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Abstract. Low elevation angles (between −3 deg and 3 deg) under bright temperatures
(LEATBs) have not been efficiently employed in microwave remote sensing. LEATB data with
horizontal polarization in the X-band and sea surface wind speed (SSWS) data, measured during
an experiment in 2019, showed that when the SSWS is ≤4.9 m∕s, the relationship between the
brightness temperature ratio and SSWS is the opposite of that when the SSWS is over 4.9 m∕s.
Investigating the causes of this event, a LEATB-based simplified SSWS remote sensing method
was developed. The results demonstrated that when the SSWS is below 4.9 m∕s, the root mean
squared error (RMSE) of the SSWS sensing is as low as 0.9544 m∕s. However, when the SSWS
exceeds 4.9 m∕s, the corresponding RMSE is bound to 1.1349 m∕s. © The Authors. Published by
SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JRS.16.024508]
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1 Introduction

Microwave radiometers are frequently employed for passive remote sensing of the sea surface
and atmospheric parameters. Measuring the brightness temperature (TB) of microwave radiation
emitted by the sea surface or atmosphere and extracting standard oceanographic and meteoro-
logical parameters are the primary functions of microwave radiometers.1,2 Numerous advance-
ments have been made in the development of space-based microwave radiometers with varying
frequencies and polarizations for monitoring sea surface and atmospheric profiles. The first-
generation wind vector retrieval technique for the WindSat polarimetric radiometer was devel-
oped in 2006.3 In the same year, marine surface winds observed with the Advanced Microwave
Scanning Radiometer (AMSR) were compared to those measured by the off-shore moored
buoy.4 Wind speeds observed by AMSR were consistent with buoy observations, with a root
mean squared error (RMSE) of 1.27 m∕s for wind speeds beyond 5 m∕s.

The satellite microwave radiometer, AMSR2, has been proposed to improve the spatial res-
olution of sea surface temperature (SST) reconstructions.5 Numerous earlier studies have con-
centrated mainly on the sea surface at extreme wind speeds. Fore et al.6 evaluated the sensitivity
of the Soil Moisture Active Passive radiometer to ocean surface winds of up to 70 m∕s. Along
with high frequency (HF) and X-band radars,7–9 sea surface parameters can also be measured
using ground-based microwave radiometers. Zhang et al.10 developed a ground-based micro-
wave radiometer for monitoring sea surface wind speed (SSWS).

Continuous measurements of lower atmospheric temperatures and humidity are attainable
using a ground-based microwave radiometer.11,12 With the progress of tomography technologies,
scanning microwave radiometers allowed for an increase in the spatial resolution of the inverse
water vapor profile.13–15 Tropospheric refraction and tropospheric duct can also be monitored
using ground-based microwave scanning radiometers.16,17 Compared to TBs applications with a
wide elevation angle (>10 deg), low elevation angle brightness temperatures (LEATBs) have
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been underutilized due to their complex generation mechanism and a dearth of data. Following
the SSWS sensing basic theory introduced by Wentz,18 the authors previously published some
preliminary results of the effect of SSWS on LEATBs.19 Nevertheless, no extensive analysis of
the LEATBs from a radiometric perspective has been carried out. Due to the scarcity of mea-
surements on the high seas, only a limited amount of information was released on LEATB about
the state of the high seas (SSWS above 5 m∕s).

This study makes use of LEATB data with horizontal polarization in the X-band, collected
during September and October 2019 at the Bohe Marine Meteorological Science Experimental
Base, Guangdong Province, China, under SSWS ranging from 0 to 10 m∕s. It was found that
when the SSWS falls below 4.9 m∕s, the relationship between TB ratio and SSWS is opposite to
that when the SSWS is above 4.9 m∕s. This phenomenon was analyzed, and the feasibility of
using LEATB in SSWS remote sensing was assessed according to the measured data.

The remainder of this study is organized as follows. The methodology is described in Sec. 2.
The data and measurement details are presented in Sec. 3, and the results are reported in Sec. 4.
The paper is then concluded in Sec. 5.

