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Abstract. We present a fire alarm system based on image processing that
detects fire accidents in various environments. To reduce false alarms that
frequently appeared in earlier systems, we combined image features
including color, motion, and blinking information. We specifically define
the color conditions of fires in hue, saturation and value, and RGB
color space. Fire features are represented as intensity variation, color
mean and variance, motion, and image differences. Moreover, blinking
fire features are modeled by using crossing patches. We propose an algo-
rithm that classifies patches into fire or nonfire areas by using random for-
est supervised learning. We design an embedded surveillance device
made with acrylonitrile butadiene styrene housing for stable fire detection
in outdoor environments. The experimental results show that our algorithm
works robustly in complex environments and is able to detect fires in real
time. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the
original publication, including its DOI. [DOI: 10.1117/1.OE.52.6.067202]
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1 Introduction
Conventional fire detection systems were designed to detect
smoke, heat, and radiant energy from a fire using infrared,
optical, and ion sensors.1–3 However, these methods have
problems, namely, it is impossible to tell whether a fire is
occurring until smoke or flame spreads to the detection
range of sensors and detection takes a long time because
a fire alarm is only issued after the flame’s influence exceeds
a reference temperature or a set value. In addition, because
the detection range is restricted to the local position where
sensors are installed, the need for numerous distributed sen-
sors and installation increases the cost. On the other hand, a
fire detection system using image processing does not
require any additional costs, as it uses surveillance cameras
already installed in public places, roads, and tunnels. Thus,
fires can be quickly detected without having to wait until
flames spread to the sensors, and can be monitored over a
broader range.

Early fire detection algorithms used rule-based color
models.4–6 They classify the image pixels as fire or not fire
by using the RGB, hue, saturation and intensity, and YCbCr
color models. However, these methods have many false clas-
sifications. For example, red clothes, moving cars, and lights
will be recognized as fires because only color information
was used. Han7 used color and motion information to present
real-time fire detection. Töreyin et al.8 used temporal and
spatial wavelet analysis to separate the fire regions from
sequential images. Although they presented good experi-
mental results, this approach is impractical in various envi-
ronments due to many heuristic thresholds. Z. Teng9

modeled the sequentially changing image pixel values by a
hidden Markov model framework. Ko et al.10 applied a radial
basis function kernel to two-class support vector machines.
This research that uses machine learning algorithms could
have an over-fitting problem and are not suitable for various

environments. In most of the previous studies, it is necessary
to determine whether an individual pixel is a fire or nonfire
pixel. However, red objects that have a hue as fire are often
mistaken for fire when determining each image pixel. In
addition, moving lights, such as automobile headlamps, can
be mistaken for fires when using only motion information.

Therefore, we defined the color conditions of fire features
in both hue, saturation and value (HSV) and RGB color
space. The local features and motion information of fires
were expressed using the mean, variance, and image differ-
ence. Moreover, temporally blinking properties were mod-
eled by using crossing patches so that it was possible to
reduce the false detections described above. We defined
22 image features to classify patches into fire or nonfire
areas by using a random-forest-supervised learning algo-
rithm. The additive Markov chain was introduced to reduce
false alarms. Also, we designed an embedded surveillance
device made from acrylonitrile butadiene styrene (ABS)
for stable fire detection in outdoor environments.

All modules, including image features extraction and fire
classification, are realized to test fire images of different con-
ditions and verified to be robust in complex environments.

2 Embedded Camera System
In general, to protect people from fires, fire surveillance sys-
tems require supervisors in monitoring rooms to observe vid-
eos transferred from CCTVs. Building a surveillance system
requires considerable effort to install surveillance cameras,
as many repeaters and wiring inside facilities are needed
to transfer videos to monitoring rooms, causing increased
installation costs. In addition, all images are concentrated
on servers in monitoring rooms and so the structure of server
computers becomes complex. Therefore, we designed an
embedded system with a built-in pan-tilt-zoom (PTZ) camera
to observe fire areas more effectively. The proposed system,
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which has a built-in embedded processor inside the camera,
is capable of real-time image processing and consists of a
main camera that can monitor fires over a wide range and
a subcamera that can quickly zoom into fire areas when a
fire occurs.

