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Abstract. Spatial heterodyne interferometry (SHI) is a technique based on Fourier transform spectroscopy. As
such, many of the benefits, such as high spectral resolving power, can be realized. Furthermore, unlike a Fourier
transform spectrometer, an SHI is able to minimize the number of required samples for a given resolving power
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of these errors, a calibration procedure is described based on a linear operator theory. Finally, the Jones matrix
model and calibration procedure are validated through a series of simulations and experiments. © 2014 Society of
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1 Introduction
Fourier transform spectrometers (FTSs) are well known for
their high spectral resolving power.1,2 Typically, high spec-
tral resolution measurements are based on Michelson inter-
ferometers. Although these offer measurement flexibility,
high throughput, and spectral resolution, disadvantages
include vibration sensitivity, temporal and mechanical scan-
ning requirements, and alignment sensitivity. Fortunately,
vibration sensitivity and the need for mechanical scanning
can be overcome with common-path interferometers.3

These sensors map optical path difference (OPD) across a
two-dimensional (2-D) focal plane array (FPA) or line
array (LA) camera such that

OPDðx; yÞ ∝ ayþ b; (1)

where a is the slope and b is the offset. This enables multiple
interferogram samples to be acquired simultaneously,
enhancing the speed of the spectral measurement.

One issue with conventional FTS implementations,
including common-path systems, is sampling inefficiency.
For instance, a conventional nonaliased FTS must resolve
all wave numbers to fully measure a spectrum.4 This limita-
tion is best observed with an example. Consider a conven-
tional FTS, designed to measure the atmospheric oxygen
emission within the spectral band of 558� 3 nm (e.g.,
17,825 to 18;018 cm−1) to infer atmospheric wind speed
and temperature.5–8 Assuming that a complete interferogram
is required (i.e., not the partial interferograms described in
Refs. 5–8), then the required spectral resolution Δσ of the
system is approximately 1.0 cm−1. If the spectrometer’s cut-
off frequency were 540 nm (18;519 cm−1), then the FTS
must measure all spectral points spanning 0 cm−1 to the

Nyquist frequency. Therefore, while only 193 samples
within the region of the emission line are actually of interest,
approximately 18,519 samples, assuming a single-sided
interferogram, are required to acquire the region of interest.
Ultimately, this value would be slightly greater, since a small
double-sided region is required for phase correction.1

Although sampling inefficiencies can be overcome in a
conventional Michelson interferometer by aliasing the inter-
ferogram’s measurement,9 this is not a viable option with
most FPA- or LA-based FTSs. Given a pixel width of dw,
the interference’s spatial frequency ηI in units of cycles/
pixel, generated by the OPD defined in Eq. (1), can be
expressed as

ηI ¼ aσdw; (2)

where σ is the wave number. Since each pixel has a finite
optical transfer function, the interference fringe’s visibility
will generally decrease with increasing spatial frequency.
Interference visibility is defined as

V ¼ ðImax − IminÞ∕ðImax þ IminÞ; (3)

where Imax and Imin are the maximum and minimum inten-
sities within a local fringe. This tradeoff is illustrated in
Fig. 1, which depicts V versus spatial frequency ηI. Note
that this analysis assumes a pixel pitch that is equal to the
pixel width.

Revisiting the previous oxygen emission example demon-
strates the impracticality of the aliasing technique when
using detector arrays. Assuming a linear array is used
with a pixel pitch of dw means that the required slope of
the OPD can be expressed as
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a ¼ 1∕ðΔσNsdwÞ; (4)

where Ns is the number of samples in the interferogram.
Substituting Eq. (4) into Eq. (2) yields a normalized spatial
frequency of

ηI ¼ σ∕ðΔσNsÞ: (5)

GivenNs ¼ 18;519 yields ηI ¼ 1.0 cycles/pixel, resulting
in zero fringe visibility per Fig. 1. Ideally the spatial fre-
quency must be decreased in order to increase the detector’s
response. However, the issue is only worsened when using
the aliasing technique. For instance, if aliasing is imple-
mented on a 1000 pixels array, then ηI ¼ 17.9 cycles/
pixel. Thus, while the spatial frequency is aliased, its visibil-
ity is too low to remain detectable.

