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Abstract. Polarized light-matter interactions are mathematically described by the Mueller
matrix (MM)-valued polarized bidirectional reflectance distribution function (pBRDF).
A pBRDF is parameterized by 16 degrees of freedom that depend upon scattering geometry.
A triple degenerate (TD) MM assumption reduces the degrees of freedom to eight: one for
reflectance, six for non-depolarizing properties, and one for depolarization. When the non-
depolarizing dominant process is known or assumed (e.g., Fresnel reflection), the degrees of
freedom are further reduced to two. For a given material, if the TD model is appropriate and
the dominant non-depolarizing process is known, then these two degrees of freedom can be
estimated from as few as two polarimetric measurements. Thus, the MM can be extrapolated
from a reduced number of measurements. The primary contribution of this work is the develop-
ment and demonstration of a linear estimator for an MM’s dominant eigenvalue (i.e., single
depolarization parameter) that requires fewer measurements than a full MM reconstruction.
MM extrapolations from single snapshot acquisitions with a Sony Triton 5.0MP polarization
camera are performed at 30 acquisition geometries and two wavelengths on an ensemble of
LEGO bricks treated to have varying surface roughness. These extrapolated MMs are compared
with MMs reconstructed from a complete dual rotating retarder Mueller imaging polarimeter.
The flux error mean and mode are 11.06% and 1.03%, respectively, despite a 10× reduction in
the number of polarimetric measurements. © The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or
in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.61
.12.123104]
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1 Introduction

Polarized light-matter interactions are mathematically described byMueller matrix (MM)-valued
functions called polarized bidirectional reflectance distribution functions (pBRDF) correspond-
ing to 16 degrees of freedom at each scattering geometry. Although analytical models exist,
building an experimental model with no prior information requires a minimum of 16 polarimetric
measurements at each combination of input and output scattering geometries. Using more than
16 polarimetric measurements creates an overdetermined system and a pseudoinverse solution
that becomes more robust to noise as more linearly dependent measurements are taken.1,2

Cloude coherency matrix eigenanalysis is a standard technique for analyzing MMs.3–9 An
MM with three equal coherency eigenvalues, a triple degeneracy (TD), has only eight degrees of
freedom.10 When the dominant non-depolarizing process is known, this reduces further to two
degrees of freedom. These degrees of freedom correspond to the average reflectance and the
dominant coherency eigenvalue. Based on empirical observation, the non-depolarizing process
is assumed to be a Fresnel reflection, even in the case in which subsurface scattering is stronger.

The objective of this work is to use prior knowledge about a material to extrapolate its MM
from a small quantity of measurements. Our strategy is to relate polarimetric measurements to
the two degrees of a freedom of a TD MM model when the dominant process is known, rather
than to relate measurements to the MM directly. The primary contribution of this work is a linear
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estimator for an MM’s dominant coherency eigenvalue that requires as few as two polarimetric
measurements. To the authors’ knowledge, this is the first method for extrapolating depolarizing
MMs with rank four coherency matrices from fewer than 16 measurements. We make use of a
single illumination polarization state and a commercial division of a focal plane (DoFP) linear
Stokes camera, meaning that four measurements can be performed in a single snapshot acquis-
ition. Experimental results using measurements taken in a snapshot configuration with a Sony
Triton 5.0MP polarization camera are presented and compared with a complete dual rotating
retarder (DRR) Mueller polarimeter.

2 Background

The bidirectional reflectance distribution function (BRDF) of a material is a radiometric property
defined as the ratio of the differential output radiance to the differential input irradiance.11 The
term bidirectional refers to the dependence on both the incident and observation directions.
These are specified with the angles θi and ϕi, which are the zenith and azimuth angles of the
incident direction, respectively, and θo and ϕo, which are the zenith and azimuth angles of the
observation direction, respectively. θi and θo are also referred to as the incident and scattered
angles, respectively.

Torrance and Sparrow12 introduced the theory of microfacets to explain off-specular scatter-
ing observed in most BRDFs. According to the theory, off-specular reflection from a surface with
normal n̂ is the result of small, randomly-oriented mirror-like microfacets with varying surface

normals ĥ combined with a diffuse component. The light that impinges on a microfacet obeys the
law of reflection, so its behavior is angle-dependent. For a given pair of incident and exitant
directions, ω̂i and ω̂o, respectively, the amount of reflected light depends on the average of the
Fresnel reflectance coefficients, the probability of the microfacet normal satisfying the law of
reflection, and the probability of interaction between adjacent microfacets. Light incident on one
microfacet may be blocked by a neighbor, preventing full illumination (called shadowing), or
light reflected from a microfacet may be blocked by a neighbor from reaching the observer
(called masking). The diffuse component is an angle-independent term that describes both light
scattered by multiple microfacets before reaching the observer and light that transmits into and
then out of the material. The microfacet BRDF model is characterized by the angle-dependent
distribution on microfacet orientations, shadowing-masking functions, and the relative weight of
specular to diffuse.

A scalar BRDF is a single-valued function of four variables, so a pBRDF is a MM-valued
function of four variables. A MM is a 16-element matrix that describes the linear transformation
of a polarization state due to light-matter interaction and is given as

EQ-TARGET;temp:intralink-;e001;116;294M ¼ M00m ¼ M00

0
BBB@

1 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

1
CCCA: (1)

Having 16 elements means that there are 16 degrees of freedom: one for average reflectance,
three for diattenuation, three for retardance, and nine for depolarization.13 Unfortunately, the
retardance and depolarization degrees of freedom do not correspond to individual Mueller ele-
ments and are instead coupled among multiple Mueller elements. Depolarization is the random
modulation of polarization in time, space, and/or wavelength faster than the particular detector in
use can resolve.14 The average reflectance is M00, which can be factored out to produce a nor-
malized MM that describes polarimetry separately from radiometry. In this work, an MM des-
ignated with a lowercase letter is normalized as in Eq. (1). A challenge inherent to pBRDFs is
that polarization properties are defined in the plane transverse to the ray direction. When con-
sidering all possible combinations of input and output directions, keeping track of the basis
vectors describing the transverse planes becomes paramount.

