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Abstract. An analysis of beam combining quality and the influence of beam profile on tilt and piston error
tolerances is presented. We define beam combining performance metrics in terms of powers contained within
a specific radius. It is shown that the selection of this radius has a significant effect on the obtained tolerance
values. We have taken the tolerance limit as a decrease in intensity of 20%, for piston and tilt error. In addition,
for the tilt error, as tolerance limit, we have taken a pointing error equal to the diffraction limit. Our analysis
demonstrates that the beam combining performance metric based on the diffraction-limited radius functions
best for describing the impact of aberrations on the coherent combined laser array optical system. Our results
lead to two important conclusions. First, the tilt error has a greater impact on the degradation of beam quality.
Second, a Gaussian beam has greater tolerance for both errors than a top-hat beam. © The Authors. Published by SPIE
under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the
original publication, including its DOI. [DOI: 10.1117/1.OE.58.6.066103]
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1 Introduction
High average power lasers have found their application in
materials processing,1 defense systems,2,3 and fundamental
research.4 The challenge is not only to obtain multi-kilowatt
output power but also to maintain near diffraction-limited
beam quality. Solid-state lasers deserve special attention
due to their compactness, performance, and reliability.5

However, the development of the power scaling of such
lasers has thus far been hampered by beam-quality degrada-
tion due to thermo-optical phenomena.6–8 To date, several-
kilowatt average powers from single-aperture solid-state
lasers have been demonstrated.9–11

Another approach for power scaling is to use multiple
lasers with relatively small output powers and combine them
to obtain a single-aperture laser propagation characteristic.
This class of techniques is called laser beam combining,
and it can be divided into two general groups: coherent
beam combining (CBC) and wavelength beam combining
(WBC).12 In CBC, all the individual beams must be mutually
coherent, and this type of beam combining technique can be
subdivided into two classes depending on the configuration
used: side-by-side (tiled aperture), for which the divergence
angle is reduced but the beam size is increased with respect
to each individual beam, or filled-aperture, in which a beam
combining element is used to obtain a single beam of the
same beam size and divergence as the individual beams
from which it is constructed. A special case of beam com-
bining is when the phase of the array of beams is not con-
trolled, which leads to incoherent beam combining (IBC).
In WBC, mutual coherence is not required, and the emitters
have nonoverlapping optical spectra and are combined at
wavelength-sensitive beam combiner. Unlike CBC, the out-
put beam is not monochromatic, which renders the technique
inappropriate for some applications. Increasing power

density while maintaining beam quality can be achieved
only via CBC or WBC, where upon increasing the number
of emitters in the array, the beam divergence angle remains
unchanged. The reverse situation occurs in IBC; beam diver-
gence increases with the number of beams in the array and
beam
quality decreases. Many successful CBC13–15 and WBC16–18

implementations have already been reported in the literature.
An advantage of WBC is that it does not require mutual

coherence, which makes it easier to reach stable operation.
The utilization of a beam combiner element results in addi-
tional dissipative losses. This limitation disappears in the
case of CBC in a tiled-aperture configuration. However,
side-by-side beam arrays require the control of a larger num-
ber of parameters, which can easily result in beam-quality
degradation.19 The errors associated with this degradation
can be divided into two groups: geometric, related to array
architecture, and nongeometric, related to the quality of the
coherent combining system. The most important represent-
atives of the latter group are phase mismatch (piston error)
and tilt errors. These low-order aberrations cause energy
spreading into the side lobes and distortion of the main
lobe in far-field irradiance patterns. To achieve effective
beam combining, piston and tilt errors must be controlled
with high accuracy, to a fraction of a wavelength.

2 Model

2.1 Coherent Beam Arrays in the Far Field

The amplitude of an array composed of N laser subapertures
in the near field is defined as follows:

EQ-TARGET;temp:intralink-;e001;326;133Anf;Nðxnf; ynfÞ ¼
XN
m¼1

Anf;mðxnf − αm; ynf − βmÞ; (1)

where ðαm; βmÞ and Anf;Nðxnf; ynfÞ are subaperture center
coordinates and the amplitude function of m-’th subaperture,
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respectively. Assuming the paraxial approximation and iden-
tical subapertures, the diffraction pattern is described as
a Fourier transform of the individual subaperture function
multiplied by an array in the same configuration as the
point source pattern.20 In this case, the intensity in the far
field at the focal point f is expressed as

