building Robust Vegetation Water Indices Resistant to Atmospheric
Effect Using 970-nm Water Absorption Feature

The focus of this study is on reducing the atmospheric effect on calculation of 970-nm-based
water indices. The 940-nm WV absorption feature and the 970-nm vegetation water absorption

Fig. 14 The SD of CWC derived using 970-nm-based water indices from Hyperion and GF5 data
with inaccurate atmospheric WV correction. The green, blue, and yellow circles in the four satellite
images on the left represent crop, grass, and sparse forest areas, respectively.
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feature overlap spectrally.39,48,49 By exploiting the differences in these absorption peaks, this
study provided an effective approach of compensating atmospheric WV effect on 970-nm-
based vegetation water indices. The approach leads to the development of a few indices that
can provide robust estimation of vegetation CWC from satellite hyperspectral remote sensing
data. This is important, since great uncertainty in surface reflectance retrievals can be induced
through atmospheric correction due to inaccurate knowledge of atmospheric WV.32 New 970-
nm-based atmospherically resistant water indices are applied to Hyperion and GF5 hyperspec-
tral images, and the results in Figs. 13 and 14 demonstrate the effectiveness of our approach in
minimizing the uncertainties. This approach could also be applied to narrow-band multispec-
tral cameras with suitable spectral configuration around the 970-nm water absorption feature.
Future study will test the applicability of the developed water indices for FMC or EWT
estimation.

4.2 Uncertainty in Parameterization of the New Water Indices

Stability of the correction coefficients in Eqs. (8)–(10) is very important for the application of the
three new water indices in Eqs. (11)–(13). It may be affected by several factors including canopy
reflectance, atmospheric correction, and sensor spectral configuration.

Both canopy and leaf parameters determine canopy reflectance.50,51 Therefore, the PROSAIL
coupled leaf-canopy reflectance model was used to assess the water indices with a range of
canopy conditions described in Table 1. Our results show that variations of canopy and leaf
parameters in Table 1 produced the parameterization result of the proposed 970-nm-based water
indices with high R2 (see Fig. 4). We did not consider the cases where target pixel is mixed with
apparent water.

Impacts of atmospheric conditions, characterized by WV, AOT, aerosol type, imaging sun-
canopy-sensor geometry, have also been considered using the 6S model simulations. Our results
in Sec. 3.2 show that the error differences in WVused for atmospheric correction does not bring
apparent variation in the correction coefficients in the proposed new water indices, whereas
larger errors in AOT do. At AOTof 0.2, the normal error level of MODIS aerosol products (refer
to Refs. 30 and 31) is �ð0.05þ 0.15 � AOTÞ and will only have very little effect on the param-
eterization results (see Fig. 7). Retrieval of aerosol from hyperspectral data such as Hyperion will
be more accuracte than that from multispectral sensor such as MODIS.52 Thus, incoporating
AOT retrievals from hyperspectral data helps to ensure a more stable parameterization of the
new water indices.

Parameterization of the proposed water indices is sensor-specific, dependent on spectral
configurations, such as band position and spectral response function, thus, the specific
kλ values should be adapted from Fig. 4 for specific sensors, such as the Hyperion and the
GF5 AHSI.

4.3 Limitations of New Atmospherically Resistant Water Indices in
Improving Estimation of Vegetation Water Content

The ability for monitoring vegetation water status varies with different vegetation water indices.
WI and NWIs are found to provide estimation of CWC with a higher accuracy than FMC and
EWT.2,13,14 NDWI is found to be inferior for CWC estimation than the 970-nm-based water
indices,13,53 which is consistent with our studies (see Fig. 12). The sensitivity of vegetation water
indices to variations in vegetation water status is influenced by other canopy factors such as LAI,
leaf angle distribution function, and mixed pixels.41,50,51

As shown in Fig. 15, the proposed water indices in this study are strongly correlated with
their original water indices calculated using error-free reflectance data. Therefore, the new
atmospherically resistant water indices would provide similar performance compared to their
original 970-nm-based water indices calculated from error-free reflectance data in monitoring
vegetation water status. Our results have showed that ARWI, NARWI-1, and NARWI-3 provide
CWC estimation with an accuracy comparable with that provided by WI, NWI-1, and NWI-3
using field reflectance dataset (see Table 5 and Fig. 12).
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5 Conclusion

This study presented a simple method for reducing the impact of atmospheric correction errors
on 970-nm-based vegetation water indices, e.g., WI, NWI-1, and NWI-3, by exploiting the
differences in WVand liquid water absorption in this spectral region. We proposed atmospheri-
cally resistant version of the water indices, ARWI, NARWI-1, and NARWI-3. The proposed
indices have been tested using simulated experimental data, winter wheat field data, as well
as Hyperion and GF5 satellite hyperspectral data. The proposed indices are proven to be more
resistant to atmospheric WVeffect and can provide more accurate estimation of CWC than WI,
NWI-1, and NWI-3, respectively. NWI-3 was the most affected by WV effect, and NARWI-3
provided the largest improvement in estimating CWC. Through adaptation, the proposed
approach to developing the new 970-nm-based water indices could be applied in multispectral
data with NIR water absorption peak. Further experiments are needed to assess the new indices
using more satellite hyperspectral or narrow-band multispectral data covering different vegeta-
tion types.
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