Two techniques exist to increase the spectral resolution in
these common-path instruments while minimizing the num-
ber of samples required: (1) modifying the offset b while
maintaining a resolvable slope a or (2) heterodyning the
interference to lower spatial frequencies.4,10,11 Since modify-
ing b does little to negate the sampling limitation, we con-
sider spatial heterodyning in the current approach. A spatial
heterodyne interferometer (SHI) is able to conserve the high
spectral resolution of conventional FTS systems.5–8 They do
so by replacing the retro-reflecting mirrors of a Michelson
interferometer with Littrow-configured blazed diffraction
gratings.5,11 This enables any arbitrary wave number, σh,
to generate a 0 cycle/m interference fringe, where σh is
the heterodyne wave number (note that in the conventional
nonaliased FTS, σh ¼ 0 cm−1).

The implementation of SHI has primarily leveraged the
Michelson interferometer (MI) architecture.7,8 In these sys-
tems, the MIs vibration and thermal errors have been
addressed by creating monolithic all-glass systems.
Alternatives to this technique, which aim to create
common-path vibration insensitive designs, are based on
Sagnac interferometers.12,13 However, to minimize both
size and vibration sensitivity, SHIs based on fiber-optic
Mach–Zehnder interferometers14 and an SHI system based
on birefringent prisms and polarization gratings (PGs)15,16

have also been introduced. With these implementations,
the interferometer’s size, weight, and alignment complexity
can be significantly reduced over reflective free-space

Sagnac interferometers or uncommon-path monolithic
Michelson interferometer designs.

In this paper, we focus on advancing the modeling and
calibration procedures of a polarization spatial heterodyne
interferometer (PSHI) that was originally presented in
Ref. 15. Advantages of this architecture lie in its potential
compactness, due to the use of monolithic birefringent crys-
tals, and its vibration insensitivity, stemming from its
common-path design.17,18 In Sec. 2, we discuss a Jones
matrix model of the PSHI and investigate its nonideal proper-
ties. In Sec. 3, we present our experimental system while
Sec. 4 contains the experimental measurements that are
used to validate the model. Finally, in Sec. 5, we discuss
the methods of calibration and experimentally demonstrate
the calibration procedure, validating it against a separate
spectral measurement.

2 Theoretical Model
The goal of our theoretical model is to understand the non-
ideal characteristics that arise when performing spatial het-
erodyning with a PG.16 In the PSHI, interference cross talk
was caused by the PG’s unwanted diffraction orders.15 These
orders are presented in Fig. 2, superimposed on the sche-
matic of the original PSHI system. Polarized light initially
transmits through a Wollaston prism (WP), with an apex
angle α, which causes the two incident polarization states
to split at an angle θWP. These beams are then incident on
a quarter wave plate (QWP). The QWP has a fast axis ori-
entation of 45 deg with respect to the x, such that the
orthogonal linear eigenpolarizations of the WP are converted
into orthogonal circular polarization states. These states
interact with the PG and are subsequently diffracted into
either the m ¼ 0 or m ¼ �1 diffraction orders. A linear ana-
lyzer (A) unifies the polarization state, enabling interference
to be measured on the FPA.

Ideally, after the WP’s light transmits through the PG,
only the two m ¼ −1 order beams, with angular separation
θd (e.g., an angularly reduced component compared to θWP),
should exist. However, the PG’s zero-order light leakage
allows two unwanted beams to propagate with an angular
separation of θ0, such that θ0 ¼ θWP. Furthermore, error
in the QWP’s retardance will cause some light to be coupled
into the m ¼ þ1 order, creating two additional unwanted
beams propagating at an angle θu with respect to each
other. Finally, the cross terms, denoted as θc1, θc2, and
θc3, also create observable interference effects. Under the
small angle approximation, the angle of diffraction from
the PG can be expressed as

Fig. 1 Fringe visibility versus the interferogram’s spatial frequency.

Fig. 2 Schematic of the beams exiting the PSHI.
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θm ¼ θWP þ
mλ

Λ
; (6)

where Λ is the PG’s spatial period and λ is the free-space
wavelength. Due to the linearity of Eq. (6), θc1 ¼ θc2
and θc3 ¼ 2θc1.

