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Abstract. This study presents a Bayesian approach based on a color image demosaicking algorithm. The pro-
posed method is composed of pointwise and patchwise measurements. The estimation of the missing pixel is
formulated as a maximum a posteriori and a minimum energy function. By utilizing Bayesian theory and some
prior knowledge, the missing color information is estimated with a statistics-based approach. Under the maxi-
mum a posteriori and Bayesian framework, the desired target image corresponds to the optimal reconstruction
given the mosaicked image. Compared with existing demosaicking methods, the proposed algorithm improves
the CPSNR, S-CIELAB, FSIM, and zipper effect measurements while maintaining high efficiency. Moreover,
it handles Gaussian and Poisson noisy images better than other conventional images. © 2018 Society of Photo-
Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.57.5.053102]
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1 Introduction
To reduce cost, when a digital camera captures a color image,
only one color channel out of three color channels is cap-
tured. The single charge-coupled device sensor estimates
the amount of red, green, and blue in the pixel. This sensor
is covered with a color filter array (CFA), which causes each
pixel in the camera to capture only one color channel. As
pixels only have single color information, the other two
color components are reconstructed, and this process is
called demosaicking. One of the most famous CFA patterns
called Bayer CFA is shown in Fig. 1. In this pattern, each
group has nine pixels, in which five are green pixels located
in a quincunx manner, and the other four pixels are red and
green pixels.

Based on the Bayer pattern, various demosaicking meth-
ods were proposed in the past few decades.1,2 These methods
were developed to acquire a full-color image by utilizing the
color differences among three color planes in the spatial or
frequency domains. Especially, the adaptive color plane
interpolation is an early technique that uses an edge sensing
interpolation.3 This method uses three predictors and then
chooses one of them via an edge classifier using the
Laplacian second-order derivatives for the color components
and the gradient term for the green component. Based on this
approach, several methods were proposed. The adaptive fil-
tering for CFA demosaicking (AFD) uses frequency analysis
of Bayer CFA samples and tries to extract high-frequency
information by a properly designed filter.4 Based on this
analysis, AFD applies a low-pass filter for the luminance
of green positions to better reconstruct high-frequency infor-
mation. The high-frequency information at the red/blue
positions is then reconstructed by adaptive filtering of color
difference components. Color interpolation using the vari-
ance of color differences (VCD) is a heuristic approach
used to determine a distinct edge;5 in this approach, the

missing green values are grouped into plane and edge
regions. This method uses the heuristic demosaicking
approach. The high-order interpolation (HOI) method is
based on a Taylor series that uses a weighted median filter
to select a predictor.6 This method consists of two steps:
(1) interpolation to determine four estimates of a missing
color and (2) an edge orientation map-based classifier.
In Ref. 7, the authors proposed a 3 × 3 edge strength filter
that provides local, orientation-free luminance transition
information. The edge strength filter is useful in recognizing
the areas where a constant color difference assumption
may fail, thus improving the demosaicking performance.
By adding fixed weights to Ref. 8, an effective demosaicking
method based on the edge property (EDAEP) was proposed.9

The authors used an accurate edge detecting method to
general different weights to minimize false colors in the
edge areas. In Ref. 10, authors proposed to combine
voting-based directional interpolation (VDI) with weighting-
based interpolation for a more effective interpolation without
estimating the interpolation directions erroneously in a com-
plex region. The VDI is based on a gradient-inverse weighted
interpolation along the interpolation direction as determined
by a voting approach. The effective demosaicking based on
subband correlation (EDUSC) was proposed using a discrete
wavelet transform to discern edge pixels.11 The EDUSC
method uses a subimage subband correlation to enable
a good initial interpolation and accurate edge detection.
The EDUSC method has three parts: (1) initial interpolation
in each color channel, (2) missing pixel calculation from two
other color channels, and (3) iterative subband synthesis for
artifact reduction. In minimized-Laplacian residual interpo-
lation (MLRI),12 the authors estimated the tentative pixel
values by minimizing the Laplacian energies of the resid-
uals. Then, the authors incorporated the MLRI into the
gradient-based threshold-free algorithm to restore the demo-
saicking results more precisely.
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In this study, we propose a Bayesian approach-based
demosaicking algorithm (BD) with a hybrid method in con-
sideration of pointwise and pathwise similarity. The demo-
saicking algorithm recovers the underlying original true
color image from a mosaicked image. We formulate this
method as a maximum a posteriori (MAP) problem. Some
statistical justification should be investigated to solve the
MAP problem. Therefore, we present a statistical interpreta-
tion and a Bayesian motivation to clarify the MAP issue. The
MAP problem focuses on the distribution of the residual
value between the missing color pixel and its neighboring
color pixels. We examine the pointwise and patchwise mod-
els: the pointwise model preserves a large-scale structure,
and the patchwise model provides a geometric outline and
a fine-scale structure in a large search region. In the computa-
tional complexity concept, the pointwise model is simpler
and more efficient than the patchwise model. To utilize
the different advantages of point and patch structures, we
design an adaptive hybrid model as a linear combination

of the two models, and the parameter is adaptive to a stan-
dard deviation representing the structural feature. After the
interpolation of the missing green channel, we estimate
the red/blue channel by utilizing the uniform color difference
in a local region. Afterward, we apply demosaicking algo-
rithms to the Gaussian and Poisson noisy images to prove
the robustness of the proposed algorithm.

The rest of the paper is organized as follows: in Sec. 2, we
describe the proposed algorithm. In Sec. 3, some experimen-
tal results and the corresponding discussion are provided.
Finally, the conclusion is drawn in Sec. 4.