The early-designed device fixed each module by install-
ing a fixed bracket inside a universal housing, as shown in
Fig. 1(a) and a subcamera below the housing. Due to heat
from the camera and embedded board, a prolonged operating
time rapidly raised the internal temperature of the housing. In
addition, the commercial housing suffered from the disad-
vantages of heavy weight and expensive cost. In the second
system design, the cooling performance was improved by
projecting the cooling section of the embedded board out-
side, as shown in Fig. 1(b). This system reduced weight
by using an ABS resin housing and a digital output main
camera. The ABS housing has the advantage of reducing
production costs because it can be produced in large quan-
tities by injection molding. Protection from dust and mois-
ture was accomplished by using a rubber seal and waterproof

connector, as various foreign bodies in the form of particu-
late could otherwise enter the system.

The whole operation of the fire detection system is
depicted in Fig. 2. The main camera is a fixed type and
acquires raw images to detect fire while monitoring the
wide surveillance area. In addition, the installed industrial
digital camera is able to remove the noise generated in
the process of converting images from analog to digital.
This can simplify the system and permit control directly
by the program. A PTZ camera with maximum 10-magnifi-
cation was selected for the subcamera so that it is possible to
immediately magnify and transmit images of the area where
a fire has occurred. The images acquired from the main cam-
era are processed in the built-in embedded board, and thus
fire areas are detected. When the fire areas are detected, mag-
nified images of fires are acquired from the subcamera. The
acquired images from the subcamera are converted into dig-
ital images by a frame grabber. Information, such as a gazing
direction and scale, is transmitted by RS-422 communication
to the main processor, for calculating PTZ motion data from

Fig. 1 Structure of fire detection system. (a) Fire detection system using commercial housing. (b) Customized system showing ABS resin housing
and cooling conductor.

Fig. 2 Operation process of the fire detection system.
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the fire area detection of the main camera. Finally, the system
transfers the fire location and magnified images of the fire
area to the monitoring room. Figure 3 is a graphical user
interface screenshot of the fire monitoring system and an
image that detects fires and magnifies the detected areas.

Figure 4 shows CPU temperature change in both the cus-
tomized and commercial housing during 24 h. The measure-
ments were conducted after a detection algorithm operated
for 1 h in each housing. It indicates that average improve-
ment of cooling performance is 22.017°C.

3 Fire Detection Algorithm
In previous studies,6–10 information from each pixel in the
image was used to determine whether fires exist in the
images. Alternatively, our paper proposes a method to model
the local characteristics of fire, represented in sequential
images based on patches of an input image, and to detect
a fire area by using a supervised learning algorithm. The ran-
dom forest showed a higher recognition rate than other
machine learning algorithms.11 It can process substitution

branching for lost data processing and handle both categori-
cal and numerical data. In addition, it makes it unnecessary
to normalize image features and easy to understand the
importance of variables.

First, in order to model the local features of fires, the input
image is divided into small r × c patches (P), as shown in
Fig. 5. We generate the color conditions, motion, and
blink information of fires as features in the patch.

3.1 Modeling Fire Features

In general, fires have specific colors in images. In this sec-
tion, fire features were analyzed in RGB and HSV color
space. For color features of fire in the RGB color space,
it was observed that the R (red) color is larger than the thresh-
old value RTh and the R color value is the largest in the RGB
channel. Moreover, in the HSV color space, it is shown that
the H (hue) value of fire is 0 to 70 or 290 to 360. For exam-
ple, the feature f3 means the saturation will decrease with the
increasing red component, and thus the expression indicates
that saturation will decrease downward to zero when the red
component increases toward the upmost value 255 (Refs. 12,
13). Therefore, the patch is likely to indicate a fire area when
there are many pixels satisfying these fire conditions.

Fig. 5 Image Patch by block division of image.

Fig. 6 Cross extractors.

Fig. 3 Magnified images by designating a fire detection area and
using a PTZ camera.

Fig. 4 CPU Temperature changes in customized and commercial
housing during 24 h.

Table 1 Pseudo-code for the feature calculation of f 1 ∼ f 4.

Initiailize f 1 ∼ f 4

For all pixels in a patch

ifðPðr ; cÞR > RThÞ; f 1 þþ;

ifðPðr ; cÞR > Pðr ; cÞG > Pðr ; cÞBÞ; f 2 þþ;

ifðPðr ; cÞS ≥ ð255 − Pðr ; cÞRÞ × STh∕RThÞ; f 3 þþ;

ifð290 ≤ Pðr ; cÞH ≤ 360or0 ≤ Pðr ; cÞH ≤ 70Þ; f 4 þþ;
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Features (fi) 1 to 4 show how many pixels satisfy each con-
dition in the patch (Table 1).

The pixels in the fire areas are similar to specific colors
such as red, yellow and white, and the deviation of colors is
relatively uniform. Therefore, Features (fi) 5 to 10 are
defined by calculating the color mean and the variance for
each RGB channel.