The Jones matrix formalism19 was used to model the
interference created by the beams exiting the PG. For a
WP, the Jones matrix can be expressed as

JWP ¼
�
1 0

0 eiUWP

�
; (7)

where UWP is the spatially dependent phase delay imparted
to the polarization states by the WP. This term can be
expressed as

UWP ¼ 4 πσΔnC tanðαÞy; (8)

where α is the prism’s apex angle, σ ¼ 1∕λ is the wave num-
ber, and ΔnC is the birefringence of the prism’s crystal such
that

ΔnC ¼ ðne;C − no;CÞ; (9)

where ne;C and no;C are the crystal’s extraordinary and ordi-
nary refractive indices, respectively. Meanwhile, the Jones
matrix for a general retarder is

JRetðθ;ϕÞ ¼
�
A B
B C

�
; (10)

in which

A ¼ cos2ðθÞ þ exp½iϕ�sin2ðθÞ; (11)

B ¼ cosðθÞ sinðθÞ − exp½iϕ� cosðθÞ sinðθÞ; (12)

and

C ¼ exp½iϕ�cos2ðθÞsin2ðθÞ; (13)

where θ is the fast axis orientation angle in the xy-plane and
ϕ is the retardance. The Jones matrix for the PG can be
expressed using ϕ ¼ ϕPG with a fast axis angle θ ¼ UPG

such that

UPG ¼ 2 πy∕Λ; (14)

whereUPG is the PG’s spatially dependent phase term, ϕPG is
the retardance of the liquid crystal layer, and Λ is the PG’s
spatial period.20,21 The spatial frequencies of the WP and PG
can be expressed as

ηWP ¼ 2σΔnC tanðαÞ; (15)

and

ηPG ¼ 1∕Λ; (16)

respectively. Meanwhile, the retardance of the PG’s polym-
erized liquid crystal layer can be expressed as

ϕPG ¼ 2πσdLCΔnLC; (17)

where dLC is the liquid crystal layer’s thickness and ΔnLC is
the liquid crystal’s birefringence such that

ΔnLC ¼ ðne;LC − no;LCÞ; (18)

where ne;LC and no;LC are the extraordinary and ordinary
refractive indices of the liquid crystal. The refractive indices
of the RMS03-001C (Merck) reactive mesogen, according to
the vendor’s datasheet, are

ne;LC ¼ 1.629þ 18350∕λ2; (19)

and

no;LC ¼ 1.501þ 10010∕λ2; (20)

where the wavelength λ is in nm. It should be mentioned that
the dispersion in ϕPG is the primary contributor to error
addressed in the current paper.

Meanwhile, the QWP can be expressed using Eq. (10)
with ϕ ¼ ϕQWP and θ ¼ θQWP, where θQWP and ϕQWP are
the QWPs orientation and retardance, respectively. The
Jones matrix for a linear polarizer, with a transmission
axis oriented at 0 deg with respect to the x-axis, is

JLP ¼
�
1 0

0 0

�
: (21)

Calculating the electric field incident onto the detector
can be accomplished by

Eout ¼ JLP · JPG · JQWP · JWP · Ein: (22)

Using a 45-deg linearly polarized input makes

Ein ¼ EðσÞ½ 1∕ ffiffiffi
2

p
1∕

ffiffiffi
2

p �T; (23)

where the superscript T represents the transpose operation
and EðσÞ represents the incident spectrum’s complex ampli-
tude at a specific wave number. Setting θQWP ¼ �45 deg
while maintaining generality with ϕPG and ϕQWP enables
the intensity, detected by the FPA, to be calculated as

Ioutðx; y;σÞ ¼
����Eout

����
2

¼ 16

����EðσÞ
����
2

þ I0ðx; y;σÞ þ Ic1ðx; y;σÞ

þ Idðx; y;σÞ þ Ic3ðx; y;σÞ þ Iuðx; y;σÞ; (24)

where I0; Ic1; Id; Ic3, and Iu represent the interference
between the beams corresponding to the angles θ0, θc1,
θd, θc3, and θu, respectively, per Fig. 2. The intensity of
these components can be represented as

I0ðx; y; σÞ ¼ 2

����EðσÞ
����
2

½� cosðUWP − ϕPG − ϕQWPÞ

∓ cosðUWP − ϕPG þ ϕQWPÞ � cosðUWP þ ϕPG − ϕQWPÞ
∓ cosðUWP þ ϕPG þ ϕQWPÞ � 2 cosðUWP þ ϕQWPÞ
� 2 cosðUWP − ϕQWPÞ�; (25)
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Ic1ðx; yÞ ¼ 2