2 Proposed Algorithm

2.1 Bayesian Approach-Based Analysis

Let a mosaicked image be xðkÞ ¼ ½xRðkÞxGðkÞxBðkÞ�,
where k ¼ ði; jÞ ∈ R2 is the image coordinate index.
We assume that the true original color image y ¼
½yRðkÞyGðkÞyBðkÞ� is highly related to x, as shown in
Fig. 2. An estimator by is considered a Bayes estimator if
it minimizes E½Lðy;byÞjx� among all estimators. It is equiv-
alent to an MAP solution, in which Lðy;byÞ is a loss function
used as some function of the difference between estimated
and true values. The quadratic loss function Lðy;byÞ ¼
kby − yk2 is commonly used in signal processing, and λðyÞ
is a constant. The optimal Bayesian estimator (OBE) byOBE
is determined by minimizing E½Lðy;byÞjx� as
EQ-TARGET;temp:intralink-;e001;326;455

byOBE ¼ arg minby E½kby − yk2jx�: (1)

Based on the assumption of the quadratic loss function,13

the OBE is

EQ-TARGET;temp:intralink-;e002;326;401

byOBE ¼ E½yjx� ¼
X
y∈Λ

ypðyjxÞ ¼
P

y∈ΛypðxyÞ
pðxÞ ; (2)

where Λ is the large space of all configurations of y
(jΛj ¼ 256n if yðxÞ ∈ f0; : : : ; 255g). Here parameter n is

Fig. 1 7 × 7 CFA Bayer pattern.

Fig. 2 Observation of the low resolution for the Bayer CFA.
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the size of the data. By using the Bayes rules and the law of
total probability, we have

EQ-TARGET;temp:intralink-;sec2.1;63;730pðx; yÞ ¼ pðxjyÞpðyÞ; pðxÞ ¼
X
y∈Λ

pðxjyÞðyÞ:

Then, we can modify Eq. (2) into

EQ-TARGET;temp:intralink-;e003;63;676

byOBE ¼
P

y∈ΛypðxjyÞðyÞP
y∈ΛpðxjyÞðyÞ

: (3)

As shown in Eq. (3), to obtain the optimal estimationbyOBE, we determine the distribution of xjy and the distribu-
tion of y known as a prior distribution. To derive the distri-
butions, we need to utilize the observation in a local neighbor
region Sy centered at the to-be-interpolated pixel instead
of the pixels at the same position. In the local region Sy,
we assume that the prior distribution of y is a uniform

distribution, that is, pðyÞ ¼ 1∕jSyj. In this local neighbor
region, we assume that the observation has similar structures.
To achieve the optimal estimation, we use the following
approximation:13

EQ-TARGET;temp:intralink-;e004;326;708

1

jSyj
X
m∈Sy

yðkþmÞp½xðkÞjyðkþmÞ� →
X
y∈Λ

ypðxjyÞpðyÞ;

1

jSyj
X
m∈Sy

p½xðkÞjyðkþmÞ� →
X
y∈Λ

pðxjyÞpðyÞ: (4)

Then, Eq. (3) is changed into

EQ-TARGET;temp:intralink-;e005;326;616

byOBE ≈

1
jSyj

P
m∈Sy

yðkþmÞp½xðkÞjyðkþmÞ�
1

jSyj
P
m∈Sy

p½xðkÞjyðkþmÞ� ; (5)

Fig. 3 Illustration of the image statistic model. (a) Original image, (b) p½xðkÞjyðkþmÞ� in the R color
channel, (c) p½xðkÞjyðkþmÞ� in the G color channel, (d) p½xðkÞjyðkþmÞ� in the B color channel,
(e) p½xðkÞ − yðkþmÞjyðkþmÞ�; in the R color channel, (f) p½xðkÞ − yðkþmÞjyðkþmÞ� in the G
color channel, and (g) p½xðkÞ − yðkþmÞjyðkþmÞ� in the B color channel.
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where kþm can be any neighbor pixels in a square region
ð2wsþ 1Þ × ð2wsþ 1Þ. In this paper, we choose ws ¼ 1 for
high efficiency. The target is changed to find the distribution
of xðkÞjyðkþmÞ. Figures 3(b)–3(d) show that it does not
have the obvious statistical property for all the three color
channels. Based on the histogram of residual images, we
derive the distribution of xðkÞ − yðkþmÞjyðkþmÞ instead
of xðkÞjyðkþmÞ. Figures 3(e)–3(g) indicate that xðkÞ −
yðkþmÞjyðkþmÞ has a clear statistical feature. Two
well-known distributions, namely, Gaussian and Laplacian,
have this kind of form. We compare these two kinds of dis-
tributions with different parameters in Fig. 4. The Laplacian
distribution fits the statistical property better than the
Gaussian distribution. The distribution of xðkÞjyðkþmÞ
follows the Laplacian distribution.