2 Methodology

For a shore-based scanning microwave radiometer, the primary TB component is the atmos-
pheric downdraft TB when facing the sky. However, the main TB component is the sea surface
upstream TB (SSUTB) when facing the sea surface. Wentz18 derived SSUTB with polarization ε,

Tbupwellingð ~ki; εÞj0, as
EQ-TARGET;temp:intralink-;e001;116;461

Tbupwellingð ~ki; εÞj0 ¼ Eð ~ki; εÞTs þ ½1 − Eð ~ki; εÞ�Tbdownwellingð~krÞj0
þ ð4π cos θiÞ−1

Z
2π
d~ks · Ωð~kr; ~ksÞ½σ0ð~ks; ε; ~ki; εÞ þ σ0ð~ks; ε�; ~ki; εÞ�; (1)

where the first term on the right-hand side of the equation represents TB emission from the sea
surface; the second term indicates the reflected atmospheric TB; and the integral IΩ denotes the

diffuse scattering component TB of atmospheric radiation. Furthermore, Eð ~ki; εÞ is the emissiv-

ity of the sea surface in the direction ~ki, Ts is the SST in Kelvin, Tbdownwellingð~krÞj0 is the down-
drafting TB at the sea surface (DTBSS) in the direction of ~kr that is reflected off the sea surface,

and Ωð~kr;~ksÞ is the fluctuation of the downdrafting TB relative to Tbdownwellingð~krÞj0. The term
σ0ð~ks; ε; ~ki; εÞ refers to the bistatic normalized radar cross-section (NRCS) for ε polarized radi-

ation incident along ~ks and ε polarized radiation scattered along ~ki. Another NRCS in Eq. (1)
depends on scattered ε� polarized radiation, where ε� is the polarization state orthogonal to ε.

Wentz approximated the diffuse scattering integral, IΩ, as given by18

EQ-TARGET;temp:intralink-;e002;116;259IΩ ¼ ω1U� · Tbdownwellingð~krÞj0½1 − Eð ~ki; εÞ�; (2)

where U� is the friction velocity, and ω1 denotes its coefficient. The friction velocity can be
estimated using the SSWS average at a height of 6 m (U) above the sea surface (ASS)20

EQ-TARGET;temp:intralink-;e003;116;200U� ¼ 0.033U: (3)

A horizontally polarized SSUTB is deduced from Eqs. (1)–(3) as
EQ-TARGET;temp:intralink-;e004;116;156

Tbupwellingðθ0;φ0; εkÞj0 ¼ Eðθ0;φ0; εkÞTs þ ½1 − Eðθ0;φ0; εkÞ�Tbdownwellingð~krÞj0
þ ωU · Tbdownwellingð~krÞj0½1 − Eðθ0;φ0; εkÞ�; (4)

where θ0, φ0, and εk are elevation angle, azimuth angle, and horizontal polarization, respectively,
and ω ¼ 0.033 · ω1. Equation (4) is applicable under conditions when the SSWS ranges from
6 to 21 m∕s.18
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The emissivity of the sea surface, Eðθ0;φ0; εkÞ is given as

EQ-TARGET;temp:intralink-;e005;116;722E ¼ Es þ ΔE: (5)

The emissivity of a specular water surface at low elevation angles, Es, is specified to be equal
to or less than unity. The total variations in emissivity, ΔE, caused by roughness, wind direction,
and foam, can be represented as18

EQ-TARGET;temp:intralink-;e006;116;654ΔE ¼ m1U� ¼ mU; (6)

where m and m1 are two coefficients, with m being correlated with m1 as m ¼ 0.033 · m1.

The TB ratio, Tbupwellingð−θ0;φ0; εkÞj0∕Tbdownwellingð~krÞj0, is obtained from Eqs. (4)–and (6)
and is given by

EQ-TARGET;temp:intralink-;e007;116;583

Tbupwellingð−θ0;φ0; εkÞj0
Tbdownwellingð~krÞj0

¼ mU · Ts

Tbdownwellingð~krÞj0
þ 1 −mU þ ωU − ωmU2: (7)

Excluding small quantities of higher order, i.e., −ωmU2, from Eq. (7) yields

EQ-TARGET;temp:intralink-;e008;116;521

Tbupwellingð−θ0;φ0; εkÞj0
Tbdownwellingð~krÞj0

¼
�

Ts

Tbdownwellingð~krÞj0
− 1

�
· mU þ 1þ ωU: (8)

