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Abstract. We analyze the diffraction field when changes in the curvature function of the boundary condition are
implemented. The study is performed using differential geometry models with a curvature function displaying
local behavior. Depending on the sign of curvature, we classify the diffraction field as elliptic, hyperbolic, or
parabolic. In particular, it is shown that the optical field is organized around the parabolic regions, which cor-
respond to focusing regions. The model is experimentally corroborated by applying a coordinate transformation
to the transmittance of a zone plate. The reason to use this transmittance comes from the fact that its diffraction
field displays multiple foci allowing identification, description, and control of bifurcations and morphogenesis
effects, which are studied using the curvature function. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.OE.56.11.115102]

Keywords: morphogenesis; bifurcation; focusing regions.

Paper 170826P received May 31, 2017; accepted for publication Oct. 23, 2017; published online Nov. 10, 2017.

1 Introduction
The physical features of optical fields can be obtained from
the phase function, and this is implicit in the solution of the
Helmholtz equation, when an equation relating the amplitude
and phase is deduced. When the phase is compressed to a
minimum volume, the amplitude reaches its maximum value,
corresponding to a focusing region. In these regions, the
wavefront curvature is reversed and new physical properties
can emerge. For example, the optical field can be split into
two or more branches, known as a bifurcation effect, as a
consequence of the continuous evolution of a parameter
(which can be the propagation distance). Closely related to
this effect is the change in the geometry of the optical field,
which is the morphogenesis effect. This effect originates in
the neighborhood of focusing regions that correspond to the
organization regions for the entire optical field.1–3 In a
diffraction field, the focusing regions, also known as caustic
regions, correspond to Fraunhoffer diffraction, as will be
shown below. The topological properties of these areas
offer interesting applications, such as the design of dynami-
cal optical tweezers for particle trapping and hybrid lens
design. From a theoretical point of view, interesting proper-
ties, such as the induction of tunable spectroscopy as well as
the generation of vortices and topological charges, can be
studied.4–12

In this paper, we present a study of the spatial evolution of
optical fields generated by diffraction when a coordinate
transformation is implemented in the transmittance function.
This transformation generates nonlinear changes in the
curvature function k0 whose expression for a curve y ¼ fðxÞ
is

EQ-TARGET;temp:intralink-;e001;326;457k0 ¼
f 00ðxÞ

f1þ ½f 0ðxÞ�2g3
2

: (1)

The nonlinear effects are manifested as abrupt changes in
the envelope curve geometry generated by the curvature cen-
ters, known as evolute.13 In an optical context, this corre-
sponds with the focusing region. It is known that the
manifestation of the nonlinearities has associated shock
waves,14,15 justifying that the optical field presents physical
effects with interesting topological properties in the neigh-
borhood of focusing regions. Our analysis was performed
using results from differential geometry, particularly
Euler’s theorem.16 The theoretical model was experimentally
corroborated using, as a prototype, a boundary condition
type zone plate (ZP). This transmittance was chosen because
it makes it easy to detect the presence of morphogenesis and
bifurcation at every focus. These effects consist of unfolding
the focus into two or more focusing regions with different
geometries. Furthermore, Euler’s theorem allows the classi-
fication of the nature of the optical fields as parabolic, hyper-
bolic, or elliptic. It is shown below that the focusing regions
correspond to parabolic zones that act as organization
regions for the entire optical field, separating the hyperbolic
and elliptic regions. Evolution of the hyperbolic regions is
explained by describing the angular changes among the
asymptotes. This analysis is important, because the condi-
tions under which the optical field can transfer angular
momentum are obtained. Experimental results for the trans-
formed ZPs lead us to identify that each focus evolves fol-
lowing hyperbolic or elliptical regions, depending on its
order. A relevant finding of the study is that the parabolic
region is matched with the Fraunhoffer diffraction and
that from this perspective, the calculus of the diffraction inte-
gral can be avoided.
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2 Theory
We start the study describing some concepts of differential
geometry. The surface under study has a biparametric repre-
sentation, given by