Equation (5) is modified into

EQ-TARGET;temp:intralink-;e006;63;576

byGðkÞ ¼
P

m∈Sy ỹGðkþmÞCðyÞP
m∈Sy

CðyÞ ; (6)

where CðyÞ ¼ exp½−kvGðkÞ − vGðkþmÞk1∕α�.
The weight parameter α plays an important role in the sta-

tistic model. For a different weight parameter α, the matching
has varying features, as shown on the left in Fig. 4. In the
figure, we depict the empirical histogram of residual images
and compare the empirical histogram with the prior statistical
model of varying parameters. From the top-left to the
bottom-left, the weight parameter α is 0.35, 0.36, and 0.4.
The top one represents the parameters with the smallest α,

which achieves good matching at zero but fails at tails.
The bottom one represents the parameters with the largest
α, which achieves good matching at tails but fails at zero.
In Fig. 4, the width plays a more important role than height
because when the residual is zero, this pixel is in the smooth
region, which is easy to be reconstructed with conventional
methods. In terms of image restoration, the focus is on the
complex region such as edges or textures, that is, the tails of
the distribution. The tails are controlled by the width. To
achieve the best matching with the empirical histogram,
we should assign adaptive weight parameters to different
pixel values. That is, large residual values should have large
weight parameters, and small residual values should have
small ones. Therefore, we design an adaptive weight param-
eter that is proportional to the variance of the to-be-interpo-
lated pixel in a local region

EQ-TARGET;temp:intralink-;e007;326;576α ¼ λσm ¼
X
m∈Sy

λkxðkþmÞ − xk
jSyj

; (7)

where x is the expected value in the local region Sy with size
ð2wsþ 1Þ × ð2wsþ 1Þ. Through Eq. (6), we can determine
the original image yðkþmÞ to obtain the optimal estimation
of the color image. The original image is partially unknown,
but it is also partially given in the mosaicked image. Thus, in
Eq. (6), we substitute the unknown yðkþmÞ into the esti-
mated direction value of the given mosaicked color pixel
values.

Fig. 4 Matching of the statistical model and empirical histogram with different parameters of
the Gaussian and Laplacian distributions. (a) f ðxÞ ¼ 3.8 × 10−5 expð−0.026x2Þ, (b) f ðxÞ ¼ 4.6 ×
10−5 expð−0.16jx jÞ, (c) f ðxÞ ¼ 2.8 × 10−5 expð−0.0081x2Þ, (d) f ðxÞ ¼ 4.2 × 10−5 expð−0.137jx jÞ,
(e) f ðxÞ ¼ 1.7 × 10−5 expð−0.0028x2Þ, and (f) f ðxÞ ¼ 3 × 10−5 expð−0.096jx jÞ.
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2.2 Green Channel Reconstruction Using a Bayesian
Framework

According to the discussion in Sec. 2.1, we first restore the
green channel and then reconstruct the red/blue channel
based on the entire green channel and the given mosaicking
color pixels. Figure 1 shows that a missing green color pixel
at a given red/blue color pixel is surrounded by the four near-
est given green color pixels in the north, south, west, and east
directions. We still have the red/blue color pixel in the miss-
ing green color pixel. Therefore, we should consider this
feature to reconstruct the missing green color pixel. The
mosaicked image has a special feature that has pixel values
in all locations. Based on this specific property of mosaick-
ing image, instead of directly using the green color pixels
in the four directions in Eq. (6), we adopt the Taylor
approximation14 to provide the approximated four-direction
color values by the given color pixel values
EQ-TARGET;temp:intralink-;e008;63;561

yGðkþmÞ ¼ xGðkþmÞ þ xRðkÞ − xRðkþ 2mÞ
2

þ xRðkþ 3mÞ þ xRðk −mÞ − 2xRðkþmÞ
8

:

(8)

In Eq. (6), we have two candidates for distance
kxðkÞ − yðkþmÞk, namely, pointwise and patchwise. The
patchwise distance aims to preserve the structure of the
images in a large local region. In a small search region, espe-
cially in terms of image restoration, pointwise similarity
plays an important role in addressing a large-scale structure.
Both pointwise and patchwise distances should be consid-
ered to estimate the missing color pixels. Therefore, we pro-
pose the following hybrid Bayesian estimator (HBE)-BD
algorithm:
EQ-TARGET;temp:intralink-;e009;63;366

CðyÞ ¼ exp

�
−kvGðkÞ − vGðkþmÞk1

2α

�

þ μ exp

�
−kxRðkÞ − xRðkþmÞk1

α

�
; (9)

where vGðkÞ and vGðkþmÞ are the patch vectors containing
the given center red pixel and four neighboring green pixels.
The neighboring region Sy is shown in Fig. 5. In this algo-
rithm, μ ¼ 0.1.

For images with complex features, such as various direc-
tions or textures, Eq. (6) can obtain good performance. For
the two special cases of horizontal and vertical edges, we
should apply the given pixels in the horizontal or vertical
direction to reconstruct the missing color pixel. Horizontal
and vertical directions exist in most images and occupy
a large proportion in one image. Therefore, we estimate
the two directions by modifying Eq. (6) and adopting the
horizontal and vertical components as follows:
EQ-TARGET;temp:intralink-;e010;326;653

byHGðkÞ ¼
P

m∈SHy ỹGðkþmÞCðyÞP
m∈SHy

CðyÞ ;

byVGðkÞ ¼
P

m∈SVy ỹGðkþmÞCðyÞP
m∈SVy

CðyÞ ; (10)

where SHy and SVy are the regions containing the given color
pixels in the horizontal and vertical directions and with size
1 × ð2wsþ 1Þ and ð2wsþ 1Þ × 1 (Fig. 5), respectively.
Here, CðyÞ is adopted in Eq. (9). Then, a criterion is designed
to distinguish the direction as follows:
EQ-TARGET;temp:intralink-;e011;326;500

yGðkÞ ¼

8><
>:

byHGðkÞ; if δðkÞ > T1byVGðkÞ; if δðkÞ < −T1byGðkÞ; otherwise

;

δðkÞ ¼
8<
:

1; if minðDHðkÞ;DVðkÞ; T2Þ ¼ DHðkÞ
−1; if minðDHðkÞ;DVðkÞ; T2Þ ¼ DVðkÞ
0; otherwise

;

DH ¼ x � f þ ðx − byHGÞ � f;
DV ¼ x � f 0 þ ðx − byVGÞ � f 0; (11)

where T is the threshold, andDH andDV are normalized. The
interpolated full green channel is then obtained.