3 Data

3.1 2019 LEATB Measurement Campaign

The China Research Institute of Radiowave Propagation (CRIRP) conducted a LEATB meas-
urement experiment at the Bohe Marine Meteorological Science Experimental Base in
Guangdong, China, from September to October 2019, to evaluate the potential application of
LEATB in the range of−3 deg to 3 deg in remote sensing of wind speed over the sea. An X-band
ground-based microwave radiometer and a marine meteorological observation platform were
respectively deployed for measurements at sites A and B in Fig. 1. An X-band ground-based
microwave radiometer was pointed towards the southwest open sea to gather TB scan angle data.
The marine meteorological observation platform was an integrated observation platform.
Throughout the experiment, meteorological data such as temperature, humidity, pressure, wind
speed, and wind direction, were collected every ten seconds at various altitudes above the sea
surface. In this study, the SSWS data were measured at 6 m ASS to develop a remote sensing
model of the SSWS.

3.2 Ground-Based Microwave Radiometer

A dual-polarized, full-power, vertical and horizontal X-/Ku-band was utilized for the LEATB
sensing. The microwave radiometer system was equipped with a ground-based microwave radi-
ometer with a 1.8 m elliptic paraboloid antenna and an offset fed. Both the antenna feed and
the receiver were installed in a thermostatic box to ensure thermal stability during operation.
Awave-transparent mask made of polytetrafluoroethylene was installed between the feeder and
the antenna surface. Table 1 lists the basic radiometer parameters. As indicated in Table 1, the
microwave radiometer utilized in this study comprises various calibration loads to determine
TBs based on the output voltage of the microwave radiometer receiver.19

The microwave radiometer was mounted on the ground at an elevation of 8 m above sea level
during the experiment, as illustrated in the bottom-left of Fig. 1. The radiometer was pointed
toward the open sea, and there were no islands within 300 km in the direction of observation
(azimuth 135 deg).

Cao and Guo: Remote sensing of sea surface wind speed under non-rainy conditions using X-band ground. . .

Journal of Applied Remote Sensing 024508-3 Apr–Jun 2022 • Vol. 16(2)



Table 1 Basic parameters of the measuring radiometer.

Parameter Value

Center frequency 11 GHz

Bandwidth 300 MHz

Radiometer sensitivity 0.15 K (1 s integral time)

Preset elevation sequences (deg) −4.5, −3.5, −2.7, −2.2, −1.9, −1.6, −1.3, −1.1, −0.9,
−0.5, 0.1, 0.5, 0.7, 0.9, 1.2, 1.5, 1.8, 2.3, 3.1, 4.1

Sidelobe suppression >40 dB

Elevation guidance resolution 0.01 deg

Feed box temperature stability <0.05 K

Calibration techniques Liquid nitrogen

Noise diode

Built-in ambient temperature black body

Fig. 1 Experimental sites and equipment. (a) A map of the experimental sites. (b) A magnified
replica of the one to (a). (c) An X-band ground-based microwave radiometer located at point A.
(d) The marine meteorological observation platform located at point B (∼6 km offshore). Figures
(a) and (b) were taken from Google Earth.
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The radiometer measured the scanning elevation angle between −5 deg and 5 deg in accor-
dance with a predetermined elevation sequence. Through the measurement, the antenna came to
a halt at each elevation in the TB measurements sequence and then relocated to the next elevation
until the completion of the entire sequence.

3.3 Data Processing Method

In the course of the experiment, sweep elevation angle was measured typically once per hour on
days without rain, from 8:00 am to 6:00 pm, yielding a total of 65 scan angles. However, to
exclude the influence of dense fog and thick clouds, DTBSS values over 140 K were eliminated
at an elevation of 0.9 deg. Thus, a total of 53 full sweep angle measurements were taken on both
sunny and cloudy days to develop the SSWS remote sensing model.