EQ-TARGET;temp:intralink-;e002;63;523

Iff;Nðxff; yffÞ ¼ jAffðxff; yffÞj2 ·
����
XN
m¼1

XN
n¼1

μmn

· exp

�
ik
f
½xffðαm − αnÞ þ yffðβm − βnÞ�

�����;
(2)

where Affðxff; yffÞ is the Fourier transform of the individual
subaperture function, k ¼ 2π∕λ is the wavenumber, λ is the
wavelength, and a is the subaperture radius; μm;n is the
degree of coherence between the m-’th and n’th beams,
which takes the values μ ¼ 1 for full coherence, 0 < μ < 1
for partial coherence, and μm:n ¼ δm;n (the Kronecker delta)
for incoherence. To simulate the physical problem, we used
spatial coordinates proportional to λ∕RA, where RA is the
array aperture radius. Considering Eq. (2), it is apparent
that the form of the summation part depends on the centers
of the apertures, and the resulting intensity will take a
different form for each array symmetry. The pattern of the

summation for hexagonal symmetry [Fig. 1(a)] is shown in
Fig. 1(b).

2.2 Beam Profile

The amplitude in near field within each subaperture is
described by a super-Gaussian (SG) function as follows:21

EQ-TARGET;temp:intralink-;e003;326;681AnfðrnfÞ ¼ cnorm · exp

�
−
�
rnf
w0

�
2p
�
; (3)

where w0 is the beam radius, p is the order of the SG, r2nf ¼
x2nf þ y2nf defines the radial coordinate, and cnorm is a nor-
malization factor; the latter takes the form

EQ-TARGET;temp:intralink-;e004;326;604cnorm ¼ 1∕
Z1.5a

0

jAnfðrnfÞj2rnfdrnf: (4)

In the case of radial symmetry, to calculate the amplitude
in the far field, a Hankel transform may be used as follows:

EQ-TARGET;temp:intralink-;e005;326;523AffðrffÞ ¼
Za

0

J0

�
krffrnf

f

�
· Anf · rnf drnf: (5)

In our analysis, we considered three cases of input ampli-
tude, p ¼ f1; 3; 32g, which correspond to Gaussian, super-
Gaussian, and approximate top-hat distributions, respec-
tively. To get the best subaperture filling factor, beam
radii were selected so that the power inside the aperture,
which was normalized to unity, corresponded to the maxi-
mum possible w0 with an accuracy of 0.005. The determined
beam radii are w0 ¼ f0.513a; 0.847a; 0.994ag. Intensity
cross sections are presented for the near and far fields in
Figs. 2(a) and 2(b), respectively. Figure 3 shows the influ-
ence of beam shape on a far-field CBC intensity pattern,
using normal and logarithmic scales, for a hexagonal array
[Fig. 1(a)].

Fig. 1 (a) Hexagonal array with seven beamlets and (b) correspond-
ing far-field summation pattern.

Fig. 2 Normalized intensity cross sections for p ¼ f1;3;32g in (a) the near field and (b) the far field.
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2.3 Beam Combining Performance

The intensity distribution in the far field for CBC always has
side lobes due to the incomplete filling of the exit aperture.
The use of classical parameters to describe the beam, such as
the beam quality parameter M2 and Strehl ratio SR,22 have
been unsuccessful due to their failure to use all of the infor-
mation contained in beam profile in the far field. M2

increases with number of emitters in the laser array and
does not include the side lobes. SR, on the other hand, con-
tains information about the on-axis peak intensity, not the
energy encircling the peak in the main lobe.23 To account
for all factors, we use a power in the bucket (PIB) distribu-
tion, defined as22

EQ-TARGET;temp:intralink-;e006;63;166PIBðrbÞ ¼
R rb
0

R
2π
0 Iff · rbdrbdφR∞

0

R
2π
0 Iff · rbdrbdφ

: (6)

In previous work,24 we showed that metrics based on the
horizontal PIB (HPIB) or vertical PIB (VPIB) were not able
to describe CBC performance well. Because factors describ-
ing quality based on the PIB distribution were not well estab-
lished, we proposed three metrics defined as follows:

EQ-TARGET;temp:intralink-;e007;326;313I86.5% ¼ P86.5%

R2
86.5%

; (7)

which is the ratio of 86.5% of the total power (P86.5% ¼
0.865) within the corresponding radius R86.5% and that
radius

EQ-TARGET;temp:intralink-;e008;326;248I0mode ¼
P0mode

R2
0mode

; (8)

the ratio of the power inside the main lobe P0mode;within the
corresponding radius R0mode and that radius, which is defined
as the first inflection point of the PIB curve; and

EQ-TARGET;temp:intralink-;e009;326;170Idl ¼
Pdl

R2
dl

; (9)

the ratio of the power Pdl inside the circle with radius Rdl and
that radius, which corresponds to the diffraction limit
0.75λ∕RA for which the PIB ≈ 86.5% for the “top hat”
amplitude function in the near field.

