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Abstract. Automated situation awareness (ASA) in a complex and dynamic setting is a chal-
lenging task. The accurate perception of environmental elements and events is critical for the
successful completion of a mission. The key technology to implement ASA is target detection.
However, in most situations, targets of interest that are at a distance are hard to identify due to
the small size, complex background, and poor illumination conditions. Thus, multimodal (e.g.,
visible and thermal) imaging and fusion techniques are adopted to enhance the capability for
situation awareness. A deep multimodal image fusion (DIF) framework is proposed to detect the
target by fusing the complementary information from multimodal images with a deep convolu-
tional neural network. The DIF is built and validated with the Military Sensing Information
Analysis Center dataset. Extensive experiments were carried out to demonstrate the effectiveness
and superiority of the proposed method in terms of both detection accuracy and computational
efficiency. © 2020 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.59.5
.053103]
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1 Introduction

Automated exploitation is paramount in modern complex systems; it allows human operators to
respond immediately and take actions to increase the survivability and security of the equipment,
platforms, and forces.1 In the tasks of target detection and scene perception, automated situation
awareness and surveillance become prominent mechanisms to assist human operators with the
extracted information, reliable evidence, and extended perception.

To address the challenges arising from the complex scenarios, multimodal image fusion tech-
niques are often employed.2–6 By fusing the complementary cross-spectrum information
acquired through a multimodal imaging system, the target can be detected from a complex back-
ground or from a long distance. In our previous work,7 multimodal images were fused with a
shallow convolutional neural network (CNN) model, and a fast regions with convolutional neural
network (R-CNN)8 framework was adopted to detect the target. Even though the results are
promising in comparison with unimodal imaging methods, there is still the room to improve
the run-time as well as the accuracy for use in a practical application.

Actually, many challenges exist for automated applications, including target scale variations,
environmental diversity, and real-time response requirements. In most scenarios, the scene is
vast and expansive as illustrated with the examples on the left side of Fig. 1. The different
distances from the imaging sensors to the target dramatically vary the scale of the target. The
sample image on the right side of Fig. 1 demonstrates the complexity of a scenario. The target
is hard to discriminate from the complex background from its (color and texture) appearance
due to the camouflage of the target. Moreover, rocks and trees can also obscure the targets.
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These environmental factors will limit automated applications, especially for automatic target
recognition (ATR). In addition, automated surveillance must have the capability to operate
around-the-clock and provide immediate indications, warnings, and responses, thereby increas-
ing requirements for robust and real-time performance.

Current research on automated surveillance is mainly focused on ATR applications, such as
object classification, target tracking, identification, etc.,9–12 rather than target detection, which is
fundamental and important. A detailed review of the state-of-the-art methods is presented in
Sec. 2.

In this study, we extended our previous fusion algorithm to improve its accuracy and effi-
ciency for a robust performance and conducted a comprehensive analysis and extensive validat-
ing experiments. Specifically, a deeper CNN model was adopted to carry out deep feature
extraction/fusion from multimodal images and perform target detection tasks. In addition,
the handcrafted region proposal module, “selective search,” 13 used in the previous work7 was
replaced with a more efficient module “region proposal network (RPN).”14 Thus, the proposed
deep image fusion (DIF) framework is a full end-to-end neural network, which can be optimized
on a graphics processing unit (GPU) device. Moreover, a comprehensive analysis for complex
scenarios was performed in the experimental section to show the effectiveness of the proposed
framework. Figure 2 presents the overall architecture of the DIF framework, which consists of

Fig. 1 Two sample images from the SENSIAC dataset illustrating complex situations.

Fig. 2 Overall framework of the proposed DIF, including three major networks: (1) deep feature
extraction network, (2) RPN, and (3) classification and regression network.

Liu et al.: Enhanced situation awareness through CNN-based deep multimodal image fusion

Optical Engineering 053103-2 May 2020 • Vol. 59(5)



three main networks: deep feature extraction/fusion network, RPN, and classification and
regression network.

In this paper, a DIF method that is capable of learning the complementary information from
visible, thermal, and temporal images automatically for target detection is proposed. The imple-
mentation is in the form of an efficient end-to-end framework, which is based on the architecture
of the CNN. The new framework integrates the deep feature extraction network, RPN, and clas-
sification and regression network to achieve a higher detection accuracy as well as computational
efficiency. The performance is validated with the SENSIAC dataset in comparison with the
state-of-the-art methods.

The rest of the paper is organized as follows. Section 2 reviews the state-of-the-art methods of
the relevant work. The detailed description of the proposed method is presented in Sec. 3.
Extensive experimental results are give in Sec. 4. Section 5 concludes this paper.