2.3 Red/Blue Plane Reconstruction

As we fully obtained a green plane in Sec. 2.2, we now pop-
ulate red/blue pixels in blue/red or green locations. In the
reconstruction of the red/blue color channel, we use the
restored green color channel because of the strong correla-
tion among the color channels. To reconstruct the missing

Fig. 5 Structure of the neighboring region. (a) SH
y is the region containing the given color pixels in the

horizontal direction and with size 1 × ð2ws þ 1Þ, (b) SV
y is the region containing the given color pixels in

the vertical direction and with size ð2ws þ 1Þ × 1, and (c) SRB
y contains the four given red pixels with size

ð2ws þ 1Þ × ð2ws þ 1Þ.
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red pixels in the given blue positions, four given red pixels
are located around the given blue pixel (Fig. 1). We use the
color difference based on the reconstructed green pixels as
follows:

EQ-TARGET;temp:intralink-;e012;63;708

yRðkÞ ¼ yGðkÞ þ
P

m∈SRBy ΔðkþmÞCðyÞP
m∈SRBy CðyÞ ;

ΔðkþmÞ ¼ xRðkþmÞ − yGðkþmÞ;

CðyÞ ¼ exp

�
−kvRðkÞ − vRðkþmÞk1

β

�
;

þ μ exp

�
−kyGðkÞ − yRðkþmÞk1

β

�
;

β ¼ α

2
; (12)

where vRðkÞ and vRðkþmÞ are the patch vectors including
the four given red pixels located in the northwest, northeast,
southwest, and southeast, and SRBy contains the same four
given red pixels with size ð2wsþ 1Þ × ð2wsþ 1Þ as shown
in Fig. 5(c).

For the missing red/blue pixel in the given G pixel,
Eq. (13) is applied as shown in Fig. 1.

EQ-TARGET;temp:intralink-;e013;63;485

yRðkÞ ¼ yGðkÞ þ
P

m∈SRGy ΔðkþmÞCðyÞP
m∈SRGy CðyÞ ;

ΔðkþmÞ ¼ xRðkþmÞ − yGðkþmÞ;

CðyÞ ¼ exp

�
−kyGðkÞ − yRðkþmÞk1

β

�
; (13)

where SRGy contains the two given red pixels above and
below the given green pixel.

2.4 Refinement of Each Color Channel

Once the green channel is populated using Eq. (11), for the
given red pixels, the green channel can be further refined as

EQ-TARGET;temp:intralink-;e014;63;319

yRðkÞ¼xRðkÞþκ½byGðkÞ−xRðkÞ�

þð1−κÞ
P

½m∈SðxÞ�ΔðkþmÞbxGðkþmÞP
½m∈SðxÞ�

ΔðkþmÞ ;

bxGðkþmÞ¼xGðkþmÞ−xRðkþmÞ;

ΔðkþmÞ¼
�
jbyGðkÞ−xGðkþmÞj

þ
X

a∈f0;2gjxRðkþamÞ−xR½kþðaþ2Þm�j
�

−1
;

(14)

where κ is the weight parameter assumed to be 0.1. Then, we
refine the red/blue channel by the modified green channel as
in Sec. 2.2. We iteratively refine the green channel and red/
blue channel by using the above procedure until we obtain
the optimal results or reach the stop condition.

3 Experimental Results
This section presents the detailed performance comparison.
Simulations were conducted on 512 × 768 size Kodak
dataset15 and two high-frequency images16 to assess the
superiority of the proposed method compared with the con-
ventional methods. The test images are shown in Fig. 6.
Eight methods were selected as benchmarks: AFD,4 VCD,5

HOI,6 ESF,7 EDAEP,8 VDI,10 EDUSC,11 and MLRI.12 We
evaluated the objective performance in terms of CPSNR,
S-CIELAB ΔE�, FSIM, and the zipper effect (ZE) aside
from the visual performance. Afterward, we apply the
Gaussian and Poisson noise to the Kodak dataset and provide
the CPSNR results through a comparison with the existing
demosaicking methods. Our simulation was conducted on an
Intel Core 2 Duo CPU E8500 @ 3.16 GHz. The window size
ws was set to 2.

3.1 Objective Performance Analysis

We first compare the objective performances measured in
terms of CPSNR. Table 1 displays the comparison of the
CPSNR results of the presented method with those of
other benchmark methods. Seven methods were selected
as benchmarks: AFD, VCD, HOI, ESF, EDAEP, VDI, and
MLRI. As shown in Table 1, the proposed method has
the best average CPSNR, and the gain are 1.229 (AFD),
0.916 (VCD), 1.473 (HOI), 0.519 (ESF), 2.786 (EDAEP),
2.699 (VDI), and 1.233 (MLRI). Although images 4, 15,
16, 23, and 24 did not show the best CPSNR using the pro-
posed method, our method still ranks second. “Diff.” shows
the CPSNR difference between BD and the corresponding
method. “Rank” indicates the rank of the BD method com-
pared with those of the benchmark methods. The best per-
formances are marked in bold.

To numerically evaluate the results of visual performance,
we used the S-CIELAB ΔE� metric.17 S-CIELAB ΔE� met-
ric is a spatial form of the CIELAB ΔE� developed for
determining the distance between the S-CIELAB ΔE� rep-
resentation of an original and that of the reconstructed image.