����EðσÞ
����
2

½sinðUWP − UPG þ ϕPG þ ϕQWPÞ

− sinðUWP − UPG − ϕPG − ϕQWPÞ
þ sinðUWP − UPG þ ϕPG − ϕQWPÞ
− sinðUWP − UPG − ϕPG þ ϕQWPÞ�; (26)

Idðx;yÞ¼ jEðσÞj2½�cosðUWP−2UPGþϕPGþϕQWPÞ
∓cosðUWP−2UPGþϕPG−ϕQWPÞ
∓cosðUWP−2UPG−ϕPGþϕQWPÞ
∓cosðUWP−2UPG−ϕPG−ϕQWPÞ
∓2 cosðUWP−2UPGþϕQWPÞ
�2 cosðUWP−2UPG−ϕQWPÞ−4 sinðUWP−2UPGÞ
þ2 sinðUWP−2UPG−ϕPGÞ
þ2 sinðUWP−2UPGþϕPGÞ�; (27)

Ic3ðx; yÞ ¼ 2jEðσÞj2½sinðUWP þ UPG þ ϕPG þ ϕQWPÞ
− sinðUWP þUPG − ϕPG − ϕQWPÞ
þ sinðUWP þ UPG − ϕPG − ϕQWPÞ
− sinðUWP þUPG − ϕPG þ ϕQWPÞ�; (28)

and

Iuðx;yÞ¼
����EðσÞ

����
2

½�cosðUWPþ2UPGþϕPGþϕQWPÞ

∓cosðUWPþ2UPGþϕPG−ϕQWPÞ
�cosðUWPþ2UPG−ϕPGþϕQWPÞ
∓cosðUWPþ2UPG−ϕPGþϕQWPÞ
∓2 cosðUWPþ2UPGþϕQWPÞ
�2 cosðUWPþ2UPG−ϕQWPÞþ4 sinðUWPþ2UPGÞ
−2 sinðUWPþ2UPGþϕPGÞ
−2 sinðUWPþ2UPG−ϕPGÞ�: (29)

It should be mentioned that Eqs. (25)–(29) assume neg-
ligible �2nd-order diffraction, which was measured at
0.21% in our experimental PG. Expanding the discussion
to continuous spectral distributions means that Eq. (24)
can be spectrally band-integrated such that

Iðx; yÞ ¼
Z

Tðx; y; σÞRðx; y; σÞIoutðx; y; σÞdσ; (30)

where Tðx; y; σÞ is the transmission of the optics and
Rðx; y; σÞ is the responsivity of the detector. Fourier transfor-
mation of Eq. (30) yields five frequency components, corre-
sponding to the Fourier transformation of Eqs. (25)–(29).
Since the calculation of these transforms is straightforward
and providing their rigorous closed form representations
offers limited utility, we have expressed only their propor-
tionalities for clarity. The Fourier transformations of
Eqs. (25)–(29) are

F0ðx; yÞ ∝
Z

jEðσÞj2 �
�
A0ðσÞδδ

�
σ

ηWP

��
dσ; (31)

Fc1ðx; yÞ ∝
Z

jEðσÞj2 �
�
Ac1ðσÞδδ

�
σ

ηWP − ηPG

��
dσ;

(32)

Fdðx; yÞ ∝
Z

jEðσÞj2 �
�
AdðσÞδδ

�
σ

ηWP − 2ηPG

��
dσ; (33)

Fc3ðx; yÞ ∝
Z

jEðσÞj2 �
�
Ac3ðσÞδδ

�
σ

ηWP þ ηPG

��
dσ;

(34)

and

Fuðx; yÞ ∝
Z

jEðσÞj2 �
�
AuðσÞδδ

�
σ

ηWP þ 2ηPG

��
dσ;

(35)

where A0, Ac1, Ad, Ac3, and Au are magnitude coefficients
that are proportional to the superpositions of sinusoidal func-
tions in Eqs. (25)–(29) and * represents a convolution.
Meanwhile

δδðσ∕ηÞ ≡ ð1∕2Þ½δðσ þ ηÞ þ δðσ − ηÞ�; (36)

where δ is the Dirac delta function. These Fourier transform
proportionalities indicate that each frequency component
carries with it the power spectrum jEðσÞj2, which is modified
by the coefficients A0, Ac1, Ad, Ac3, and Au. In an ideal SHI,
only Fd should exist and Ad would be unity for all σ.
However, deviations in ϕPG and ϕQWP, away from their
ideal values, yields nonzero values of A0, Ac1, Ac3, and
Au. This creates undesired frequency components that coex-
ist with the desired down-shifted spectrum.