EQ-TARGET;temp:intralink-;e002;63;705

~Xðu; vÞ ¼ ½xðu; vÞ; yðu; vÞ; zðu; vÞ�; (2)

where u and v are the parameters known as curvilinear coor-
dinates. The case u ¼ constant defines a curve placed on the
surface, as does for v ¼ constant. The partial derivatives
denoted by ~Xu and ~Xv are the two vectors tangent to the
respective curves. From this result, we obtain that the surface
has an associated unitary normal vector N̂, given by

EQ-TARGET;temp:intralink-;e003;63;606N̂ ¼
~Xu × ~Xv

j~Xu × ~Xvj
: (3)

Consider an arbitrary curve on the surface, whose para-
metric description is given by

EQ-TARGET;temp:intralink-;e004;63;535

~XðsÞ ¼ ½xðsÞ; yðsÞ; zðsÞ�; (4)

where s is the arc-length. The unitary tangent vector T̂ðsÞ to
the curve [Eq. (4)] is

EQ-TARGET;temp:intralink-;e005;63;479

d

ds
~XðsÞ ¼ T̂ðsÞ: (5)

Other geometrical properties of the curve can be obtained
from the second derivative

EQ-TARGET;temp:intralink-;e006;63;416

d2

ds2
~XðsÞ ¼ kðsÞn̂ðsÞ ¼ ~KðsÞ; (6)

where kðsÞ is the curvature function and n̂ðsÞ is a unit normal
vector whose direction depends of the selected curve ~XðsÞ;
however, generic features can be obtained from its decom-
position. Representing the curvature vector ~KðsÞ as

EQ-TARGET;temp:intralink-;e007;63;328

~KðsÞ ¼ ~kNðsÞ þ ~kgðsÞ; (7)

where ~kNðsÞ is known as the normal vector curvature parallel
to N̂ and ~kgðsÞ is the geodesic curvature placed on the tan-
gent plane. This set of vectors is sketched in Fig. 1.

The modulus of the normal curvature vector carries the
information about the surface geometry, and it is given by
EQ-TARGET;temp:intralink-;e008;326;730

kN ¼−
~Xu · N̂udu2þ ~Xv · N̂vdv2þð~Xu · N̂vþ ~Xv · N̂uÞdudv

~Xu · ~Xudu2þ ~Xv · ~Xvdv2þ 2~Xu · ~Xvdudv

¼ edu2þ gdv2þ 2fdu dv
Edu2þGdv2þ 2Fdudv

; (8)

where we have defined the terms as
EQ-TARGET;temp:intralink-;e009;326;643

e ¼ −~Xu · N̂u; g ¼ −~Xv · N̂ v;

2f ¼ −~Xu · N̂v þ ~Xv · N̂uE ¼ ~Xu · ~Xu;

G ¼ ~Xv · ~Xv; F ¼ ~Xu · ~Xv: (9)

Equation (8) corresponds to the quotient of the fundamen-
tal forms of differential geometry, more details can be found
in Ref. 16. One important behavior of the surface is obtained
when ~kN ¼ 0, implying the vector curvature ~KðsÞ is placed
on the tangential plane; this occurs when

EQ-TARGET;temp:intralink-;e010;326;521edu2 þ gdv2 þ 2fdu dv ¼ 0: (10)

The last equation can be rewritten as

EQ-TARGET;temp:intralink-;e011;326;478g

�
dv
du

�
2

þ 2f

�
dv
du

�
þ e ¼ 0; (11)

which corresponds to a quadratic form for the derivative dv
du,

satisfying

EQ-TARGET;temp:intralink-;e012;326;412

dv
du

¼ −f �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − ge

p
g

: (12)

The nature of the derivative dv
du depends on the sign of the

discriminant f2 − ge and has the following classifications:
EQ-TARGET;temp:intralink-;e013;326;343ðiÞ f2 − ge ¼ 0 → parabolic region

ðiiÞ f2 − ge > 0 → hyperbolic region

ðiiiÞ f2 − ge < 0 → elliptic region: (13)

This last statement constitutes the Euler’s theorem for sur-
face classification, more details can be found in Ref. 16.