The microwave radiometer antenna utilized in this study has a 3 dB beamwidth of ∼1.1 deg.
When the radiometer is monitored at a very low elevation angle between −0.6 deg and 0.6 deg,
within the antenna’s beamwidth of 3 dB, both atmospheric DTBSSs at positive elevation angles
and SSUTBs at negative elevation angles are present. To avoid remote sensing accuracy deg-
radation due to TB mixed radiation, TB data measured at extremely low elevation angles, i.e.,
−0.5 deg, 0.1 deg, and 0.5 deg, are eliminated during data pre-processing. To specify the SSWS
coefficients of remote sensing in Eq. (8), TB data with an elevation angle of < −0.6 deg and

>0.6 deg are substituted for Tbupwellingðθ0;φ0; εkÞj0 and Tbdownwellingð~krÞj0, respectively. The
elevation angle of the direction vector ~kr is set at −θ0. After sampling the SSWS data at a height
of 6 m above the sea surface, a 5-min average wind speed, U, is derived. Afterward, the 5-min
average SSWS data corresponding to the scanned TBs is extracted and stored as a separate
vector. Finally, the least-squares method is used to calibrate the coefficients in Eq. (8).

4 Results

4.1 Critical SSWS

Figure 2 depicts the fitted diagram to the measured TB ratio versus the SSWS ratio data,
with solid curves representing different elevation angles. The corresponding elevation angles

of (Tbupwellingðθ0;φ0; εkÞj0, Tbdownwellingð~krÞj0) in Figs. 2(a)–2(d) are (−0.9 deg, 0.9 deg),
(−1.1 deg, 1.2 deg), (−3.5 deg, 3.1 deg), and (−4.5 deg, 4.1 deg), respectively. Due to the
absence of the DTBSS at 1.1 deg, 3.5 deg, and 4.5 deg elevations in Figs. 2(b)–2(d),
DTBSS at 1.2 deg, 3.1 deg, and 4.1 deg elevations were employed instead, respectively, which
introduces a margin of error. The dashed horizontal lines in Figs. 2(a) and 2(b) represent the
critical SSWS, Uc, which lies between low and high SSWS, with a velocity of ∼4.9 m∕s.
No value is reported for Uc in Figs. 2(c) and 2(d). At low wind speeds, i.e., U < Uc, the
TB ratio increases with increasing SSWS, as illustrated in all Figs. 2(a)–2(d). However, at high
wind speeds, i.e., U > Uc, distinct trends are found for different elevation angles of the DTBSS.
In Figs. 2(a) and 2(b), the TB ratio decreases with increasing SSWS, but it remains stable in
Fig. 2(c) and slightly increases in Fig. 2(d), as SSWS increases.

The phenomenon depicted in Fig. 2 can be explained in terms of the physical mechanism
through which it was formed. As shown in Eq. (8), the TB ratio, Tbupwellingð−θ0;φ0; εkÞj0∕
Tbdownwellingð~krÞj0, is a function of the emissivity of the sea surface, E, (which is a function
of SSWS and has a coefficient of m) and the sea surface scattering (which is a function of
SSWS and has a coefficient of ω). Increases in SSWS18 result in an increase in horizontally
polarized sea surface emission, i.e., m > 0. As demonstrated in Eq. (4), the integral of the sea
surface diffuse scattering, IΩ, carries the influence of the wind speed-induced broadening of
the scattering cone.19 As illustrated in Fig. 3(a), the scattering direction of atmospheric radiation,
~ki, is solely defined by the direction of the atmospheric downwelling TB vector, ~kr, for the
smooth sea surface and given by

EQ-TARGET;temp:intralink-;e009;116;84

~kr ¼ ~ki − 2ð~ki · ~rÞ~r; (9)
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where ~r is the earth radius vector normalized to unit length. At low wind speeds and rough sea
surfaces, atmospheric downwelling radiation scatters in various directions. Additionally, as

demonstrated in Fig. 3(b), the scattering power in the direction ~ki is mainly determined by the

incident power in the conical region with the central axis, ~kr. At high wind speeds and rough sea
surfaces, however, the scattering cone widens, as illustrated in Fig. 3(c).