2 Review of Related Work

2.1 Situation Awareness and Surveillance

The capability of around-the-clock operations requires situation assessment, such as military
surveillance for national defense. In general, a surveillance system comprises five key compo-
nents:15 target detection, tracking, classification, recognition, and identification. Among these
components, target tracking aims to track one or multiple targets over time based on a given
accurate location. Gundogdu et al.16 proposed an ensemble tracking algorithm that is able to
switch different correlators according to the current target appearance. Even though they
achieved promising accuracy, there was still room for further improvement on computational
efficiency. To this end, Demir and Cetin17 implemented an efficient tracker by leveraging the
codifference matrix. In addition to tracking, research is also focused on high-level tasks, such as
ATR. A series of studies proposed a shape generative model-based general system that supports
recognition, segmentation, and pose estimation jointly.9,12,18

Target detection is a fundamental and important component of a surveillance system, espe-
cially in challenging conditions in military contextz. However, only a few reports for military
target detection are publicly available to the best of our knowledge. Most recently, Millikan
et al.19 proposed an infrared (IR)-focused military target detector combining both image recon-
struction and quadratic correlation techniques. But the accuracy is not sufficient enough to be
applied in a real scenario. In fact, generic target detection is an active research field that aims to
recognize and localize one or more objects from an image or a video clip. The last decade has
witnessed a revolution in this field, from traditional methods to CNN-based methods. In the
traditional approaches, the representative work is the deformable part models,20 which follow
the conventional paradigm of sliding window templates trained by the latent support vector
machine (SVM) with the histogram of oriented gradients feature. For the CNN-based
approaches, Sermanet et al.21 first utilized CNN models in a sliding window fashion on the
generic target detection task, where two CNNs are involved, e.g., one for classifying if a window
contains a target and the other for predicting the corresponding bounding boxes. Subsequently,
the dominant CNN-based target detection framework, R-CNN, was proposed.22 This framework
utilizes a pretrained CNN to extract features on the region of interests (ROIs) generated by selec-
tive search13 and classifies them with class-specific linear SVMs. The significance of this work is
replacing hand-engineered features with the features extracted by CNN. Moreover, the variants
of R-CNN, such as SPP-Net23 and fast R-CNN,8 were proposed to solve the computational effi-
ciency issue. Most recently, Ren et al.14 created a framework called “faster R-CNN” in which the
region proposal module is replaced by an RPN. The feature extraction of RPN is shared with fast
R-CNN, so they can be trained jointly. This method greatly improves the accuracy and efficiency
of the fast R-CNN algorithm. Moreover, Liu et al.24 proposed a more efficient target detector,
named “SSD,” which removed the region proposal module and only utilized a single network to
accomplish target detection. Again, a report on using CNN for military target detection is not
available. In this study, our effort is to migrate the success from the generic target detection, i.e.,
faster R-CNN, with a deeper CNN (ResNet 101) to the military target detection challenge.
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2.2 Multimodal Image Fusion

There still exist numerous challenges that need to be solved in surveillance system designs.
First of all, the scale of target varies over a range. Specifically, the scenario is expansive and
the target of interest may be extremely far from the surveillance devices and sensors. As a result,
the scale of the targeted object captured through the image/video is rather small, and the target
can not be easily detected. The second challenge is the complex environment of the scenario.
Rocks and trees may obscure the target. Meanwhile, the targeted objects are likely to disguise
themselves, so they can not easily be recognized by the surveillance system.

Multimodal image fusion techniques can offer an effective solution to such challenges.25,26

The fusion operation will generate a composite image with complementary information from
multimodal images acquired through a wider range of the electromagnetic spectrum. The
high-level surveillance tasks will be carried out based on the fused outcomes. For example,
Zheng and Blasch27 improved the performance of vehicle identification and threat analysis via
multimodal image fusion. In particular, IR/thermal image and visible image (VI) are widely
adopted in multimodal imaging systems for military applications. The fusion operation can
be implemented at pixel-, feature-, and decision-levels. Numerous works on pixel-level fusion
has been reported in the last decade. The intuitive results achieved by pixel-level fusion can
benefit the end users through direct observation. Among these pixel-level methods, transform
domain- based approaches account for a dominant solution due to the inspiration of the human
visual system.28 The general steps for the transform domain-based multimodal image fusion
include transforming the input images to a specific transform domain, performing fusion oper-
ation by combining coefficients, and generating the fused image by applying the inverse trans-
form. Various transform methods have been proposed, including stationary wavelet transform,29

discrete wavelet transform,30 nonsubsampled contourlet transform,31 self-fractional Fourier
functions,32 dual-tree complex wavelet transform with sparse representation (DTCWT-SR),3