The previous analysis is now transferred to an optical con-
text, where the diffraction field has an associated biparamet-
ric phase function. We will show that the focusing regions
correspond to parabolic regions; these regions in the diffrac-
tion field are also matched with the Fraunhoffer diffraction.
The Fresnel diffraction evolves following hyperbolic or ellip-
tic regions; for the hyperbolic case, two asymptotes can be
identified, and the elliptic regions do not present asymptotes.
The parabolic regions occur when the curvature of Eq. (12)
takes a single value given by

EQ-TARGET;temp:intralink-;e014;326;144

dv
du

¼ −
f
g
: (14)

The geometrical interpretation is the tangent vectors ~Xu
and ~Xv become parallel. The parabolic regions have an asso-
ciated nonlinear partial differential equation for the phase
function L ¼ Lðu; vÞ given by

Fig. 1 Vector description of an arbitrary curve ~X ðsÞ on the surface
under study.
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EQ-TARGET;temp:intralink-;e015;63;752f2 − ge ¼
�
∂2L
∂u∂v

�
2

−
∂2L
∂u2

∂2L
∂v2

¼ 0; (15)

where u and v are the two parameters that can be the spatial
frequencies.

It should be noted that the previous equation is the null
value of the Hessian determinant in catastrophe theory, thus
parabolic regions correspond with the singularities of optical
fields17 also known as caustic or focusing regions. By imple-
menting Eq. (15) in the diffraction integral, it is easy to
show that the quadratic factors cancel, corresponding to
Fraunhoffer diffraction and meaning that parabolic regions
are the organization regions of the optical field. It must
be noted that in Fresnel diffraction the Hessian determinant
is nonzero and that catastrophe theory is, therefore, not appli-
cable. Analyzing the quadratic form of Eq. (11), we have that
the hyperbolic region is bounded by its asymptotes, which
separates regions of curvature with different signs. The ellip-
tic case does not have asymptotic directions because dv

du has
complex values, and the normal curvature does not reverse
the sign. Consequently, the surface of this region is always
either convex or concave. The previous analysis will be
experimentally implemented on a transformed ZP in Sec. 3.

3 Description of Focusing Regions: Topological
Properties of Optical Fields

The previous analysis can be better understood when it is
applied to describe an optical field. A great variety of optical
elements generate optical foci when they are illuminated,
classical examples being lenses and ZPs. In this paper, we
consider only ZP. In an ideal aberration free system, the
focusing geometry corresponds to a set of points distributed
along a line perpendicular to the ZP plane. The transmittance
function for a ZP18 is

EQ-TARGET;temp:intralink-;e016;63;374tðx; yÞ ¼
X∞
n¼−∞

ane
i2πðx2þy2Þ n

d2 : (16)

It is easy to show that this last expression can be obtained
as a quadratic transformation for the Fourier series of a linear
grating. When the ZP is illuminated with a plane wave, the
foci coordinates are given by x ¼ y ¼ 0, z ¼ d2

2nλ, where λ is
the wavelength of the light. We remark that the foci position
depends on the diffraction order defined by integer n, and
that the diffraction field can be considered as a set of surfaces
where each one generates a single focus. With the purpose to
analyze the topological properties of the foci, we propose a
coordinate transform given by x → ax, y → by, the transmit-
tance function for the transformed ZP acquires the form

EQ-TARGET;temp:intralink-;e017;63;209tðx; yÞ ¼
X∞
n¼−∞

ane
i2πða2x2þb2y2Þ n

d2 . (17)

Without loss of generality, we can assume that a > b with
a; b ∈ R. The diffraction field is given by
EQ-TARGET;temp:intralink-;e018;63;143

ϕðx0;y0;z;nÞ

¼
X∞
n¼−∞

an

Z Z
ei2πða

2x2þb2y2Þ n
d2ei

π
λzðx2þy2Þe−i2π

�
x
x0
λzþy

y0
λz

�
dxdy;

(18)

identifying the phase function as
EQ-TARGET;temp:intralink-;e019;326;741

Lðx0; y0; zÞ ¼
�
2
a2n
d2

þ 1

λz

�
x2 þ

�
2
b2n
d2

þ 1

λz

�
y2

− x
x0
λz

− y
y0
λz

; (19)

where some common terms have been omitted. The phase
function is interpreted as a set of trajectories whose envelope
generates the focusing region. It has a biparametric represen-
tation where the x and y parameters are placed on the boun-
dary condition; for this reason, we can apply differential
geometry results described in Sec. 2. Substituting Eq. (19)
in Eq. (15) is easy to show that quadratic terms are cancelled
corresponding to the Fraunhoffer diffraction. The nature of
the optical field can be obtained with Eq. (13) and its geom-
etry type is obtained with the sign of the determinant to the
quadratic form, i.e.,