As illustrated in Fig. 4, when the elevation angle is 0.9 deg, the TB is about 75 K. At this
point, given the sharp reduction in DTBSS with an increase in elevation angle, the beam broad-
ening results in a considerable decrease in the weighted downwelling TB [weighted by the
bistatic NRCS in the scattering cone, as shown in Figs. 3(b) and 3(c)]. DTBSS is around 30 K
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at low wind speed
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Fig. 3 The effect of wind speed on the broadening of the scattering cone. (a) Specular reflection.
(b) Sea surface scattering at low wind speed. (c) Sea surface scattering at high wind speed.

0 2 4 6 8
0.5

1

1.5

2

2.5

T
B

 r
at

io

0.9 deg and –0.9 deg

0 2 4 6 8
0.5

1

1.5

2

2.5
1.2 deg and –1.1 deg

0 2 4 6 8
0.5

1

1.5

2

T
B

 r
at

io

SSWS (m/s)

3.1 deg and –3.5 deg

0 2 4 6 8
0

1

2

3

4

SSWS (m/s)

4.1 deg and –4.5 deg

(a) (b)

(c) (d)

Fig. 2 The relationship between the TB ratio and the SSWSat various elevation angles. (a) 0.9 deg
and -0.9 deg. (b) 1.2 deg and -1.1 deg. (c) 3.1 deg and -3.5 deg. (d) 4.1 deg and -4.5 deg. The
circles in the figure represent the experimental data, whereas the solid lines represent the least
squares fit results. The resulting regression formula reads as: y ¼ ax2 þ bx þ c, where y indi-
cates the TB ratio and x denotes the SSWS. The dashed lines in Figs. 2(a) and 2(b) represent
SSWS at the maximum TB ratio of the fitting curve, namely the critical SSWS, Uc.
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when the elevation angle is 3.1 deg. Additionally, the rate at which DTBSS decreases slows as
the elevation angle increases. As a result, the effect of the weighted downwelling TB reduction
caused by beam broadening grows slower. When the elevation angle is 4 deg, the TB is about
23 K, and the decreasing rate of DTBSS diminishes with the increase of elevation angle, as
shown in Fig. 4. At this moment, the reduction effect of the weighted downwelling TB caused
by scattering beam broadening is not readily apparent.

As seen in Figs. 2(a)–2(d), when U < Uc, the TB ratio increases with SSWS. This is due to
the fact that at low wind speeds, the scattering of the sea surface varies slightly with the wind
speed. Sea surface-emission varies significantly with wind speed and plays a dominant role in the
relationship between TB ratio and SSWS, resulting in a rise in the TB ratio as SSWS increases.
Ignoring the scattering integral in Eq. (8) results in

EQ-TARGET;temp:intralink-;e010;116;348

Tbupwellingðθ0;φ0; εkÞj0
Tbdownwellingð~krÞj0

¼
�

Ts

Tbdownwellingð~krÞj0
− 1

�
mU þ 1: (10)

Ignoring the change in the sea surface temperature, Ts, and DTBSS, Tbdownwellingð~krÞj0,
Eq. (10) is used to develop an expression of U for a low SSWS, which is given by

EQ-TARGET;temp:intralink-;e011;116;270U ¼ A

�
Tbupwellingðθ0;φ0; εkÞj0
Tbdownwellingð~krÞj0

− 1

�
; (11)

where A ¼ 1∕f½Ts∕Tbdownwellingð~krÞj0 − 1� · mg.
When U > Uc, the TB ratios of various elevation angles exhibit distinct variation trends with

increasing SSWS, as illustrated in Figs. 2(a)–2(d). As the SSWS increases, the scattering cone