convolutional sparse representation (CSR),4 etc. In addition, fusion operations were also imple-
mented with hand-crafted fusion strategies, such as guided filtering-based weighted average,33

choose-max,34 etc. A comprehensive review of the state-of-the-art methods is available in Ref. 25.
It is proved that the fused image with enhanced contents is suitable for human visual per-

ception and low-level image processing. However, the pixel-level fusion has limited benefit for
the real-time machine processing and analysis, such as target detection. These image fusion
methods are computationally intensive, and the hand-crafted fusion strategies are not able to
capture all of the important features from each modality. In contrast to these hand-engineered
fusion methodologies, our DIF fuses the complementary information from the multimodal
images through a powerful machine learning model, i.e., CNNs. Moreover, the fusion module
is integrated into the target detection framework and multimodal learning is trained jointly.
In this way, the proposed fusion strategy is implemented through a learning method rather
than a manual design. Furthermore, the computation becomes more efficient due to the shared
computational resources with the target detection application.

2.3 Deep Convolutional Neural Networks

CNNs35 have brought a series of breakthroughs for many generic computer vision challenges
recently, such as image recognition,36 object detection,22 and semantic segmentation.37 CNN is a
trainable feedforward neural network mainly comprising convolution layers, pooling layers, and
normalization layers. By training on a large-scale dataset, the CNN can learn a hierarchical rep-
resentation of an object or scene. Recent work reported in Refs. 38 to 40 has shown that a deeper
CNN can help gain better performance on computer vision tasks. Driven by this insight, He et al.
proposed a ResNet39 network, which comprised hundreds of convolution layers and broke
many records in numerous tasks. Meanwhile, there are a few deep CNNs-based methods for
multimodal image fusion. Recently, a CNN-based fusion method for multi-focused images was
reported in Ref. 41. The authors from Refs. 42 and 43 made an effort to solve the remote sensing
fusion problem with the CNN models. In this study, we leverage the power of deep CNN to fuse
visible, IR, and motion images (MIs) and further improve the performance for military target
detection.
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3 Deep Image Fusion Methodology

3.1 Overall Framework Description

The overall illustration of the DIF is shown in Fig. 2. It has four processing steps to obtain the
output from the input. The first step is the multimodal image preprocessing, where three different
types of images are processed and combined into an RGB-channel image before being fed into
the networks. In the second step, the fusion operation and deep feature extraction from the multi-
modal images through the RGB channels are performed. In the last step, the possible target
regions are identified from the deep features derived by the RPN. In the final step, each possible
target region is classified and the accurate target bounding box is drafted.

3.2 Multimodal Image Preprocessing

In this study, three different types of images are considered in the DIF framework: (1) midwave
infrared image (MWIR), (2) gray-scale VI, (3) and MI generated from two consecutive visible
frames/images.

3.2.1 Midwave infrared image

The MWIR image belongs to the category of the passive IR image in which no external light
source is required in comparison with an active IR image. And the electromagnetic spectrum of
MWIR image is from 3 to 5 μm. Thus, the MWIR imaging can capture temperature variations
over the target and background over a relatively long distance and produce thermograms in the
form of a two-dimensional (2-D) image. The value in each coordinate of thermograms represents
the relative temperature. To process with the DIF deep feature extraction module, the thermo-
grams need to be transformed into the general gray-scale images by applying the following linear
normalization:44

EQ-TARGET;temp:intralink-;e001;116;403I ¼ ½Tðx; yÞ −MinðTÞ� × ðvmax − vminÞ
MaxðTÞ −MinðTÞ þ vmin; (1)

where T and I are the 2-D thermogram and gray-scale thermal image, respectively. ðx; yÞ indi-
cates the 2-D coordinates in the image array. Maxð·Þ and Minð·Þ refer to the functions used to
obtain the maximum and minimum value among the data. The intensity range of the gray-scale
thermal image is ðvmin; vmaxÞ.

3.2.2 Visible image

The VI image in this study is of the electromagnetic spectrum range from 380 to 750 nm. This
spectral range enables VI to capture sufficient edge and texture information from the scene.
However, the disadvantage is that VI is extremely sensitive to the luminance variation. In the
experiments, we assume that the VI is aligned with MWIR already and we do not need to
perform any registration operations.

3.2.3 Motion image

It is well-known that a moving object can generate a motion trajectory. Hence, motion estimation
is a straightforward way to obtain the location information of moving targets, even though the
associated noises will sometimes be present. DIF leverages an MI modality in the fusion process.
Taking the computational complexity into account, an efficient motion estimation method is
used to obtain the MI. The method is formulated as follows:

EQ-TARGET;temp:intralink-;e002;116;116Mt ¼ jVtðx; yÞ − Vt−δðx; yÞj; (2)

where M and V represent the MI and the original VI, respectively. t indicates the t’th frame in
a continuous image sequence. δ means the frame interval between two consecutive key frames,
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which is affected by the frame sample rate. In our experiments, we adjust the sample rate to
control the δ, and ðx; yÞ indicates the 2-D coordinate in the image array.