EQ-TARGET;temp:intralink-;e020;326;556Δðz; a; bÞ ¼
�
2
a2n
d2

þ 1

λz

��
2
b2n
d2

þ 1

λz

�> 0

¼ 0

< 0

: (20)

The curve is an ellipse when Δðz; a; bÞ > 0, and when
Δðz; a; bÞ < 0, it corresponds to a hyperbolic curves. The
geometry of the focusing region is obtained when
Δðz; a; bÞ ¼ 0, and it must be analyzed by considering
other properties of the optical surface, as shown below.
From Eq. (19), we identify the distance along the z-coordinate
where focusing is generated. It occurs at two z-coordinate
positions given by

EQ-TARGET;temp:intralink-;e021;326;4132
a2n
d2

þ 1

λz
¼ 0; 2

b2n
d2

þ 1

λz
¼ 0: (21)

Analyzing the first term, we have that the focusing occurs
at

EQ-TARGET;temp:intralink-;e022;326;348zðn; aÞ ¼ −
d2

2a2nλ
: (22)

To achieve a real focusing, i.e., n < 0, the positive values
correspond to virtual focusing. Using this result, in the dif-
fraction integral given by Eq. (18), it is easy to show that the
focusing region has a linear shape along the y-coordinate,
and a similar behavior can be shown for the second term
in Eq. (21) in that the focusing region has a linear shape
along the x-coordinate. Next, we analyze how the optical
surface evolves between focusing regions. For this, we
consider a small change in the z-coordinate given by
zðn; aÞ � ϵ

EQ-TARGET;temp:intralink-;e023;326;195zðn; aÞ − z 0 ¼ −
d2

2a2nλ
− z 0 ¼ ϵ: (23)

When ϵ > 0, z 0 is less than zðn; aÞ, corresponding to
elliptical surfaces. Analyzing the inequality given by
Eq. (20), it is easy to deduce that both hyperbolic and ellip-
tical regions may coexist in the same diffraction field for dif-
ferent diffraction n-orders, consequently the evolution of
each foci presents different topological properties. Analyzing
first the hyperbolic region and considering ϵ < 0, the optical
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surface geometry is a set of hyperbolae whose asymptotes
are

EQ-TARGET;temp:intralink-;e024;63;546y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 a2n

d2 þ 1
λz

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 b2n

d2 þ 1
λz

q x; (24)

where z satisfies zðn; aÞ < z < zðn; bÞ. It is easy to deduce
that the focusing region is generated when the asymptotes
becomes parallel, as sketched in Fig. 2. This behavior lets
us explain the transition from hyperbolic to parabolic regions
on a geometrical basis, allowing us to understand the physi-
cal properties of astigmatic optical systems.

The experimental setup consisted of a transformed ZP
illuminated with a plane wave. The transformed resulting
ZP with parameters a ¼ 1, b ¼ 0.8 and the resulting evolu-
tion of the diffraction field associated with the first focus is
shown in Fig. 3.

In circular ZPs, the geometry of the focusing regions is
points distributed along the z-axis. In the transformed ZP,

each focal point is split into two focusing line regions,
which is a classic effect of astigmatic systems; this is inter-
preted as bifurcation and morphogenesis effects at each
focus. We note that the synthesis of focusing regions occurs
when the asymptotes of the hyperbolic region becomes par-
allel, having two possibilities as shown in Fig. 4.

From this geometrical interpretation, we can predict the
angular momentum transfer, which implies a nonsymmetri-
cal evolution of the asymptotes. This can be done by propa-
gating the optical field in a medium with a variable refractive
index, leading to the generation of optical vortices. Other
important behavior, for the same scaled ZP, can be deduced
from Eq. (23). This is obtained considering the integer n
large enough such that parabolic-elliptical transitions are
generated as it is shown in Fig. 5.