expands, resulting in a drop in the DTBSS weight in the specular direction, ~kr, and an increase in
the DTBSS weight at high elevation angles (>5 deg) in the diffuse scattering integral, IΩ. In the
low elevation range between 0 deg and 3 deg, the X-band DTBSS is significantly higher than that
at high elevation angles. Furthermore, as seen in Fig. 4, it drops rapidly as the elevation angle
increases.19 Therefore, as illustrated in Figs. 2(a) and 2(b) for low elevation angles between
0.9 deg and 1.1 deg, considering an increase in SSWS, the effect of broadening the scattering
cone leads to a faster drop in the diffuse scattering integral, IΩ. It plays an important role in the
relationship between the TB ratio and SSWS, leading to a decrease in the TB ratio at high
wind speeds. As indicated in Figs. 2(c) and 4, when the elevation angle exceeds 3 deg, for
example, 3.5 deg, the DTBSS declining trend with elevation angle gradually slows down.19 The
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Fig. 4 X-band DTBSS versus elevation angle. The four curves in the figure were measured on
October 23, 2018 at 8:50, 10:25, 13:55, and 17:30 local time, respectively (adopted from Ref. 19).
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broadening of the scattering cone results in a more gradual decrease in the scattering integral, IΩ,
as SSWS increases. With increased SWSS, the rise in TB ratio is roughly encountered by the
increase in sea surface radiation, leaving the TB ratio remains almost unchanged. Furthermore, at
a higher elevation angle, such as 4.5 deg in Fig. 2(d), the DTBSS itself is relatively small, and the
downward trend with increasing elevation angle is less noticeable, as illustrated in Fig. 4. The
declining trend in the scattering integral, induced by the broadening of the scattering cone,
becomes less apparent as SSWS increases. Additionally, the radiative effect of the sea surface
contributes significantly to the interaction between TB and SSWS.19 Since the sea surface radi-
ation increases with rising SSWS,18 the TB ratio increases as well, as indicated in Fig. 2(d).

Due to the existence of critical SSWS, Uc, a TB ratio corresponding to two SSWS, one
within the interval U < Uc and another within the interval U > Uc, cannot determine whether
the SSWS is within the interval U < Uc or U > Uc only using TB ratios of elevation angle
combinations in Figs. 2(a) and 2(b). It can be seen from Fig. 2(d) that the TB ratio of the eleva-
tion angle combination of 4.1 deg and −4.5 deg rises as the wind speed increases. Since each TB
ratio corresponds to a unique SSWS, the wind speed interval in which the SSWS is located may
be predicted using this elevation angle combination.

At low elevation angles, when U > Uc, disregarding the change in sea surface emission, E,
in Eq. (4) and setting E to a constant value of E0, yields

EQ-TARGET;temp:intralink-;e012;116;520

Tbupwellingðθ0;φ0; εkÞj0
Tbdownwellingð~krÞj0

¼ E0Ts

Tbdownwellingð~krÞj0
þ ð1 − E0Þ þ ð1 − E0ÞωU: (12)

Ignoring variations in sea surface temperature, Ts, and DTBSS, Tbdownwellingð~krÞj0, the
expression of U for a high SSWS can be obtained as

EQ-TARGET;temp:intralink-;e013;116;442U ¼ B
Tbupwellingðθ0;φ0; εkÞj0
Tbdownwellingð~krÞj0

þ C; (13)

where B ¼ 1∕½ωð1 − E0Þ�, C ¼ −E0Ts∕½ωð1 − E0ÞTbdownwellingð~krÞj0� − 1∕ω.