As illustrated in the multimodal images preprocessing step in Fig. 2, the three obtained
images are combined into the RGB-channel of one image. Note that the value of each image
has not been modified at this step. The different combination orders of the multimodal images
were analyzed in the experiments, and the best combination placed VI in the blue (B) channel,
MI in the green (G) channel, and MWIR in the red (R) channel.

3.3 Deep Feature Extraction from Multimodal Images

As described in Ref. 45, an image fusion algorithm is used to solve two key problems: (1) effec-
tively extracting the image features from the input source images and (2) combining the features
from multiple sources into the fused image. For example, in traditional image fusion, both multi-
scale transform-based methods3,29,30,34 and sparse representation-based methods4 are developed
to solve the first problem, feature representation. The fusion strategies, e.g., weighted average33

and choose-max,34 are applied to address the second problem, feature fusion. These principles
help better understand the proposed deep feature extraction module.

As can be seen in Fig. 3, a set of learnable kernels are convolved on the RGB-channel image,
and they generate a set of feature maps. Selecting one kernel as the example, the convolution
procedure35 can be formulated as follows:

EQ-TARGET;temp:intralink-;e003;116;495ylþ1
ði;jÞ ¼

Xm
2

a¼−m
2

Xm
2

b¼−m
2

Xd−1
c¼0

wðaþm
2
;bþm

2
;cÞxlðiþa;jþb;cÞ þ β; (3)

where l represents the l’th feature layer within the deep CNN. The y is the generated 2-D feature
map of the lþ 1’th convolutional layer while x is the original three-dimensional (3-D) feature
bank (i.e., the RGB-channel image for the first convolutional layer). ði; jÞ indicates the 2-D
coordinate in the feature map. w is the convolutional kernel/weight with a width and height
of m and depth of d. Note that the depth of kernel d should be equal to the channel size of
the original feature bank and β is the bias value.

The first 3-D convolution operation in the deep feature extraction procedure is a kind of
weighted fusion strategy. Nevertheless, in contrast to the traditional weighted fusion rule, deep
feature extraction can learn how to assign the weights to each image modality and extract the
important feature from both within-modality and cross-modality.

Fig. 3 The illustration of proposed deep feature extraction module. The m represents the convo-
lution kernel size, and the w indicates the learnable weights of a convolution kernel. The d is the
number of channels for an image or feature map.
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In general, a deep CNN stacks a combination of convolutional layers, activation layers, nor-
malization layers, and pooling layers and repeats this pattern until the spatial scale of feature
maps is a small size. With the increase of convolutional layers, the spatial scale of feature
map decreases and the produced feature maps become more abstract and well-represented.
As a result, the network can learn a hierarchical representation of the multimodal images.

Recent work38,40 demonstrated that the deeper CNN achieved a better result on representation
learning tasks. However, directly increasing the convolutional layers causes a degradation in
performance. To address this issue, He et al.39 proposed a residual block module that allows
information to be passed directly through, making the backpropagated error signals less prone
to exploding or vanishing. This solution makes it possible to train networks with hundreds of
layers. They also carried out a deep CNN model, called ResNet 101, which consists of 101
convolutional layers. In this study, we adopted this state-of-the-art ResNet 101 to fuse multi-
modal images and extract deep feature maps for the RPN and classification and regression net-
work. We will not duplicate here the materials from Ref. 39 due to the limited number of pages.
Readers are referred to Ref. 39 for more details. This work leverages transfer learning for faster
training by pretraining the ResNet 101 on a larger-scale image dataset ImageNet.46 We truncated
the pretrained ResNet 101 at the last layer of the “conv4” block and only used the former fully
convolutional network for our task. The dilated convolution47 was also performed to increase
the receptive field as in Ref. 48.

3.4 Target Region Proposal

The objective of target region proposal is to generate a set of class-independent locations that are
likely to contain targets. We adopted the selective search algorithm13 to accomplish this task in
our previous work.7 As the selective search with a complex implementation can only run on a
CPU, it is not efficient for real-time applications. Recently, Ren et al.14 introduced an RPN that is
a fully convolutional network to accelerate the region proposal procedure. The RPN will output a
set of rectangular target proposals with corresponding objectness scores and share the convolu-
tional computation with the other networks. In other words, RPN is a small network module that
performs region proposal on the last layer of the main deep CNN. The core idea behind the RPN
is the anchors. Specifically, anchors are a set of reference boxes with different scales and ratios
on a regular grid in the image. The generated region proposals are the offsets to the anchors, and
thus the number of region proposals is fixed.