2.1 Simulated Results

Numerical simulations were performed, using Eq. (24), to
investigate the systematic effects caused by retardance errors
in the PG and QWP. Double-sided interferograms were cre-
ated for monochromatic spectra at wavelengths λ0 of 460,
560, and 700 nm. A WP, with a wedge angle of α ¼ 6.2
deg and a PG with a period Λ ¼ 453 μm, were used to main-
tain consistency with our previous experimental setup per
Ref. 15. A fast Fourier transform (FFT) was applied to
the simulated 1280 pixel element interferograms, along
the y-dimension, such that

FF0ðyj; σ0Þ ¼ jFFTðHðyÞI0ðyj; σ0ÞÞj; (37)

FFc1ðyj; σ0Þ ¼ jFFTðHðyjÞIc1ðyj; σ0ÞÞj; (38)

FFdðyj; σ0Þ ¼ jFFTðHðyjÞIdðyj; σ0ÞÞj; (39)

FFc3ðyj; σ0Þ ¼ jFFTðHðyjÞIc3ðyj; σ0ÞÞj; (40)

and
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FFuðyj; σ0Þ ¼ jFFTðHðyjÞIuðyj; σ0ÞÞj; (41)

where the constant term in Eq. (24) has been removed, the
x-dimension has been suppressed because interference only
occurs along y, σ0 ¼ 1∕λ0, Eðσ0Þ ¼ 1 for all σ0, and the
subscript j denotes y as a discrete quantity. A Hanning win-
dow, HðyjÞ, was used to apodize the interferograms and is
defined as

HðyjÞ ¼ 0.5ð1þ cosðπyj∕wÞÞ; (42)

where 2w is the Hanning window’s full-width.
Equations (37)–(41) were calculated for various values of

ϕPG and ϕQWP. First, the WP’s spatial frequency power spec-
trum was calculated without the PG by setting ϕPG ¼
ϕQWP ¼ 0 deg for all σ0. This yielded the spatial frequency
spectrum depicted in Fig. 3(a) in which FF0 is the only non-
zero component. For an ideal PG and QWP, ϕPG ¼ 180 deg
and ϕQWP ¼ 90 deg for all σ0. For these values, Figs. 3(b)
and 3(c) depict the spectra that are heterodyned to both high
(θQWP ¼ þ45 deg) and low (θQWP ¼ −45 deg) spatial
frequencies, respectively. Meanwhile, the spatial frequency
spectrum that is obtained with error in the PG’s retardance
is depicted in Fig. 3(d), where ϕPG ¼ 135 deg and ϕQWP ¼
90 deg. In this case, zero-order light leakage is manifested
by the presence of the FF0 component. Conversely, the result

of error in the QWP’s retardance is shown in Fig. 3(e), where
ϕPG ¼ 180 deg and ϕQWP ¼ 45 deg. In this case, both the
high and low spatial frequency components, corresponding
to FFu and FFd, respectively, are present. Finally, simultane-
ous error in both the PG and QWP retardance values is
shown in Fig. 3(f), where ϕPG ¼ 135 deg and ϕQWP ¼
45 deg. Frequency components FF0, FFu, and FFd are
present, as well as the cross-interference terms correspond-
ing to FFc1 and FFc3. Notable is that the FFc1 component is
multiplexed with the desired FFd component.