PCðr; cÞ ∼ NðμC; σ2CÞ; C ∈ fR;G; Bg (1)

f½5: : : 10� ¼ fμR; μG; μB; σ2R; σ2G; σ2Bg (2)

Additionally, it is observed that fires appear to blink in
sequential images. Using this, the number of blinks in a cer-
tain area accumulated over 10 frames is defined as a feature.

Fig. 7 Feature extraction from a fire image. (a) Original image. (b) Color condition. (c) Motion information. (d) Crossing.

Fig. 8 Random forest.
Fig. 10 Image patches used for learning. Fire sample (a), nonfire
sample (b).

Fig. 9 Learning and classifying process.
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Diff ¼
X

pi∈black area
IðpiÞ −

X
pi∈white area

IðpiÞ (3)

ifjDifft − Diff t−1j > threshold; then crossing occurs. (4)

We defined three cross extractors to calculate the bright-
ness difference between the previous and subsequent patches
as shown in Fig. 6. If the difference in brightness exceeds a
threshold value, then it is considered to be a crossing count.
IðpiÞ in Eq. (3) is a brightness value at the pixel pi in the
image. In this paper, a total of nine features were generated
by using three different thresholds deciding the cross state in
order to know the level of blinking.

f½11: : : .19� ¼ fcrossingith1; crossingith2; crossingith3g;
i ∈ f1; 2; 3g.

(5)

Finally, this study used the feature that many motions
could be observed between previous and present frames in
fire areas. Automobile headlamps are known to generate
strong noise, due to the dispersion of light when using
the common image difference between previous and sub-
sequent frames. Therefore, motion pixels are defined as fea-
tures after the removal of the noise by using the average
brightness of the three previous and subsequent frames.

f½20: : : 22� ¼
Xr

r∈P

Xc
c∈P

����P
t
Cðr; cÞ þ Pt−1

C ðr; cÞ þ Pt−2
C ðr; cÞ

3

−
Pt−1
C ðr; cÞ þ Pt−2

C ðr; cÞ þ Pt−3
C ðr; cÞ

3

����;
C ∈ fR;G;Bg. (6)

Figure 7 is the result that depicts the features defined
above in an image. The image shown in the upper right indi-
cates the area meeting the color conditions of Features 1 to 4.
In addition, the image shown in the lower left represents the
motion of overlapping frames corresponding to features 20
to 22. An image shown in the lower right represents the
crossing blocks between the previous and present frames.

3.2 Learning RF and Classifying Fire Features

In order to classify the features defined in the previous sec-
tion into fire and nonfire areas, this study used the random-
forest supervised-learning method.14

The input feature (f) reaches the leaf node after following
the binary branch of decision tree (tn). Each node (N) in the
ensembles t1ðfÞ; t2ðfÞ; : : : tnðfÞ selects a feature minimizing
the Gini impurity (iðNÞ) in order to determine the feature and
threshold value that can classify the feature into a suitable
class most effectively. Finally, probability [PðcjfÞ] of
each class is calculated by the summation of each leaf
node probability, as shown in Fig. 8.

iðNÞ ¼
X
j≠i

PðciÞ log PðcjÞ. (7)

The assembly of each ensemble classifier generated in
this manner is called a random forest. When given ensemble
classifiers, feature vector F and class C, the feature vector is
classified into fire as follows:

if½Pðc¼ firejfÞ> Pðc¼ NonFirejfÞ�thenFire elseNonFire
(8)

The whole process of learning and classification is
described in Fig. 9. In order to learn fire, the input image
is divided into the unit area. The 22 features defined in
the previous section are extracted from the divided images.
When learners input the sample groups fc; fg; c ∈
ffire;NonFireg into a learning machine, including classes
and features generated from the fire and nonfire images as
shown in Fig. 10, the ensemble classifier and decision
rule are generated by the random forest. When images are
captured in real-time, the random forest decides the fire
and nonfire area by the decision rule.

3.3 Decision of a Fire

When using the fire detection algorithm proposed in the pre-
vious section, it is possible to distinguish between fire and

Table 2 Descriptions of experimental movies.

Video sequence Description

Movie 1 People set fire to trees using equipment.

Movie 2 There are trees burning at a close distance.

Movie 3 There is a fire in a narrow outside area. This
movie is used for testing a small fire and a
similar color in a scene.

Movie 4 An entire forest is burning with smoke.