Fig. 6 (a) 24 images of the Kodak dataset, (b) high-frequency image
TE216, and (c) high-frequency image TE253.
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Table 1 CPSNR performance comparison on the Kodak images (the best performances are marked in bold).

Image AFD VCD HOI ESF EDAEP VDI MLRI BD Rank

1 37.558 38.419 36.564 39.909 34.919 35.343 36.805 40.676 1

2 40.7 40.433 40.827 40.821 39.736 39.607 40.791 41.565 1

3 42.686 42.537 42.71 42.554 41.749 41.318 42.987 43.517 1

4 41.055 40.769 40.716 40.447 40.034 39.56 41.49 41.363 2

5 38.039 37.783 37.634 37.55 35.782 36.542 37.657 38.68 1

6 38.036 39.999 38.807 41.217 36.845 36.98 39.131 41.386 1

7 42.907 42.133 42.722 42.154 41.281 41.828 42.841 43.223 1

8 35.23 36.289 34.855 37.189 32.832 33.995 34.894 37.631 1

9 42.57 42.85 42.391 42.959 40.902 41.687 42.377 43.439 1

10 42.699 42.465 42.268 42.602 40.978 41.162 42.419 43.154 1

11 39.338 39.889 39.128 40.693 37.476 37.685 39.305 40.926 1

12 42.774 43.43 43.027 43.801 41.669 41.705 43.268 44.277 1

13 33.769 34.798 32.767 36.106 31.484 31.233 33.141 36.326 1

14 37.166 37.012 37.173 36.113 36.268 36.336 37.615 37.898 1

15 39.839 39.695 39.054 39.274 38.805 38.071 39.339 39.808 2

16 41.148 43.713 42.467 44.772 40.441 40.65 42.879 44.289 2

17 41.392 41.519 40.852 41.953 39.631 39.639 40.985 42.107 1

18 37.118 37.116 36.449 37.72 35.379 34.967 36.585 37.86 1

19 40 40.506 39.82 41.494 37.752 38.869 39.954 41.684 1

20 41.117 41.128 40.629 41.523 39.26 39.744 40.681 41.752 1

21 38.676 39.16 37.915 40.297 36.452 36.971 38.181 40.375 1

22 38.512 38.072 38.031 38.409 37.173 37.123 38.614 38.965 1

23 43.149 42.995 43.483 42.449 42.356 41.309 43.81 43.726 2

24 34.832 35.103 34.162 35.342 33.728 32.708 34.704 35.177 2

Avg. 39.596 39.909 39.352 40.306 38.039 38.126 39.602 40.825 1

Diff. 1.229 0.916 1.473 0.519 2.786 2.699 1.223

Table 2 S-CIELAB ΔE� results on Kodak dataset for several demosaicking methods (the best performances are marked in bold).

Image AFD VCD HOI ESF EDAEP VDI MLRI BD Rank

1 1.1989 1.1246 1.2505 0.9954 1.4736 1.368 1.2032 0.9648 1

2 0.6427 0.6818 0.6442 0.6634 0.7029 0.7283 0.6615 0.6061 1

3 0.4889 0.501 0.4916 0.5095 0.5243 0.5413 0.4706 0.4632 1

4 0.6721 0.6907 0.7003 0.7266 0.7285 0.7953 0.6406 0.6595 2

5 1.0136 1.0561 1.0641 1.2419 1.2706 1.1074 1.1107 1.0406 2
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Table 2 (Continued).

Image AFD VCD HOI ESF EDAEP VDI MLRI BD Rank

6 0.9571 0.8125 0.8515 0.7413 0.9889 0.9498 0.8347 0.755 2

7 0.5229 0.5942 0.5277 0.5838 0.6637 0.5641 0.5364 0.5081 1

8 1.4127 1.2863 1.4158 1.1904 1.8245 1.4773 1.4597 1.1727 1

9 0.582 0.5747 0.6007 0.5852 0.6529 0.6238 0.5772 0.5485 1

10 0.5367 0.5563 0.5715 0.569 0.6102 0.617 0.5554 0.5327 1

11 0.8032 0.763 0.7803 0.7223 0.9226 0.8587 0.7695 0.7097 1

12 0.5062 0.4779 0.4837 0.4655 0.5501 0.529 0.4794 0.4405 1

13 1.6959 1.6411 1.858 1.4771 2.0124 2.0417 1.8216 1.5482 2

14 1.0179 0.995 0.9873 1.0433 1.1376 1.0914 0.9364 0.8894 1

15 0.6423 0.6712 0.7007 0.7215 0.6907 0.7257 0.6829 0.6673 2

16 0.6983 0.5556 0.5979 0.508 0.7042 0.6892 0.5628 0.5828 4

17 0.5419 0.5529 0.564 0.5426 0.6409 0.6175 0.5713 0.5365 1

18 1.0077 1.0575 1.0694 1.0919 1.16 1.1466 1.0518 1.0563 3

19 0.7821 0.7746 0.8036 0.7357 0.9565 0.8466 0.7853 0.7343 1

20 0.5459 0.5621 0.5764 0.5553 0.6474 0.5785 0.675 0.5458 1

21 0.9291 0.9172 0.9886 0.8606 1.0905 1.0189 0.962 0.8917 2

22 0.9421 1.0344 0.9805 1.0229 1.0563 0.9952 0.914 0.9243 2

23 0.5009 0.528 0.4877 0.5596 0.5359 0.5439 0.4709 0.4872 2

24 1.0181 1.0775 1.0992 1.1017 1.1561 1.1183 1.143 1.1416 6

Avg. 0.8191 0.8119 0.8373 0.8006 0.9459 0.8989 0.8282 0.767 1

Diff. 0.0522 0.045 0.0703 0.0337 0.1789 0.1319 0.0612

Table 3 FSIM results on the Kodak dataset for several demosaicking methods (the best performances are marked in bold).