4.2 Analysis

In Figs. 5(a)–5(i), Tbupwellingðθ0;φ0; εkÞj0 and Tbdownwellingð~krÞj0 are determined to be (0.7 deg,
−0.9 deg), (0.7 deg, −1.1 deg), (0.7 deg, −1.3 deg), (0.9 deg, −0.9 deg), (0.9 deg, −1.1 deg),
(0.9 deg, −1.3 deg), (1.2 deg, −1.1 deg), (1.2 deg, −1.3 deg), and (1.2 deg, −1.6 deg), respec-
tively. Table 2 reports the corresponding coefficients A–C in Eqs. (11) and (13) as well as their
respective RMSEs (RMSE1 corresponds to Eq. (11), and RMSE2 corresponds to Eq. (13)). For
example, the second row of Table 2 contains the coefficients of the SSWS remote sensing model
based on the elevation angle combination of 0.7 deg and −0.9° deg and the corresponding
RMSEs. The first column reports the elevation combination, and the second column reports the
fitting value of A in Eq. (11) using this elevation combination, where Eq. (11) is the remote
sensing model in the SSWS interval U < Uc. The third column represents the RMSE of the
model defined in Eq. (11). The fourth and fifth columns provide the fitting values of B and
C in Eq. (13), respectively, where Eq. (13) is the remote sensing model in the SSWS interval
U > Uc. The sixth column reports the RMSE of the model defined in Eq. (13). As shown in
Fig. 5, it can be found in combinations of angles of (0.7 deg, −0.9 deg), (0.9 deg, −0.9 deg),
and (1.2 deg, −1.1 deg) that the TB ratio increases with increasing SSWS at low wind speed
(U < Uc), while it decreases with increasing SSWS at high wind speed (U > Uc). This finding
indicates that these angle combinations satisfy the relationships between the low-elevation angle
(−3 deg, 3 deg) TB ratio and SSWS described in Sec. 4.1. Furthermore, the relationship
between SSWS and TB ratio is shown to vary with elevation angle. The explanation for this
could be that sea surface factors such as waves, foam, and wave shielding effects all have a
significant effect on electromagnetic waves at various elevation angles.18 This results in distinct
patterns of variations in the reflectivity of the sea surface and scattering from SSWS at different
elevation angles. Moreover, the DTBSSs differ depending on the elevation angles at which they
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are measured. As indicated in Table 2, the maximummodeling accuracies in terms of RMSEs are
obtained when the upward and downward elevations of TBs are 0.9 deg and −0.9 deg, respec-
tively. Comparing Figs. 5(d)–5(f) reveal that RMSE1 and RMSE2 are 0.9544 and 1.1349 m∕s,
respectively, when the combination of elevation angles is 0.9 deg and −0.9 deg. Additionally,
when the combination is 0.9 deg and −1.1 deg, the RMSE1 and RMSE2 are calculated as
1.0704 and 1.1901 m∕s, respectively. For the combination of 0.9 deg and −1.3 deg, RMSE1
and RMSE2 are determined as 1.2639 and 1.2477 m∕s, respectively. It can be seen that the
RMSE of the fitting is at its minimum when the elevation angle of Tbupwellingðθ0;φ0; εkÞj0 is

mirrored by the elevation of Tbdownwellingð~krÞj0. Additionally, the RMSE increases as the
DTBSS and SSUTB elevation angles deviate from the mirror image. Upon further comparison
of Figs. 5(a)–5(c), or Figs. 5(g)–5(i), it can be found that this rule still holds. This indicates that
in a real remote sensing measurement if the elevation measurements taken by the radiometer
are not accurate enough, the remote sensing error will increase.
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Fig. 5 The relationship between SSWS and TB ratio. (a) 0.7 deg and -0.9 deg, (b) 0.7 deg and -
1.1 deg, (c) 0.7 deg and -1.3 deg, (d) 0.9 deg and -0.9 deg, (e) 0.9 deg and -1.1 deg, (f) 0.9 deg and
-1.3 deg, (g) 1.2 deg and -1.1 deg, (h) 1.2 deg and -1.3 deg, and (i) 1.2 deg and -1.6 deg. The
circles represent data measured from September through October, 2019. The dashed vertical line
represents SSWS ¼ Uc. The dashed line in the figure represents a least squares fit to Eq. (11)
based on the measurement data at U < Uc. The solid oblique line in the figure is fitted using the
least square method in accordance with Eq. (13) based on the measurement data when U > Uc.
The slope of the dashed line TB ratio at SSWS ¼ Uc is adjusted to be the same as the slope of the
solid line when SSWS ¼ Uc.
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Due to the lack of synchronous radar-measured wind field data during the 2019 LEATB
measurement campaign, this research compares the accuracy of SSWS remote sensing to the
accuracy of radar-measured wind fields in previous literature. In this context, Xie et al.8 com-
pared the wind field data measured by shipborne high-frequency surface wave radar to buoys
data and found that the RMSE of radar measurements of wind speed was limited to 1.43 m∕s.
Huang et al.9 evaluated the data of sea surface wind speed obtained from X-band nautical radar
images using anemometer measurements as a reference and concluded that the RMSE of the
measured wind speed value was 1.31 m∕s. It can be seen from Table 2 that the accuracy of
SSWS obtained using the remote sensing method presented in this study is slightly higher than
that achieved by HF and X-band radar.