Movie 5 There are automobile accidents occurring in
the tunnel. This movie is used for confirming
whether pixels with the similar fire color and
motion are accurately classified in the scenes.
There is no fire.

Movie 6 People create a fire and the equipment
extinguishes the fire inside a building.

Movie 7 Firefighters set fire to a train in a tunnel.

Movie 8 There is fire occurring in an automobile and
a house in a city.

Movie 9 People set fire in a bucket and there are red
objects such as a hat, backpack,
and a fire extinguisher.

Movie 10 In the movie there is an ambulance blinking a
siren. This movie is used for confirming whether
pixels with the similar fire color and motion are
accurately classified in scenes. There is no fire.

Movie 11 There are a lot of automobiles reducing speed
at night with headlamps and tail lights on. This
movie is used for confirming whether pixels
with the similar fire color and motion are
accurately classified in scenes. There is no fire.

NOTE: The movies 1 ∼ 5 are available at http://signal.ee.bilkent.edu
.tr/VisiFire/. The movies 9 and 11 were recorded by our embedded
system. The other movies were downloaded on YouTube.
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nonfire in various environments. However, false alarms
occurred in a couple of frames when an automotive head-
lamp and taillight continuously intersected at night. In
order to solve this problem, the presence or absence of
fires was finally determined by recording recent fire detec-
tion results during N frames and stochastically analyzing the
state changes with the use of the additive Markov chain.15

An additive Markov chain is a theory that Xn is affected
by previous sequential random variables (Xn−1; Xn−2; : : : )
and the sum of all the values becomes the final probability.

PðXn ¼ xnjXn−1; : : : ; Xn−NÞ ¼
XN
n¼1

fðxn; xn−1Þ∕z (9)

z¼ PðXn ¼ 0jXn−1; : : : ;Xn−NÞ þPðXn ¼ 1jXn−1; : : : ;Xn−NÞ
(10)

In this case, a memory function (fðÞ) is defined by the
results of fire detection (B) during N frames as a binary num-
ber. It represents the frequency of the fire detection and con-
tinuity during N frames. In addition, the function is
generated to give a higher weight to the variable close to
the present state. α is a constant to determine whether to

give a higher weight to the fire’s appearance frequency or
continuity, and 0.7 is used in this experiment. z is a normal-
izing constant.

B ¼ fx1; x2; : : : ; xNg; xn ∈ f0; 1g (11)

fðxn; xn−1Þ ¼ ðαÞ
�

1

2N−n xn

�
þ ð1− αÞ

�
1

2N−n ðxn & xn−1Þ
�
;

α¼ ½0∼ 1�. (12)

In this study, 2N number of cases is generated. The exe-
cuting speed can be increased by the pre-calculated values
with the Lookup Table.

The detection results are determined during the accumu-
lated five frames, and the following rule is used for the final
decision:

if PðXn ¼ FirejXn−1; : : : ; Xn−5Þ
> PðXn ¼ NonFirejXn−1; : : : ; Xn−5Þ
× then Fire else NonFire. (13)

Fig. 11 Movie samples used for comparative experiments. (a) Movie 1. (b) Movie 2. (c) Movie 3. (d) Movie 4. (e) Movie 5.
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4 Experiments
To learn fire features, 10,000 and 40,000 samples of a fire
and nonfire, respectively, were extracted from video images,
such as in a tunnel, downtown, and mountain area. Numeri-
cal type feature data were used for the training. The classifier
was generated by random-forest supervised-learning.

When using the learning algorithm, the selection of not
only features but also samples used for learning can have
a large impact on the classification results. For example,
if most fire samples are red areas, the red areas will be
detected well. However, it becomes difficult to detect the yel-
low and white areas. When learning only areas with active
motion, it becomes difficult to detect the areas with the small
motion of a flame. Therefore, the fire samples used for learn-
ing should be selected so that the numbers are evenly

distributed according to their colors and motions. In selecting
the samples of a nonfire area, learning was performed by
dividing into several areas as follows: areas similar in
color to fires without motion, areas different in color from
fires with active motion, and areas completely different in
color from fires without motion. In such cases, it is desirable
to select a relatively large number of nonfire samples,
because many errors mistaking nonfire for fire occur
when the number of fire samples is relatively large.