Image AFD VCD HOI ESF EDAEP VDI MLRI BD Rank

1 0.9986 0.9987 0.998 0.999 0.9974 0.9975 0.9983 0.9992 1

2 0.9985 0.9984 0.9982 0.9984 0.9981 0.9976 0.9983 0.9986 1

3 0.9993 0.9992 0.9992 0.9992 0.9991 0.9986 0.9993 0.9994 1

4 0.9992 0.9992 0.9989 0.9992 0.9989 0.9986 0.9992 0.9992 1

5 0.9989 0.9988 0.9988 0.9988 0.9982 0.9985 0.9988 0.9991 1

6 0.9987 0.999 0.9987 0.9993 0.9982 0.9982 0.9989 0.9993 1

7 0.9995 0.9995 0.9995 0.9995 0.9993 0.9993 0.9995 0.9996 1

8 0.9978 0.9982 0.9975 0.9985 0.9963 0.9972 0.9977 0.9987 1

9 0.9992 0.9992 0.999 0.9993 0.9988 0.9988 0.9991 0.9993 1

10 0.9993 0.9992 0.9991 0.9993 0.9989 0.9988 0.9992 0.9993 1
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Table 3 (Continued).

Image AFD VCD HOI ESF EDAEP VDI MLRI BD Rank

11 0.9988 0.9989 0.9986 0.9991 0.9981 0.9981 0.9988 0.9991 1

12 0.9991 0.9991 0.999 0.9993 0.9987 0.9987 0.9991 0.9993 1

13 0.9974 0.9978 0.9962 0.9985 0.9954 0.9953 0.9969 0.9987 1

14 0.9987 0.9987 0.9985 0.9985 0.9983 0.9979 0.9987 0.9989 1

15 0.9986 0.9987 0.9978 0.9985 0.998 0.9972 0.9983 0.9984 4

16 0.999 0.9994 0.9991 0.9995 0.9988 0.9988 0.9993 0.9994 2

17 0.9993 0.9993 0.9991 0.9994 0.9989 0.999 0.9993 0.9994 1

18 0.9983 0.9982 0.9977 0.9986 0.9973 0.997 0.9978 0.9986 1

19 0.999 0.9991 0.9987 0.9992 0.9984 0.9986 0.999 0.9993 1

20 0.9991 0.999 0.9989 0.9991 0.9987 0.9987 0.9991 0.9992 1

21 0.9985 0.9986 0.9981 0.9989 0.9976 0.9978 0.9984 0.9989 1

22 0.9984 0.9982 0.9981 0.9983 0.9978 0.9978 0.9985 0.9985 1

23 0.9993 0.9993 0.9993 0.9992 0.9992 0.999 0.9994 0.9994 1

24 0.9975 0.9975 0.9968 0.9977 0.9966 0.9959 0.9973 0.9976 2

Avg. 0.9988 0.9988 0.9985 0.9989 0.9981 0.998 0.9987 0.999 1

Diff. 0.0003 0.0002 0.0006 0.0001 0.0009 0.001 0.0003

Table 4 ZE results on the Kodak dataset for several demosaicking methods (the best performances are marked in bold).

Image AFD VCD HOI ESF EDAEP VDI MLRI BD Rank

1 0.384 0.348 0.396 0.299 0.461 0.442 0.416 0.276 1

2 0.241 0.241 0.239 0.232 0.268 0.257 0.24 0.214 1

3 0.128 0.122 0.127 0.111 0.146 0.142 0.128 0.106 1

4 0.223 0.229 0.233 0.218 0.26 0.259 0.226 0.209 1

5 0.308 0.314 0.307 0.294 0.383 0.338 0.324 0.278 1

6 0.297 0.247 0.266 0.206 0.322 0.312 0.268 0.207 2

7 0.145 0.158 0.147 0.149 0.181 0.158 0.153 0.134 1

8 0.403 0.373 0.401 0.338 0.476 0.422 0.425 0.326 1

9 0.181 0.172 0.2 0.16 0.229 0.221 0.218 0.164 2

10 0.171 0.172 0.191 0.161 0.218 0.21 0.2 0.16 1

11 0.25 0.231 0.238 0.194 0.282 0.273 0.24 0.193 1

12 0.151 0.134 0.15 0.114 0.176 0.169 0.151 0.117 2

13 0.475 0.45 0.495 0.408 0.538 0.537 0.504 0.397 1

14 0.282 0.261 0.277 0.234 0.337 0.316 0.289 0.234 1

15 0.212 0.213 0.226 0.204 0.245 0.238 0.23 0.203 1
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Table 4 (Continued).