Finally, a simulation was performed using a PG retard-
ance spectrum that was calculated per Eq. (17) with
dLC ¼ 2.05 μm. A QWP, based on quartz crystal, was
also simulated using

ϕQWP ¼ 2πσdQWPΔnquartz; (43)

where dQWP ¼ 15.27 μm was used for the quartz crystal’s
thickness. The birefringence of quartz was simulated using

Δnquartz ¼ Lσ3 þ Gσ2 þ Jσ þ K; (44)

where L¼7.655E−23, G¼−3.243E−16, J¼9.101E−10,
and K ¼ 8.137E − 3 and σ has units m−1. The simulated
retardance spectra for the PG and QWP are presented in
Fig. 4(a) while the spatial frequency content is depicted in
Fig. 4(b). Of particular importance is that the maximum

Fig. 3 Relative magnitude of the Fourier components versus spatial frequency. The three values of λ0
are shown alongside the channel magnitudes to indicate the approximate mapping of wavelength to
spatial frequency within each channel. Simulation results for (a) Wollaston prism only with
ϕPG ¼ 0 deg, ϕQWP ¼ 0 deg. (b) Ideal up-shifted spectra with ϕPG ¼ 180 deg, ϕQWP ¼ 90 deg, and
θQWP ¼ þ45 deg. (c) Ideal down-shifted spectra with ϕPG ¼ 180 deg, ϕQWP ¼ 90 deg, and θQWP ¼
−45 deg. (d) Error in only the PGs retardance with ϕPG ¼ 135 deg, ϕQWP ¼ 90 deg, and θQWP ¼
−45 deg. (e) Error in only the QWPs retardance with ϕPG ¼ 180 deg, ϕQWP ¼ 45 deg, and
θQWP ¼ −45 deg. (f) Error in both the PGs and QWPs retardance values with ϕPG ¼ 135 deg,
ϕQWP ¼ 45 deg, and θQWP ¼ −45 deg.
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magnitude of the FFd component corresponds to ϕPG ¼
180 deg and that the multiplexing between FFd and FFc1
is present due to simultaneous error in both ϕPG and ϕQWP.

3 Experimental Setup
Aview of the system that was used to validate the theoretical
model is depicted in Fig. 5. It consists of a diffuse source that
illuminates a linear polarization generator (LPG). The LPG
consisted of a linear polarizer with a transmission axis nomi-
nally oriented at θG ¼ 135 deg, where the angle is measured
with respect to the x-axis. Light from the LPG was then inci-
dent onto a quartz WP that has an apex angle α of 6.2 deg.
The two linear eigenpolarizations of the WP are oriented at 0
and 90 deg. An achromatic quarter wave plate (AQWP) fol-
lows the WP with a nominal orientation of θQWP ¼ �45 deg
such that the linear eigenpolarizations from the WP are con-
verted into circular polarization states. A singlet, with a focal

length f ¼ 100 mm, was used to relay an image of the WP’s
wedge onto a PG with a lateral magnification mg ¼ −1. A
variable iris was used to stop the lens down to reduce aber-
rations. It should be mentioned that this low power singlet
was incorporated, as opposed to a multiple-element lens,
to minimize polarization aberrations between the AQWP
and the PG. The PG was patterned with polymerized liquid
crystal with a spatial period of Λ ¼ 453 μm and a peak first-
order diffraction efficiency at λ ¼ 610 nm. Light from the
PG was then transmitted through a linear polarization ana-
lyzer, which consisted of a linear polarizer with a transmis-
sion axis nominally oriented at θA ¼ 45 deg. Finally, a
50 mm focal length c-mount objective lens imaged the inter-
ference pattern onto an 8-bit 1280 × 960 pixel element FPA.

The measured retardance spectrum of the AQWP is pro-
vided in Fig. 6(a). This measurement was taken by rotating
the AQWP between crossed linear polarizers while measur-
ing the transmitted spectrum using an Ocean Optics HR4000
spectrometer. The accuracy of this measurement is estimated
at �0.25%. Meanwhile, the PG’s retardance was calculated
from the measured zero-order diffraction efficiency by fitting
it to the theoretical closed-form expression

DE0ðλÞ ¼ cos2ðϕPGðλÞ∕2Þ; (45)

where ϕPGðλÞ is used as the fitting parameter.21 Using a least
squares fitting procedure yielded the PG retardance depicted

Fig. 4 (a) Simulated retardance spectra for a PG, with a layer thick-
ness d ¼ 2.05 μm, and a quartz QWP with a thickness of 15.27 μm.
(b) Simulated frequency content of each component.

Fig. 5 Experimental setup of the PSHI. The PG’s grating vector is
indicated by the arrow, as are the WP’s fast axis orientations.