The configuration of RPN network is shown in Fig. 4. To be specific, a 3 × 3 convolution
layer with Relu49 activation function slides on the feature maps generated by ResNet 101,
followed by two sibling 1 × 1 convolution layers, e.g., one is for outputting region proposals
and the other is for outputting the corresponding objectness scores. Readers are referred to
Ref. 14 for details on the loss function and implementation.

3.5 Classification and Localization

As shown in Fig. 5, the regionwise classification and regression network is applied to each region
proposal and will generate classification scores as well as four offset values with respect to

Fig. 4 The network configuration of RPN module. For the setting of the convolution layer, “(size,
size, number)” denotes the width, height, and number of convolution kernels. The “with Relu”
means that the convolution layer is followed by an activation function of rectified linear unit
(Relu).49
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the bounding box of the region proposals. Hence, this network has two functional heads, e.g.,
classification and regression. The first one is to classify the region proposals and output a discrete
probability value over two categories (target and background) using the Softmax50 function. The
second one is to regress the bounding box offsets of the region proposals and output a tuple of
ðtx; ty; tw; thÞ, where the elements indicate the shift value relative to the central coordinate,
height, and width of the original region proposal.

To train the classification head, the cross entropy is used as the loss function:

EQ-TARGET;temp:intralink-;e004;116;457Lclsðp; uÞ ¼ u logðpÞ þ ð1 − uÞ logð1 − pÞ; (4)

where p and u represent the ground-truth label of the target/background and the predicted prob-
ability, respectively. Meanwhile, the smooth L1 loss function

8 is adopted as the loss function for
the regression head

EQ-TARGET;temp:intralink-;e005;116;390Lbboxðtu; vÞ ¼
X

i∈fx;y;w;hg
smoothL1

ðtui − viÞ; (5)

in which smoothL1
ðxÞ can be expressed as

EQ-TARGET;temp:intralink-;e006;116;332smoothL1
ðxÞ ¼

�
0.5x2 if jxj < 0

jxj − 0.5 otherwise;
(6)

where tu is the bounding box offsets of the u class. And v is the true offsets.
At the training stage, both of the two loss functions will be put together as in8

EQ-TARGET;temp:intralink-;e007;116;262Lðp; u; tu; vÞ ¼ Lclsðp; uÞ þ λ½u ¼ 1�Lbboxðtu; vÞ; (7)

where u ¼ 1 means only when the class is a target, the bounding box regression can be trained,
and λ is used to control balance between classification and regression. λ is set to 1 in all of the
experiments.

4 Experimental Results

4.1 Dataset

The large-scale military image datasets are not accessible to the public research community.
Recently, several unclassified military datasets were available for research use including
SENSIAC51 and DARPA VIVID.52 We evaluated our proposed approach on the ATR dataset
from the Military Sensing Information Analysis Center (SENSIAC). This dataset contains
207 GB of MWIR imagery (video) and 106 GB of visible imagery (video) along with ground

Fig. 5 The network configuration of the regionwise classification and regression network. For the
configuration of ROI pooling, the “(size,size)” denotes the width and height of the pooling kernel.
For the configuration of the fully connected layer, the “(number)” represents the number of output
neurons. The fully connected layer with Relu means that a Relu activation function is followed by
the layer.
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truth data. All imagery was taken using commercial cameras operating in the MWIR and
VI bands. Various types of objects are included in this dataset, for instance, soldiers, military
vehicles, and civilian vehicles. Moreover, the dataset was collected during both the daytime and
nighttime with multiple observation distances (ODs) from 500 to 5000 m.

In the experiments, we only considered the vehicle (ignoring its type) as the target. As shown
in Fig. 6, we categorized five types of vehicles into training targets and three new types of
vehicles into testing targets to examine the generalization of the trained models. In the first com-
parative experiment, we selected three different ODs (1000, 1500, and 2000 m) as in Ref. 7 and
sampled the key frame at 6 Hz (every five frames). So we had 4573 training images and 2812
testing images. For the subsequent experiments, we selected nine different ODs (long distances)
from 1000, 1500, to 5000 m. To further reduce the overall data size in the experiments, the
sample rate was reduced to 3 Hz. Eventually, there were 7688 training images and 3542 testing
images in total.