PIB curves (for the intensity patterns shown in Fig. 3)
with marked bucket radii are given in Fig. 4. The values

Fig. 3 Far-field intensity pattern in linear (top) and logarithmic (bottom) intensity color scales for a hex-
agonal array of seven Gaussian-type beamlets with (a, b) p ¼ 1 – Gaussian, (c, d) p ¼ 3 – super-
Gaussian, and (e, f) p ¼ 32 – approximate top-hat distribution.
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determined for the three metrics are summarized in
Table 1, and they demonstrate that the quality of the beam
combining is better for beam shapes similar to the top-hat
shape.

3 Impact of Piston Error
Piston error, otherwise known as phase error, is the differ-
ence in the optical path of each element of the laser array
and is equivalent to the delays between the subapertures
of the wavefront.25,26 A visualization of this effect is
shown in Fig. 5. Piston error results from the fact that the
use of phase locking for each channel does not allow
cancellation of the relative phase between the elements of
the laser array. This error also includes the effects of the

mechanical accuracy of optomechanical elements, thermal
factors, and the experimental environment.19

Considering the piston error, the intensity in the far field
takes the form
EQ-TARGET;temp:intralink-;e010;326;477

Iff;Nðxff; yffÞ ¼ jAffðxff; yffÞj2 ·
����
XN
m¼1

XN
n¼1

μmn

· exp

�
ik
f
½xffðαm − αnÞ þ yffðβm − βnÞ�

�

· expðiΔφm;nÞ
����; (10)

where Δφm;n ¼ jφm − φnj is the phase difference between
the m-’th and n’th beamlets. By analyzing Eq. (10), we
can conclude that the phase mismatch results in distortions
and shifts of cosine minima and maxima. Consequently,
energy can be dissipated within a limited area defined by
the beam shape function jAffðxff; yffÞj2.

Our simulations were performed for three cases of
beam shape, for p ¼ f1; 3; 32g with corresponding w0 ¼
f0.513a; 0.847a; 0.994ag. Piston error c was drawn
from a uniform distribution in the range ð−c; cÞ, where
c ∈ ð0;3λ∕5Þ. For each c, 500 attempts were made, and
the intensity profiles were averaged.

The three metrics we defined, I86.5%, I0mod, and Idl as
well as SR for comparison, each normalized to unity, are
shown in Fig. 6 as functions of the rms phase mismatch
ΔφRMS. According to the Maréchal criterion, the tolerance
of the wavefront aberration error in a diffraction-limited
optical system occurs for SR above 80%.27 We have
extended this assumption to the metrics we propose.
Consequently, as an acceptable error for the optical sys-
tem, we consider one for which the power contained in
a given radius does not fall below 80%. The values we
determined for the permissible ΔφRMS of the limiting
case are presented in Table 2. Figure 6(a) shows that
the I86.5% parameter cannot be used to determine beam
combining performance due to the lack of correlation
between curves depending on the parameter p. I0mod

and Idl, on the other hand, show correlations with the p

Fig. 4 PIB distribution for the three cases of beam shape shown in
Fig. 3, p ¼ 1 (solid line), p ¼ 3 (dashed line), and p ¼ 32 (dotted
line); the bucket radii for all three proposed metrics are indicated
by vertical lines.

Table 1 Parameter values for each of the three metrics for the PIB
curves shown in Fig. 4.

p ¼ 1 p ¼ 3 p ¼ 32

R86.5% 1.836 1.643 1.202

P86.5% 0.865 0.865 0.865

I86.5% 0.257 0.320 0.598

R0mode 0.657 0.657 0.657

P0mode 0.396 0.613 0.788

I0mode 0.917 1.419 1.825

Rdl 0.750 0.750 0.750

Pdl 0.398 0.616 0.791

Idl 0.708 1.095 1.406

Fig. 5 Three-dimensional (3-D) visualization of piston error for a
hexagonal beam array.
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parameter and can be approximated by the curve
y ¼ a · exp½b · ðxÞ2� þ c, which is similar to the one
describing SR. Both for I0mod and Idl, the piston error tol-
erance is higher in the case of a value of smaller p. This
may be because for the smaller p, less energy is contained
within the main diffraction lobe, which translates into
a lower susceptibility to changes in the cosine function
amplitude in the summation in Eq. (10) because of the pis-
ton error. Figure 6(d) shows that the shape of the laser
beam does not affect the SR parameter, which disqualifies
it as a potential metric for beam combining performance.