In the first experiment as shown in Fig. 11, Movies 1 to 5
were used to compare the fire detection algorithm proposed
by Töreyin, Ko, and the method proposed in this paper.
Additionally, Movies 6 to 11 were used to perform experi-
ments in more varied environments. The description of the
images can be found in Table 2. True positive means that a

Fig. 12 Images of fire detection results. (a) Movie 1. (b) Movie 2. (c) Movie 3. (d) Movie 4. (e) Movie 6. (f) Movie 7. (g) Movie 8. (h) Movie 9.
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Fig. 13 Result of comparative experiments of Töreyin’s and Ko’s algorithms and detection rate (sum of TPþ TN).

Fig. 14 Movies used for analysis of detection rate. (a) Movie 6. (b) Movie 7. (c) Movie 8. (d) Movie 9. (e) Movie 10. (f) Movie 11.
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fire image is correctly determined as a fire, true negative
means that a nonfire image is correctly determined as a non-
fire, false positive means that a fire image is misjudged as a
nonfire and false negative means a nonfire image is mis-
judged as a fire.

Overall results of the first experiment are shown in
Figs. 12 and 13. The method proposed in this study
shows a higher detection rate than the other two methods.
In this case, the detection rate is the sum of the values of
true positive and true negative. In Movie 1, it was not pos-
sible to consider the motion information properly because
the frame rate of the video was lower than other images.
In Movie 3, the detection rate was lower than other images
because the size of the fire area was smaller than other
patches used in the experiment. Furthermore, in Movie 5,
the false alarm shown in the method by Ko did not occur
in the experiment with the proposed method.

As depicted in Fig. 14, the second experiment was per-
formed by using fires in tunnels, inside buildings and auto-
mobiles, with a blinking ambulance light, continuously
passing automobile headlamps, and tail lights likely to be
mistaken for fires. As shown in Fig. 15, the detection rate
was an average of 96.45% and we could reduce the average
of false negative rate from 2.1% to 1.31% when applying the
additive Markov chain. However, as shown in Fig. 16(a) and
16(b), false positives were shown because the fire area was
small at the moment when the fire was extinguished in Movie
6 and as the fire started in Movie 9. Depicted in Fig. 16(c)
and 16(d), the false negatives occurred because the color,
motion and crossing feature were similar to fires. Movie 9
demonstrated whether the classifier works well when expos-
ing a bag, hat, and fire extinguisher similar in color to flames
in the image. The results showed that it worked well even
when moving the hat and bag. Although there were many
areas that had values similar to the fire features defined
above in Movies 10 and 11, the classifier could work
well because each of the feature values were relatively small.

Fig. 15 Result of detection rate performed in various environments.
(a) Before applying additive Markov chain. (b) After applying additive
Markov chain.

Fig. 16 Cases of false positive: (a) Movie 6, (b) Movie 9. Cases of false negative: (c) Movie 9, (d) Movie 11.
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It is possible to recognize variable importance in the
learning process when using random-forest supervised-
learning. Figure 17 shows that the importance of 22 features
is evenly distributed. In this case, Features 5 and 7 are rel-
atively high because the classifier frequently used the mean
value of red and blue color channels during the training. The
rate of features (1 ∼ 10) related to the fire color are 51.2%. It
means that the color features are more effective than the
motion and crossing features (11 ∼ 22). However, the motion
and crossing features perform the role of the fire features
very well. It works to prevent miss-classifications when sim-
ilar colors, such as automobile headlamps and red hats,
appear in scenes. In the color features, a contribution of
the RGB channel values (5 ∼ 7) is higher than the color con-
ditions (1 ∼ 4). In the crossing features (11 ∼ 19), crossing
features for small threshold (11 ∼ 13) have more influences
on detecting fires.

The algorithm could process approximately 30 frames of
320 × 240 image in Core 2 Duo 2.00 Ghz at our embedded
system.

5 Conclusions
In this paper, a fire detection system with the built-in
embedded processor, the main camera, and the PTZ camera
was designed to perform fire surveillance in various environ-
ments. In addition, fire features were modeled by color,
motion, and crossing features. This paper proposed an algo-
rithm that could detect fires precisely by using the random
forest classifier, making it possible to reduce the false alarms
that occurred in previous studies resulting from the complex
background. We used an additive Markov chain method for a
robust fire detection algorithm. The performances of this
method were verified by comparative experiments with
other methods in various environments. The proposed fire
detection system can detect fires with high reliability in pub-
lic places, such as buildings, roads and tunnels. Also, it min-
imizes casualties and property damages by early fire
detection. In addition, the automatic surveillance system
can reduce facility maintenance costs by reducing the num-
ber of monitoring personnel and the fatigue level of the
supervisor. Therefore, our system contributes to increased
safety in public places because potential fires can be moni-
tored 24 h a day.
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