4.2 Experimental Setup

The proposed DIF system was implemented using Tensorflow deep learning toolbox.53 For the
training, we used a machine with an NVIDIA GeForce GTX 1080 GPU, an Intel Core i7 CPU,
and 32 GB memory. For the hyperparameters, we trained each of the networks for 60,000 iter-
ations with initial learning rate 0.0003 and 0.00003 for the last 40,000 iterations, with a batch
size 1, momentum 0.9, and weight decay 0.0005. In addition, all of the newly added layers were
initialized from a Gaussian distribution with zero mean and 0.001 variance.

We selected the de-facto standard average precision (AP) as the evaluation metric, which is
calculated as the ratio between the area under the precision–recall curve and the entire area
(which is 1).

Fig. 6 Appearance of targets in training data and testing data.
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4.3 System and Performance Optimization

4.3.1 CNN architectures

The proposed DIF is built based on the faster R-CNN.14 In this section, we investigate the differ-
ent popular CNN architectures for the faster R-CNN; they are VGG,38 inception-ResNet-V2,54

and ResNet 101.39 Note that the original faster R-CNN was coupled with the VGG. As can be
seen in Fig. 7, the faster R-CNN coupled with the ResNet 101 was much better than that coupled
with the VGG, with around 3% boosted accuracy. Thus, we adopted the ResNet 101 as the base
CNN architecture in the DIF and set the faser R-CNN with ResNet 101 as the baseline in the
experiments.

4.3.2 Modal orders

In the DIF, the three different modalities (VI, MWIR, and VI) are combined into the RGB-
channel of one image before being fed into the neural network. In this section, we examine
the different orders of the modalities in the RGB-channel image. In Fig. 8, the MI-MWIR-VI
means that MI, MWIR, and VI were put into the red, green, and blue channels of the composite

Fig. 7 The accuracy comparison of different CNNs and target detection architecture.

Fig. 8 The accuracy comparison of different modal orders.
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image, and the other permutation-and-combinations followed this format. As can be seen in
Fig. 8, all of the possible permutation-and-combinations were enumerated. The VI-MWIR-MI
combination achieved the best performance with (99.824), which is almost the ceiling
performance.

4.4 Comparison with the State-of-the-Arts

To our best knowledge, there is no publicly available system that focuses on image fusion-based
target detection. Thus, it is a challenge to compare with the same-level approaches on the
SENSIAC dataset. As mentioned above, the DIF is built based on the faster R-CNN, but the
faster R-CNN is only able to process the VIs. So we set the faster R-CNN as our baseline method
to validate the benefits from the DIF. We also compared the proposed DIF system with the con-
ventional image fusion methods (DTCWT-SR3 and CSR4). These methods were designed for
visualization not target detection. For a fair comparison, we applied these methods to fuse VI and
MWIR images under the default configurations and then fed the fused images to the faster
R-CNN (ResNet 101) for target detection. Our previous work7 was also compared in this experi-
ment. We reported two versions of the DIF, VI-MWIR, and VI-MWIR-MI. The VI-MWIR
represents the fusion of VI and MWIR, and the VI-MWIR-MI represents the fusion of VI,
MWIR, and MI.

The accuracy comparison results are presented in Fig. 9. Compared with the baseline method
faster R-CNN (ResNet 101), the DIF has a 1.917% AP improvement. In comparison with the
state-of-the-art hand-engineered image fusion methods, DTCWT-SR and CSR, DIF (VI-MWIR)
reached 0.590% and 0.642% improvements; this means that our DIF is able to learn a better
strategy on assigning the weights to each image modality and choosing the important cross-
modality information compared with those hand-engineered strategies. When we added the
motion modality into the DIF, the DIF (VI-MWIR-MI) gained a 0.355% improvement compared
with the DIF (VI-MWIR), and the proposed DIF method also outperformed the previous work.

Another important consideration is run-time efficiency. We reported the efficiency compari-
son results in Table 1. The DIF (VI-MWIR) took only 0.238 s to process an image, which is
around 6× faster than our previous work and over on order of magnitude faster than other con-
ventional image fusion-based methods. The reason is that the neural networks module can be
easily optimized on a GPU device, where the main computational cost in a multimodal image
fusion-based detection system is with the image fusion module and the region proposal module.
For instance, the CSR + faster R-CNN (ResNet 101) method cost is 6.179 s on the image fusion
module, and our previous work required 1.272 s on the region proposal module. But the
proposed DIF method combines those three modules into an end-to-end neural network, which
enables them to share the computational resources and be optimized on a GPU device. The DIF
(VI-MWIR-MI) increased 0.355% in accuracy but only dropped 0.018 s running time compared
with the DIF (VI-MWIR), which is an acceptable trade-off.