Fig. 6 Measured (a) achromatic QWP retardance spectrum and
(b) PG zero-order diffraction efficiency and retardance spectra.
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in Fig. 6(b). Here, ϕPG is a half wave at a wavelength of
610 nm, corresponding to the minimum zero-order diffrac-
tion efficiency.

4 Experimental Results
The experimental procedure for validating the model con-
sisted of aligning the AQWP at θQWP ¼ þ45 deg and
θQWP ¼ −45 deg to up- and down-shift the prism’s interfer-
ence frequency, respectively. Light from a monochromator
was used to illuminate the PSHI. The source’s wavelength,
λs, was varied from 460 to 700 nm in 20 nm increments and
at each of these wavelengths a 2-D interference pattern was
recorded. Since the interference components amplitude
modulate the spectrum of the light source used in the mono-
chromator, the spectrum’s amplitude was removed by cali-
brating to a flat field at each wavelength.

In a procedure similar to Ref. 17, a flat field measurement
was calculated at each monochromatic wavelength by
acquiring two interferograms that are out-of-phase by
180 deg. The nominal interferogram, IG45, was acquired
with the LPG at θG ¼ 45 deg while the phase-shifted inter-
ferogram, IG135, was acquired at an LPG orientation of θG ¼
135 deg. These two interferograms can be expressed as

IG45ðx; y; σsÞ ¼ TRjEðσsÞj2½16þ I0 þ Ic1 þ Id þ Ic3 þ Iu�;
(46)

and

IG135ðx; y; σsÞ ¼ TRjEðσsÞj2½16 − I0 − Ic1 − Id − Ic3 − Iu�;
(47)

where T, R, I0, Ic1, Id, Ic3, and Iu are implicitly dependent
on x, y, and σs for clarity and σs ¼ 1∕λs. Averaging Eqs. (46)
and (47) yields a flat field containing only the spectral mag-
nitude, optical transmission, and responsivity quantities such
that

IFlatðx; y; σsÞ ¼ 16TRjEðσsÞj2: (48)

A flat field measurement was calculated at both orienta-
tions of the QWP (θQWP ¼ �45 deg) in order to account for
polarization dependencies in the optical transmission.
Interferograms of monochromatic spectra were then acquired
by the PSHI such that

IMðx; y; σsÞ ¼ TRIoutðx; y; σsÞ: (49)

Normalization of Eq. (49) by (48) produces an interfero-
gram without responsivity, optical transmission, or spectral
dependencies.

After all monochromator interferograms were normalized
to the flat field, an average across the FPA’s x-dimension was
taken in order to obtain a one-dimensional interferogram
along y. Fourier spectra for each interferogram were then cal-
culated per Eqs. (37)–(41). A summary of the experimental
data is provided in Fig. 7 for both the (a) down-shifted (b) up-
shifted cases. In each plot, the magnitude of the Fourier com-
ponents for the experimental measurements (M) is plotted
alongside the results from the theoretical model (T) for
each channel. Due to the use of an achromatic QWP, minimal
multiplexing is observed between FFd and FFc1. Hence, the
most significant error is a result of zero-order light leakage

through the PG, which can be reduced by incorporating an
achromatic PG.22 It should be mentioned that this was not
implemented in the current paper so that we could study
the effects of zero-order light leakage.

The root-mean-square (RMS) error between the measured
and theoretical Fourier components was calculated as

RMS ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ns

XNs

σs

ðFFTheoðσsÞ − FFMeasðσsÞÞ2
vuut ; (50)

where Ns is the number of spectral measurements and FFTheo
and FFMeas correspond to the theoretical and measured
Fourier component magnitudes (e.g., FF0, FFd, FFc1, etc.).
The RMS error was calculated for each frequency compo-
nent in both the up- and down-shifted datasets, the results
of which are summarized in Table 1. Note that for FFc3
in the down-shifted data, only four data points were used
where overlap did not occur with FFd, per Fig. 7(a). The
mean RMS error across all of the measured Fourier compo-
nents is 1.02%, which is approximately equal to our experi-
ment’s estimated accuracy of 0.9% accounting for
quantization error, alignment error in θQWP, and error in
the measured values of ϕPG and ϕQWP.