Different PIB curves for various rms piston errors are
presented in Fig. 7. These plots show that as the error
increases, the curves begin to resemble those resulting of
the amplitude function. In addition, the energy of the side
lobes increases at the cost of the main lobe from which it is
dissipated.

Intensity profiles for rms piston error corresponding Idl ¼
0.8 for p ¼ f1; 3; 32g are presented in Fig. 8 in normal
linear (top) and logarithmic (bottom) intensity color scales.

4 Impact of Tilt Error
Tilt errors result from the accuracy of optomechanical com-
ponents, and they cause errors in the relative far-field beam
pointing of the elements.28 To achieve effective beam com-
bining, this error must be controlled at the level of a fraction
of the wavelength. Tilt can be visualized as a tilt of the
wavefront in the near field, as illustrated schematically in
Fig. 9.

In Fourier space, the tilt of the wavefront by an angle θ is
equivalent to shifting the image from the center by f tan θ.
The amplitude coming from the m’th beamlet of the aperture
therefore takes the form

Fig. 6 (a) I86.5%, (b) I0mod, ðcÞIdl, and (d) SR as functions of rms piston error for p ¼ 1 (black squares),
p ¼ 3 (red triangles), and p ¼ 32 (blue triangles).

Table 2 Determined values of admissible rms piston error for SR,
I0mod, and Idl for which the power limited in a given radius does
not fall below 80%, for three cases of the parameter p.

ΔφRMS;SR ΔφRMS;0mode ΔφRMS;dl

p ¼ 1 0.081 0.134 0.149

p ¼ 3 0.081 0.119 0.139

p ¼ 32 0.081 0.111 0.133
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Fig. 7 PIB distribution for selected rms piston error as a function of dimensionless bucket radius for
(a) p ¼ 1, (b) p ¼ 3, and (c) p ¼ 32.

Fig. 8 Far-field intensity pattern with rms piston error corresponding to Idl ¼ 0.8in linear (top) and
logarithmic (bottom) intensity color scales for a hexagonal array of seven Gaussian-type beamlets
with (a, b) p ¼ 1 – Gaussian, (c, d) p ¼ 3 – super-Gaussian, and (e, f) p ¼ 32 – approximate top-hat
distribution.
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EQ-TARGET;temp:intralink-;e011;63;544

Aff;m;tiltðxff; yffÞ ¼ Affðxff; yffÞ � δ½xff − f tanðθx;mÞ;
yff − f tanðθy;mÞ�; (11)

where � is the convolution operator and δ is the Dirac delta
function. From Eq. (11), it follows that each subaperture of

the laser array has a different amplitude function, therefore,
it cannot be separated before the summation factor in
Eq. (2). In this case, the intensity at the focal point takes
the form
EQ-TARGET;temp:intralink-;e012;326;708

Iff;Nðxff; yffÞ ¼
����
XN
m¼1

XN
n¼1

μmn · Aff;m;tiltðxff; yffÞ

· Aff;n;tiltðxff; yffÞ · exp
�
ik
f
½xffðαm − αnÞ

þ yffðβm − βnÞ�
�����: (12)

Analysis of Eq. (12) leads us to the conclusion that tilt
error causes an overlapping of the amplitude function,
which in turn leads to a spreading of the beam profile inten-
sity in the far field.

Simulations were carried out for the same p and w0

parameters as in the case of piston error. Shifts in the
x and y directions, Δx and Δy, respectively, have been
drawn from a uniform random distribution so that Δx, Δy ∈
ð−d; dÞ where d ∈ ð0; R86.5%Þ and Δs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔxÞ2 þ ðΔyÞ2

p
.

For each d, 500 attempts were made, and intensity profiles
were averaged. Because Δs depends on λ, f, and RA, instead
of the angle, we used a shift distance in dimensionless units.

Fig. 9 3-D visualization of tilt error for a hexagonal beam array.

Fig. 10 (a) I86.5%, (b) I0mod, (c) Idl, and (d) SR as functions of rms tilt error for p ¼ 1 (black squares), p ¼ 3
(red triangles), and p ¼ 32 (blue triangles).

Optical Engineering 066103-7 June 2019 • Vol. 58(6)

Gontar and Jabczynski: Influence of beam shape on piston and tilt error. . .



The angle of rms tilt error can then be calculated using the
expression θ ¼ arctanðΔsλ∕RAÞ.