Fig. 9 Comparison of the state-of-the-art methods. (a) The overall precision–recall curves of
different methods. (b) The local enlarged image from (a).
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4.5 Analysis and Discussion

4.5.1 Target scales

As described in Sec. 1, there are many factors that degrade the performance of target detection.
One critical factor is the target scale, i.e., the OD between the imaging system and the target,
especially in a complex scenario. In this section, experiments were conducted for comprehensive
analysis of the multiscale situation with the SENSIAC dataset.

Note that there is an inverse relationship between the target scale and the OD from the im-
aging system to the target. This means that a longer OD leads to a smaller target scale. For the
sake of simplicity, we utilize the “observation distance” term to represent the relative target scale
in our experiments.

We selected a set of data across a long OD (from 1000 to 5000 m) and trained the detector
with all of the selected data. For evaluation, we assessed the detection performance for targets at
different ODs. The OD range of [1000, 2000] m is classified as the large target scale while the
[2500, 5000] m range is the small target scale. To verify the effectiveness of the DIF method,
we implemented five detectors of incremental image modality, from single image modality
(MWIR, VI, and MI) to multimodal image fusion (MWIR-VI and MWIR-VI-MI).

Figure 10 shows the AP results against ODs for different modalities in the small OD.
In general, VI-MWIR-MI and VI-MWIR performed better than other modal combinations.
The MI modality had an unsatisfying overall performance, and it also degraded the performance
of VI-MI and MWIR-MI in the most distances.

Table 1 Performance comparison of time cost of different multi-
modal image fusion-based methods.

Methods
Running time
(second/image) AP (%)

Our previous work 1.507 98.339

Faster RCNN (ResNet 101) 0.242 97.907

CSR + faster R-CNN (ResNet 101) 6.413 98.827

DTCWT-SR + faster R-CNN (ResNet 101) 2.758 98.879

DIF (VI-MWIR) 0.238 99.469

DIF (VI-MWIR-MI) 0.256 99.824

Note: The best running time and average precision are both highlighted
in bold font.

Fig. 10 The AP comparison against OD in large target scales.
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We further compared different methods at the long ODs. Figure 11 shows that the perfor-
mance of all types of image modalities decreased significantly with the increase of OD. Similar
to the results on the close OD test, the VI-MWIR-MI and VI-MWIR performed better than other
modal combinations, especially for the extremely small target (in 4500 and 5000 m). It is worth
mentioning that, even with the target that is 3500 m away, the DIF of MWIR, VI, and MI can still
achieve 81.9% AP for the detection. However, we found that the MWIR modality performed
extremely poorly at 3000 m and almost all of the modalities were worse at 3000 m than that at
3500 m. Hence, this raises a question about the existence of other critical factors affecting the
performance of the detection. We will describe what we discovered in the next section.

4.5.2 Environmental complexity

In a complex scene, a cluster of trees and rocks are the ideal natural covers to obscure targeted
objects, which introduces a challenge for target detection. We define this critical impact factor as
“environmental complexity.” To measure this factor, we first define the signal and noise for the
scenario of target detection in Fig. 12. The red dash bounding box is the target area, which is the
system to detect, so we treat it as the signal. Then, we increase the target bounding box by

ffiffiffi
2

p
to

the green bounding box. Thus, the area between the red and the green bounding box refers to the
local environment area. From the observation, we found that the noise factors appearing within
the local environment degraded the performance of target detection, so we set the local envi-
ronment area as the noise. To quantify the environmental complexity, we calculated the signal-to-
noise ratio (SNR)55 as follows:

Fig. 11 The AP comparison against OD in small target scales.

Fig. 12 Illustration of target area vs. local environment area.

Liu et al.: Enhanced situation awareness through CNN-based deep multimodal image fusion

Optical Engineering 053103-13 May 2020 • Vol. 59(5)



EQ-TARGET;temp:intralink-;e008;116;516SNR ¼ μsignal
σnoise

; (8)

where μsignal is the mean value of the signal and σnoise is the standard deviation of the noise. When
there are noises in the local environment, e.g., cluster of trees or rocks, the σnoise will increase and
reduce the SNR value. Therefore, a higher SNR score indicates lower environmental complexity.

The SNR distribution of MWIR imageries against ODs is shown in Fig. 13. The SNR score at
3000 m is 1.17 lower than that at 2500 m and almost half of the SNR value at 3500 m. In other
words, the natural environment at 3000 m is much more complex than its neighbors. This
explains why the detection performance by the MWIR modality at 3000 m is worse than the
other methods in Fig. 11.

4.5.3 Statistical analysis

As discussed in the above section, there are two factors, e.g., target scale (OD) and environment
complexity, that are critical to the target detection performance. In this section, we seek to
employ a statistical method to verify if the proposed deep fused system will mitigate the impact
of the target scale and environmental complexity. To accomplish this, the SNR, OD, and cor-
responding AP for different image modalities were calculated, and the results are summarized in
Table 2.