Other interesting results can be observed when the trans-
formation is of the form x → ax, y → iay, which generates a
ZP with hyperbolic geometry as shown in Fig. 6. This trans-
mittance maintains focusing capability with a similar geom-
etry to the scaled ZP, as can be observed from the
experimental results.

The analysis of the diffraction field is analogous to a
scaled ZP. It is easy to show that two focusing regions

Fig. 2 Graphical description of the bifurcation effects. The focus is
split into two focusing regions following a parabolic–hyperbolic–para-
bolic sequence.

Fig. 3 Irradiance distribution for the diffraction field (a) transformed ZP type elliptic. (b) and (f) Show the
irradiance distribution for the focusing regions corresponding to a parabolic region. (c)–(e) Show regions
of hyperbolic behavior. The diffraction field was generated illuminating the ZP with a plane wave emerg-
ing from a He–Ne laser of 632.8 nm. The ZP transmittance was recorded in a high-resolution plate with
square geometry of 0.5 cm per side.

Fig. 4 The hyperbolic behavior bounded by the angular changes
among the asymptotes. This justifies the morphological changes of
the optical field.
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corresponding to the diffraction order n and −n occurs
on the same plane and that both regions are mutually
perpendicular.

4 Conclusions
We analyzed optical surfaces by means of differential geom-
etry, using Euler’s theorem to describe the spatial evolution
of the curvature function. This analysis led to the classifica-
tion of optical surfaces as elliptic, hyperbolic, and parabolic.
This last region is very important, because it corresponds to
the Fraunhoffer diffraction, as can be deduced from the phase
function in the diffraction integral. To obtain experimental
results, we employed two transformed ZPs, showing that
a simple transformation of the boundary condition is capable
of generating two interesting effects. One of these effects is
the morphogenesis process, the other is the generation of
bifurcation effects in the Fraunhoffer region, characterized
by splitting the spatial distribution of the focusing regions,
i.e., it consists of unfolding each focal point into multiple
focusing regions. The transition between parabolic–hyper-
bolic regions was analyzed through the angular changes
of its asymptotes. The parabolic regions occur when the
asymptotes becomes parallel. The behavior of the asymp-
totes’ evolution allows the calculation of the angular momen-
tum and the generation of optical vortices. These properties
can be implemented by breaking the symmetry in the angular
changes of the asymptotes through making the optical field
propagate in a medium with a variable refractive index.

The main results of the paper can be summarized as
follows:

Optical fields were analyzed by implementing differential
geometry models, allowing us to classify the optical regions
as hyperbolic, elliptic, or parabolic.

The parabolic region corresponds to the Fraunhoffer dif-
fraction and can be identified applying the condition

EQ-TARGET;temp:intralink-;sec4;326;107

�
∂2L
∂u∂v

�
2

−
∂2L
∂u2

∂2L
∂v2

¼ 0;

Fig. 5 Irradiance distribution for the diffraction field for the transformed ZP of elliptic geometry. (a) and
(f) Show the same geometry as shown in Fig. 3 and (b)–(e) regions of elliptic behavior.

Fig. 6 (a) Hyperbolic ZP and (b)–(f) evolution of the diffraction field
between two focusing regions. The illuminating parameters and the
size of the ZP are the same as described in Fig. 3.
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where L is the phase function. This condition is a conse-
quence of the Euler’s theorem. This approach avoids the cal-
culus of the diffraction integral for the Fraunhoffer region.

The transformation for each coordinate generates bifurca-
tion effects in the focusing regions, allowing the incorpora-
tion of tunable/selective spatial filtering.

Morphogenesis processes are generated between two
Fraunhoffer regions. When the optical field displays a hyper-
bolic behavior, it has two associated asymptotes that allow
the study of angular momentum transfer. The Fraunhoffer
regions correspond to the focusing regions, which occur
when the asymptotes become parallel.

The topological structure for each focus presents elliptical
or hyperbolic behavior, which implies that spatial filtering
process depends on the focus order determined by the
value of the integer n.

Finally, the model presented can be extended to imple-
ment other type of transformations of the form x → axþ
iby, y → cxþ idy, generating ZPs with different geometries
and offering applications to hybrid lenses design and
the implementation of tunable spatial filtering process.
Furthermore, the presented model has applications in the
implementation of optical tweezers, the analysis of which
will be presented in a forthcoming paper.
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