Image AFD VCD HOI ESF EDAEP VDI MLRI BD Rank

16 0.209 0.157 0.181 0.128 0.223 0.213 0.178 0.151 2

17 0.174 0.171 0.189 0.156 0.227 0.215 0.193 0.153 1

18 0.346 0.352 0.367 0.341 0.4 0.392 0.371 0.334 1

19 0.273 0.254 0.285 0.233 0.335 0.304 0.29 0.231 1

20 0.243 0.246 0.253 0.232 0.274 0.259 0.248 0.231 1

21 0.285 0.273 0.299 0.244 0.335 0.318 0.308 0.246 2

22 0.298 0.316 0.315 0.299 0.339 0.32 0.307 0.286 1

23 0.154 0.166 0.161 0.16 0.173 0.165 0.161 0.151 1

24 0.259 0.261 0.27 0.241 0.319 0.284 0.281 0.237 1

Avg. 0.254 0.244 0.259 0.223 0.298 0.282 0.265 0.218 1

Diff. 0.036 0.026 0.041 0.005 0.08 0.064 0.046

Fig. 7 (a) Part of the original Kodak #8 image. Perceived image quality comparison using various dein-
terlacing methods: (b) AFD, (c) VCD, (d) HOI, (e) ESF, (f) EDAEP, (g) VDI, (h) MLRI, and (i) the proposed
method.
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In terms of the S-CIELAB ΔE� measure in the Kodak data-
set, the BD method provides higher performance on average
than all the other methods (AFD, VCD, HOI, ESF, EDAEP,
VDI, and MLRI) with factors of 0.0522, 0.0450, 0.0703,
0.0337, 0.1789, 0.1319, and 0.0612, respectively, as shown
in Table 2.

To further evaluate the performance of the BDmethod, we
adopted a third metric called the FSIM index.18 The best
FSIM result is 1.0, whereas a smaller FSIM indicates poor
visual quality. Table 3 presents the numerical FSIM results
on the Kodak dataset for various benchmarks. The BD
method outperforms the other methods (AFD, VCD, HOI,
ESF, EDAEP, VDI, and MLRI) at 0.0003, 0.0002, 0.0006,
0.0001, 0.0009, 0.0010, and 0.0003 on average, respectively.

The ZE is one of the annoying artifacts in demosaicking.
Lu and Tan introduced a measurement to evaluate the exist-
ence of the ZE. The result of the ZE represents the percent-
age of the pixel containing the ZE. Thus, the smaller the
number is, the fewer the images containing the ZE. Table 4
shows that the BD method generated the smallest ZE.
The BD method outperforms the other methods (AFD, VCD,
HOI, ESF, EDAEP, VDI, and MLRI) at 0.036, 0.026, 0.041,
0.005, 0.080, 0.064, and 0.046 on average, respectively.

3.2 Visual Performance Analysis

In this section, we provide the subjective performance com-
parison between the BD method and the conventional meth-
ods. Figures 7–9 show the reconstructed images and their
subjective performances in the visual comparison. Aliasing
occurs near the image details because of signal information
loss and poor restoration of high-frequency components.
Therefore, the focus of the evaluation of the reconstruction
of images should be the quality of the image edges. Figure 7
shows the zoomed demosaicking images on Kodak #8. From
Fig. 7, we could see that our proposed algorithm has better
visual performance at the white color reconstruction. One of
evidences is that other conventional methods results show
orange-blue color artifact. For example, the VDI method
shows good visual quality seen in Fig. 7(g); however, com-
pared with other subjective performances, VDI is much
poorer than our algorithm, such as CPSNR, VDI is almost
4 dB less than our proposed algorithm.

To evaluate subjective performance in high-frequency
images, we adopted a color radial resolution chart.16 We
tested eight methods on the TE216 and TE253 images, and
the results are shown in Figs. 8 and 9. We noticed that
the proposed method provides the best visual quality in

Fig. 8 (a) Original TE216 image. Perceived image quality comparison using various deinterlacing meth-
ods: (b) AFD, (c) VCD, (d) HOI, (e) ESF, (f) EDAEP, (g) VDI, (h) MLRI, and (i) the proposed method.
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high-frequency areas, whereas the conventional methods still
showed orange-purple artifacts.

We have requested 20 observers to assess the quality of
the result images that are produced by proposed method and
the conventional methods. All observers provide a score for
each result image, from 0 to 10. If the result image is iden-
tical to the original image, score 10 is provided. If result
image is poorer than the original image, lower score is
provided. Table 5 shows average scores evaluated by the
20 observers. From Table 5, we could conclude that our
proposed method has highest favor from the observers’
evaluation.

3.3 Performance Comparison in the Noise Condition

Noise is introduced during image acquisition from the sen-
sor. To evaluate the robustness of the proposed method, we

conducted experiments on Kodak images contaminated by
applying Gaussian and Poisson noises. Five selected conven-
tional methods were used for comparison: VCD, HOI, ESF,
EDAEP, and EDUSC.

3.3.1 Gaussian noise case

Table 6 shows the CPSNR results under the condition of
Gaussian noise. Our approach showed the best CPSNR, pro-
viding a gain of 0.195 dB compared with the ESF. The pro-
posed method obtained 5 out of 24 images in the second-
order in the noise-free images and two images (#16 and
#19) in the second-order in the Gaussian noisy images.

3.3.2 Poisson noise case

Some denoising approaches are based on the assumption that
noise is Gaussian distributed. This assumption has been
widely accepted, but recent research on denoising has con-
sidered noise as Poisson distributed given the improvement
of the sensor with a reduced fixed pattern noise. The dom-
inant noise type is the photon shot noise, which is strongly
related to signal. Therefore, to verify the performance of the
proposed algorithm in noisy images, we show the results for
the Poisson noisy images of the Kodak dataset. Table 7
presents the CPSNR results on the demosaicking algorithms

Fig. 9 (a) Original TE253 image. Perceived image quality comparison using various deinterlacing meth-
ods: (b) AFD, (c) VCD, (d) HOI, (e) ESF, (f) EDAEP, (g) VDI, (h) MLRI, and (i) the proposed method.

Table 5 Subjective performance assessment by observers’
evaluation.