Figure 10 shows the dependence of the parameters I86.5%,
I0mod, Idl, and SR on rms pointing error ΔsRMS. We have, in
addition, determined the intensity value for which ΔsRMS is
within the range of the diffraction limit 0.75λ∕RA. Similar to
the case of piston error, the dependence of I86.5% on ΔsRMS

[Fig. 10(a)] does not take the same function for the three dif-
ferent p. However, for the parameters I0mod, Idl, and SR, in
each case of p, a curve of the type y ¼ a · exp½b · ðxÞ2� þ c,
may be fitted to the plot; this situation is identical to that of
the piston error analysis. In addition, the Gaussian beam
(p ¼ 1) seems to have a greater tolerance to the tilt error.
This may be because a larger surface area is occupied by
this beam than that of the p ¼ 32 beam (top-hat) beam,
as given by its Fourier transform, and thus the overlapping

amplitudes are much smaller for p ¼ 1. The values of
ΔsRMS determined for I86.5%, I0mod, and Idl when SR ¼ 0.8,
and of I0mod, Idl, and SR when ΔsRMS ¼ 0.75 are listed in
Table 3.

PIB curves for each p are presented in Fig. 11. In com-
parison to the piston error, as the pointing error increases,
the PIB curve is shifted, and there is some degradation.

Intensity profiles for rms tilt error corresponding Idl ¼ 0.8
for p ¼ f1; 3; 32g are presented in Fig. 12 in normal linear
(top) and logarithmic (bottom) intensity color scales.

5 Conclusion
An analysis of beam combining performance and the influ-
ence of beam profile on tilt and piston error tolerances
have been presented. As a result, the metrics I0mod and Idl
were observed to effectively describe CBC performance.
However, while in the case of tilt error, these two functions
are well defined, in the case of piston error I0mod is not well
determined. This is because R0mod is determined numerically
and a for large rms piston error, the main lobe is barely dis-
cernable and the calculated value of I0mod is subject to a
large error.

For best CBC performance without the presence of errors,
the top-hat beam is better than Gaussian beam, because more
energy is contained in main lobe. On the other hand, our
analysis of piston and tilt errors shows that the Gaussian
beam has a higher tolerance for piston and tilt errors than
those similar with profiles similar to a top-hat. For the piston
error, acceptable errors for Idl ¼ 0.8 are ΔφRMS;p¼1 ¼
0.149λ, ΔφRMS;p¼3 ¼ 0.139λ, and ΔφRMS;p¼32 ¼ 0.133λ.
For the tilt error, rms pointing errors are ΔsRMS;p¼1 ¼
0.685λ∕RA, ΔsRMS;p¼3 ¼ 0.568λ∕RA, and ΔsRMS;p¼32 ¼
0.492λ∕RA. The intensity for the diffraction-limited rms
pointing error, ΔsRMS ¼ 0.75λ∕RA, drops as p increases from
Idl;p¼1 ¼ 0.767, to Idl;p¼3 ¼ 0.681, and Idl;p¼32 ¼ 0.602.
For the piston error, this may be due to a lower power content
in main lobe, which is less susceptible to changes in the
difference between the maximum and the minimum of the
cosine function. However, in the case of tilt error, the greater
tolerance may result from the Gaussian function than the

Table 3 Determined values of admissible rms pointing errors for SR,
I86.5%, I0mod, and Idl for three cases of the parameter p for which the
power limited in a given radius does not fall below 80% and intensity
values for the diffraction-limited shift ΔsRMS ¼ 0.75.

ΔsRMS for I ¼ 0.8

ΔsRMS;86.5% ΔsRMS;0mode ΔsRMS;dl ΔsRMS;SR

p ¼ 1 0.865 0.685 0.685 0.658

p ¼ 3 0.691 0.571 0.568 0.537

p ¼ 32 0.209 0.497 0.492 0.448

I for ΔsRMS ¼ 0.75

I86.5% I0mode Idl SR

p ¼ 1 — 0.767 0.767 0.749

p ¼ 3 — 0.686 0.681 0.648

p ¼ 32 — 0.611 0.602 0.542

Fig. 11 PIB distribution for selected rms tilt errors as a function of dimensionless bucket radius for
(a) p ¼ 1, (b) p ¼ 3, and (c) p ¼ 32.

Optical Engineering 066103-8 June 2019 • Vol. 58(6)

Gontar and Jabczynski: Influence of beam shape on piston and tilt error. . .



(sombrero) 2J1ðxÞ∕x function, which results in the overlap
of amplitudes being smaller.
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