5 Calibration Results
For most applications, the down-shifted spectra of Fig. 7(a)
are of greatest utility. To account for linear mixing between
the FFd and FFc1 components in this configuration, a linear
system model was used to spectrally calibrate the PSHI.14,23

A matrix H was created such that

Fig. 7 Comparison between the theoretical model (T ) and measure-
ments (M) for QWP orientations of (a) θQWP ¼ þ45 deg and
(b) θQWP ¼ −45 deg. There is an excellent agreement between T
and M for all wavelengths.
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g ¼ H · f; (51)

where H is the system transfer matrix, f is the input spec-
trum, and g is the measured interferogram. The matrix H
is configured with dimensions of OPD × λ, such that each
column contains a monochromatic interferogram.

Using the experimental setup, depicted previously in
Fig. 5, the H-matrix’s calibration performance was evaluated
for calculating the output spectrum. This was conducted with
the experimental setup depicted in Fig. 8, which depicts the
inclusion of a 100-mm diameter integrating sphere (IS). An
Ocean Optics HR4000 spectrometer, connected to the sphere
via a 200-μm diameter fiber, was used to measure spectra for
independent validation. The sphere was illuminated by either
a white light tungsten halogen lamp or a monochromator.
Optionally, the white light source could be filtered with
removable gelatin filters. H-matrix characterization was
accomplished using the monochromator. The monochroma-
tor was incremented from 420 to 720 nm in N ¼ 19 incre-
ments with a uniform wave number spacing of Δσ ¼
551 cm−1. This spectral resolution corresponds closely to
the spectral resolution of the WP.

The measured H-matrix is depicted in Fig. 9. Notable is
the presence of both the Id and I0 interference components
that correspond to the high and low spatial frequency mod-
ulations versus y, respectively. As observed in the simula-
tions, I0 has increasing contrast for values of ϕPG away
from 180 deg per Fig. 6(b). Calculating the pseudo-inverse
of H enables the input spectrum to be calculated using

f ¼ W · g; (52)

where W is the data reduction matrix, calculated from the
pseudo-inverse functionality in MATLAB. Validation of
the H-matrix calibration procedure was performed by illumi-
nating the sphere with the white light tungsten halogen lamp.
Spatially heterodyned interferograms were measured using
the experimental setup, in addition to directly measured
spectra that were acquired using the Ocean Optics
HR4000 spectrometer. Awhite-light reference interferogram
and spectrum were acquired first, followed by interferograms
and spectra of four absorption gelatin filters (Roscolux
brand, labeled F1 through F4) that were inserted between
the lamp and integrating sphere. Spectra were then calcu-
lated, from the measured interferograms, by applying W,
and the transmission of each filter was calculated by dividing
each of the filter’s spectra by the white light reference spec-
trum. The transmission of each filter was also calculated
from the HR4000 data for direct comparison. These results
are depicted in Fig. 10 in which the ocean optics (OO) trans-
mission spectra are plotted alongside the transmission spec-
tra calculated from the PSHI.

The RMS error, averaged for all four transmission mea-
surements, was calculated between the PSHI and OO data to
be approximately 1.2% for these data.

Table 1 Percent RMS error between theoretical and measured data
for each Fourier component.

FF0 FFc3 FFu FFc1 FFd

Up-shifted 1.07 1.32 1.19 0.84 1.03

Down-shifted 1.71 0.29 1.81 0.74 0.21

Fig. 8 (a) Schematic of the experimental setup for calibrating the
PSHI and (b) photo of the system on the benchtop.

Fig. 9 Measured H-matrix.

Fig. 10 Measured transmission data comparison from the PSHI and
the OO spectrometer for filters F1 to F4.
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6 Conclusion
In this paper, we successfully demonstrated a theoretical
model and experimental calibration procedure for a PSHI.
The interferometer was based on a WP that was heterodyned
using a PG. As demonstrated by the model and subsequent
experiments, nonideal frequency components are caused by
the PG’s zero-order light leakage and error in the QWP’s
retardance. Fortunately, low zero-order diffraction efficien-
cies (<3%) in the PGs are achievable using broadband multi-
layer achromatic PG designs.22 Additionally, as
demonstrated in the experiment, AQWPs can be leveraged
to further reduce the undesirable frequency components.
Finally, the H-matrix calibration procedure was implemented
to calibrate the PSHI. This yielded an experimentally
observed average RMS error of 1.2% when compared to
an Ocean Optics spectrometer.
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