Method VCD HOI ESF EDAEP EDUSC BD Rank

Score 9.2098 9.2404 9.118 9.3016 9.3475 9.4546 1
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for Poisson noisy images. The proposed algorithm surpasses
other conventional methods, and it improves images by
0.441 dB compared with the ESF. Similar to the Gaussian
case, only 2 out of 24 images are ranked in the second-
order for our proposed method, and the remaining ones
are ranked in the first-order.

3.4 Performance Test in a High-Frequency Area

To compare visual performance in high-frequency images,
we adopted two original high-frequency images: TE216
and TE253.16 We tested seven methods on both images
shown in Figs. 6(b) and 6(c). Figures 8 and 9 show the

reconstructed images of TE216 and TE253. The proposed
method provides the best visual quality in the high-frequency
area, followed by the MLRI method. It can be found from
Fig. 8 that the VCD method shows the best visual quality
in the high-frequency area, followed by the proposed
method. For Fig. 9 image, the proposed method outper-
formed all the other benchmark methods. Although the pro-
posed method provides the best objective performance, it is
well known that the objective metrics (CPSNR, S-CIELAB,
and FSIM) do not always rank quality of an image in the
same way that observer does. There are many other factors
considered by the human visual system and the brain, and
therefore the perceived result could be different.

Table 6 CPSNR results on the Kodak dataset with Gaussian noise
(σ ¼ 10, the best performances are marked in bold).

VCD HOI ESF EDAEP EDUSC BD Rank

1 32.861 32.379 33.247 31.694 32.709 33.328 1

2 33.379 33.629 33.457 33.443 33.485 33.755 1

3 33.792 33.986 33.794 33.897 33.898 34.071 1

4 33.465 33.654 33.409 33.562 33.564 33.658 1

5 32.692 32.817 32.636 32.164 32.848 33.116 1

6 33.297 33.186 33.634 32.572 32.913 33.666 1

7 33.672 33.981 33.699 33.793 33.859 33.981 1

8 32.17 31.639 32.583 30.584 31.654 32.731 1

9 33.801 33.927 33.836 33.737 33.842 34.045 1

10 33.754 33.912 33.791 33.744 33.847 34.036 1

11 33.237 33.231 33.444 32.754 33.225 33.587 1

12 33.906 34.05 33.976 33.875 33.897 34.198 1

13 31.556 30.566 32.142 29.767 31.291 32.151 1

14 32.435 32.663 32.114 32.34 32.635 32.876 1

15 33.471 33.477 33.375 33.468 33.509 33.658 1

16 33.823 33.863 33.992 33.542 33.592 33.705 4

17 33.626 33.674 33.701 33.469 33.711 33.905 1

18 32.517 32.434 32.74 31.993 32.682 32.907 1

19 33.426 33.381 33.555 32.863 33.319 33.542 2

20 34.371 34.431 34.459 34.105 34.484 34.644 1

21 33.126 32.927 33.408 32.443 33.116 33.421 1

22 32.828 32.992 32.927 32.733 32.985 33.261 1

23 33.856 34.118 33.787 34.037 33.973 34.135 1

24 31.707 31.391 31.839 31.169 31.639 31.85 1

Avg. 33.199 33.18 33.314 32.823 33.195 33.509 1

Diff. 0.311 0.33 0.195 0.687 0.315

Table 7 CPSNR results on the Kodak dataset with Poisson noise
(σ ¼ 10, the best performances are marked in bold).

VCD HOI ESF EDAEP EDUSC BD Rank

1 37.946 36.255 39.257 34.703 37.37 39.889 1

2 39.905 40.282 40.249 39.304 40.04 40.921 1

3 41.447 41.64 41.481 40.877 41.637 42.262 1

4 40.044 40.047 39.789 39.459 40.098 40.502 1

5 37.441 37.333 37.238 35.582 37.674 38.306 1

6 39.202 38.223 40.226 36.453 37.502 40.346 1

7 41.041 41.569 41.076 40.438 41.61 41.933 1

8 35.94 34.591 36.775 32.679 34.784 37.18 1

9 41.388 41.104 41.471 39.988 41.221 41.849 1

10 41.184 41.104 41.303 40.102 41.282 41.747 1

11 39.297 38.641 40.006 37.154 38.921 40.209 1

12 41.512 41.35 41.803 40.359 41.055 42.153 1

13 34.569 32.631 35.814 31.388 33.961 36.014 1

14 36.68 36.845 35.857 36.019 37.052 37.517 1

15 39.134 38.587 38.751 38.356 38.899 39.248 1

16 42.265 41.384 43.011 39.742 40.302 42.51 2

17 40.807 40.259 41.17 39.194 40.922 41.323 1

18 36.853 36.255 37.45 35.219 37.133 37.575 1

19 39.662 39.145 40.478 37.326 39.335 40.643 1

20 40.159 39.785 40.455 38.637 40.338 40.69 1

21 38.541 37.47 39.521 36.127 38.317 39.589 1

22 37.593 37.582 37.905 36.812 37.885 38.426 1

23 41.737 42.174 41.332 41.335 41.866 42.299 1

24 34.861 33.973 35.071 33.559 34.546 34.93 2

Avg. 39.134 38.676 39.479 37.534 38.906 39.919 1

Diff. 0.786 1.243 0.441 2.385 1.013
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4 Conclusion
In this study, we proposed a demosaicking algorithm using
an HBE in consideration of both pointwise and patchwise
similarities. We introduced a Bayesian estimator to formulate
the demosaicking model with MAP measurement. Our pro-
posed method has superior performance in both noise-free
and noisy images compared with conventional methods in
both objective and subjective performances.
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