Multiple linear regression analysis is used to evaluate the association between two or more
independent variables and a dependent/response variable. In this study, we set the OD and envi-
ronmental complexity (SNR) as two independent variables and the performance of detectors
(AP) as the dependent variable. Hence, we formulate the linear regression model as follows:

EQ-TARGET;temp:intralink-;e009;116;229AP ¼ b0 þ b1 × ODþ b2 × SNR; (9)

where b1 to b2 are the estimated coefficients and b0 is a constant term. The multiple linear
regression presents the equation that minimizes the distance between the fitted line and all
of the data points. If the two factors, e.g., target scale and environmental complexity, have a
great influence on the detection, the estimated multiple linear regression model will fit the data
well. In other words, the lower goodness-of-fit for a multiple linear regression means that the
detection system has less dependence on the OD (target scale) and environmental complexity.
So a low goodness-of-fit is the expectation. To measure the goodness-of-fit of the model, three
well-known statistical metrics (R2, adjusted R2, and p-value) were adopted. R2, also called the
coefficient of determination, is a statistical measure of how close the data are to the fitted regres-
sion line. The value of R2 is in the range [0, 1]. A higher value means that the multiple linear
regression has a better goodness-of-fit but the target detection modal has more dependence on

Fig. 13 The distribution of SNR value of MWIR imageries against distances.
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the noise factors. The adjusted R2 is a modified version of R2, which has one more term that
penalizes a model for each additional explanatory variable. Consequently, any variable without
a strong correlation will make the adjusted R2 decrease. The p-value is used to test the null
hypothesis that the independent variables (i.e., target scale and environmental complexity) have
no effect on the response variable (i.e., AP). So in this case, a higher p-value indicates that it is
more possible to accept the null hypothesis. In other words, the regression model with a higher
p-value means that the detection system has less dependence on the OD (target scale) and envi-
ronmental complexity.

A set of multiple linear regression models were estimated for detectors of different image
modalities. The results are given in Table 3. The overall evaluation showed that all of the multiple
linear regression models of the detectors have a high goodness-of-fit, which means that the target
scale and environmental complexity have a strong effect on the performance of the detectors.
By contrast, the proposed DIF system (MWIR-VI-MI) had the lowest values for both R2 and
adjusted R2 and the highest p-value compared with the single modal-based and double modal-
based methods. This means that the DIF method is able to alleviate the impact of the target scale
and environmental complexity in comparison with the single image modalities.

4.6 Summary of Analysis

The experiments for algorithm comparison demonstrate both the effectiveness and efficiency
of the proposed framework for deep multimodal image fusion. In the analysis of OD, the
DIF performs better than other unimodal methods, especially in a long OD. However, when
any individual imaging modality involved in the fusion framework has a degraded performance,
it will also introduce degradation to the overall deep multimodal detection.

Two factors, i.e., OD (target scale) and environment complexity, were investigated for
their impacts on detection performance. As the target becomes smaller in a longer distance, the
detection performance will get worse generally. Another observation is that lower environmental
complexity will allow a better result in the detection. When taking both factors into account,
the statistical analysis showed the evidence that the proposed DIF can significantly mitigate
the two impacts.

5 Conclusions

In this paper, we proposed a CNN-based DIF framework for target detection in complex battle-
fields. The capability of detecting small targets in a complex environment will enhance the real-
time situation awareness in a battlefield. The overall framework configured in an end-to-end
network is composed of multimodal image preprocessing, deep feature extraction/fusion, region
proposal, classification, and regression modules. The extensive experiments on the SENSIAC
dataset demonstrated that the proposed method achieved 99.82% accuracy with great computa-
tional efficiency for real-time applications. Moreover, the proposed fusion method can deal with
varied noises from a complex background. Thus, the DIF framework has great potential to func-
tion in a real world application. The SENSIAC is so far the most comprehensive dataset with
multimodal images for target detection, but the sample images of different vehicles are still
limited for target classification research. For future work, we plan to apply our DIF method to
more available datasets and enable target classification through DIF as well.

Table 3 Results of multiple linear regression for the data in Table 2.

MWIR VI MI VI-MWIR VI-MI MWIR-MI VI-MWIR-MI

R2 0.8927 0.8823 0.9573 0.8595 0.9314 0.9126 0.8558

Adjusted R2 0.8570 0.8431 0.9431 0.8127 0.9085 0.8835 0.8077

p-Value 0.0012 0.0016 7.769e-05 0.0027 0.0003 0.0007 0.0030

Note: The best results are highlighted in bold font.
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