Because the radiometer is a passive microwave radiation receiver, it benefits from low power
consumption. But, the radiometer’s remote sensing result of SSWS is the average SSWS at its
observation direction. By adjusting the azimuth angle of the radiometer, the microwave radiom-
eter can monitor the SSWS at various azimuth angles. However, microwave radiometers, unlike
radars, cannot monitor the two-dimensional wind field with varying ranges and azimuth angles.

In this section, the TB ratios of the low elevation angle combinations are solely employed to
establish remote sensing models in two SSWS intervals, i.e., U < Uc and U > Uc, respectively.
In this paradigm, one TB ratio corresponds to two SSWS values. In practical remote sensing
applications, the TB ratio of the elevation angle combination of 4.1 deg and −4.5 deg can be
used to determine the interval of SSWS, i.e., U < Uc or U > Uc. Then, the TB ratio of the low
elevation angle combinations, e.g., (0.7 deg, −0.7 deg), (0.9, −0.9 deg), (1.1 deg, −1.1 deg),
and (1.5 deg, −1.5 deg), can be used to reverse more precise SSWS values within this interval.
The SSWS interval can be determined with greater precision by considering additional poten-
tially suitable combinations of higher elevations. For instance, it should be determined whether
the relationship between the TB ratio of elevation angle combinations, such as (6 deg, −6 deg)
and (7 deg, −7 deg), and wind speed is monotonous. Due to the scarcity of TB ratio data for the
high-elevation angle combination (elevation of downwelling TB should be >3 deg and eleva-
tion of upwelling TB should be < − 3 deg) obtained during the 2019 LEATB measurement
campaign, this paper proposes only a method to determine the interval of SSWS in practice.

5 Conclusion

Due to the complicated mechanism by which LEATBs are formed and their intrinsic scarcity,
they have been exploited inefficiently. In this study, SSWS sensing has been investigated from
a microwave perspective. To this end, numerous selected samples of horizontally polarized
X-band LEATBs were employed at various elevation angles. Furthermore, a remote sensing
formulation was developed between SSWS and LEATBs at low and high wind speeds, and the

Table 2 Fitting coefficients for various combinations of elevations.

Elevation angle (deg) A RMSE1 (m/s) B C RMSE2 (m/s)

0.7 and 0.9 5.0522 1.0279 −2.3411 9.5117 1.1771

0.7 and −1.1 5.7668 1.2144 −2.1932 8.9568 1.2281

0.7 and −1.3 7.0013 1.5518 −2.0375 8.3635 1.2729

0.9 and −0.9 4.1663 0.9544 −2.136 9.5481 1.1349

0.9 and −1.1 4.7453 1.0704 −2.043 9.0526 1.1901

0.9 and −1.3 5.9655 1.2639 −2.013 8.5665 1.2477

1.2 and −1.1 3.5679 1.0142 −1.6937 8.9196 1.1631

1.2 and −1.3 4.4439 1.0914 −1.7118 8.4994 1.2516

1.2 and −1.6 6.109 1.9018 −1.6334 7.8435 1.2685
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coefficients were calibrated using the measured data. At low wind speeds, the RMSE of remote
sensing SSWS is found to be 0.9544 m∕s. In contrast, at higher wind speeds, the RMSE of
remote sensing SSWS is 1.1349 m∕s. Nonetheless, additional experiments will be required to
acquire a deeper understanding of the SSWS sensing mechanism and its nature. Additional data
on high seas and rainy days will be required in the future to investigate the determination of wind
speed under such conditions. Additionally, the influence of wind direction deserves further
investigation. In addition, when only low elevation, i.e., between −3 deg and 3 deg, TBs are
employed for SSWS remote sensing, one TB ratio may correspond to two SSWS values. By
adding combinations of elevations, e.g., −4.5 deg and 4.1 deg, a unique wind speed can be
obtained at the sea surface. The next step is to determine the unique SSWS by comparing the
TB ratios of multiple elevation angle combinations.

Due to the dual-polarization nature of the microwave radiometer employed in this paper,
wind direction remote sensing is accompanied by a fuzzy problem.21,22 In addition, the data
obtained to model wind direction was insufficient. Therefore, only SSWS was monitored
using X-band horizontal polarization TB in this paper. The next step is to monitor the wind
direction and speed of the sea surface simultaneously using the full polarization microwave
radiometer.
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