One of the first models for a pBRDF is an extension of the popular microfacet model by
Priest and Germer.15 In this model, the Fresnel equations are not combined to an average term;
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instead, the Fresnel reflection MM is used with careful consideration for the coordinate systems
before and after scattering. This MM has the form

EQ-TARGET;temp:intralink-;e002;116;711Mðω̂i; ω̂o; n0; n1Þ ¼ RðαoÞFRðn0; n1; θdÞRð−αiÞ; (2)

where RðαÞ are Mueller rotation matrices of the form

EQ-TARGET;temp:intralink-;e003;116;668RðαÞ ¼

0
BBB@

1 0 0 0

0 cosð2αÞ − sinð2αÞ 0

0 sinð2αÞ cosð2αÞ 0

0 0 0 1

1
CCCA; (3)

where αi and αo are the rotations from the polarization state generator (PSG) coordinates to local
microfacet coordinates and from local microfacet coordinates to the polarization state analyzer
(PSA) coordinates, respectively, and FRðn0; n1; θdÞ is the Fresnel reflection MM of the form

EQ-TARGET;temp:intralink-;e004;116;558FRðn0; n1; θdÞ ¼
1

2

0
BBB@

jrpj2 þ jrsj2 jrpj2 − jrsj2 0 0

jrpj2 − jrsj2 jrpj2 þ jrsj2 0 0

0 0 2Reðr�prsÞ 2 Imðr�prsÞ
0 0 −2 Imðr�prsÞ 2Reðr�prsÞ

1
CCCA; (4)

where rs and rp are the well-known Fresnel amplitude reflection coefficients that depend on the
refractive indices n0 and n1 and the angle of incidence onto the microfacet θd. It is worth noting
that typically αi is considered to be the rotation from the coordinate system defined by n̂ and ω̂i

to local microfacet coordinates, and αo is the rotation from the microfacet coordinates to the
coordinate system defined by n̂ and ω̂o. These rotations are needed for the forward problem
of computer graphics rendering from a pBRDF, but because the goal of this work is to recover
MMs, the input and output coordinate systems are different.

Other similar pBRDFs based on the microfacet model make use of some form of depolarizing
component. The most basic approach is to set the diffuse term to an ideal depolarizer.
The ideal depolarizer MM has the form

EQ-TARGET;temp:intralink-;e005;116;360mID ¼

0
BB@

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
CCCA; (5)

and has the property of converting any incident polarization state to unpolarized light.
Baek et al. proposed another pBRDF that interprets the diffuse term as a depolarizer.16 In this

model, the ideal depolarizer is sandwiched between two Fresnel transmission matrices. The
Fresnel transmission matrix has a similar form as in Eq. (4), but with the amplitude transmission
coefficients replacing the reflection coefficients. The rationale for this diffuse term is that some
fraction of the incident light undergoes Fresnel transmission into the material, undergoes subsur-
face scattering that completely depolarizes the light, and then is transmitted out. A pBRDF
model by Kondo et al.17 is a sum of a specular and two diffuse terms.

As stated above, a MM has 16 degrees of freedom and, therefore, must be constrained by at
least 16 linearly independent measurements. The most common architecture for a complete MM
polarimeter is a DRR polarimeter, which takes a sequence of measurements with different
retarder positions.18,19 Taking 16 or more sequential measurements at sufficiently fine scattering
geometry sampling to build an empirical pBRDF is a time-intensive process. This motivates the
development of snapshot polarimeters. Technologies for snapshot acquisition of MMs include
encoding polarization to wavelength,20–23 channeled polarimetry using polarization gratings,24,25

structured illumination combined with a DoFP full Stokes camera,26 and splitting the beam to
enable multiple DoFP cameras.27 Hybrid approaches also exist that use rotating retarders for
illumination but decrease the number of acquisitions using a DoFP camera.28
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These technologies are fast, but remain complex. Using partial polarimetry simplifies the
measurement requirements. Partial polarimetric systems take fewer than 16 linearly independent
measurements, making them underdetermined and incapable of reconstructing the full MM.
Recent work by Gonzalez et al.29 demonstrated analysis and decomposition of 3 × 4 partial
MMs measured using four polarized illumination states and a snapshot linear Stokes camera.
A partial polarimeter that only makes use of linear illumination and analyzer states can at most
reconstruct the upper 3 × 3 portion of an MM. Swami et al. showed that, for a non-depolarizing
MM, symmetry arguments can be applied to the linear partial MM to obtain the full 4 × 4

matrix.30 Ossikovski and Arteaga showed symmetry arguments for obtaining a full 4 × 4

MM from 12 elements in which a row or column is missing31 or from nine elements in which
a row and column are missing.32 In the 12-element case, it is possible to recover a depolarizing
MM but only if it obeys certain symmetry constraints and has only two non-zero coherency
eigenvalues.

The pBRDF model explored in this work was derived by Li and Kupinski10 and demonstrated
in polarimetric computer graphics renderings by Omer and Kupinski.32 This model is based on
the coherency matrix introduced by Cloude.4,5 The coherency matrix and its eigen decompo-
sition (sometimes called the spectral decomposition) are standard techniques for analyzing
MMs.3–9 Using the spectral decomposition, a depolarizing MM is rewritten as a convex sum
of up to four non-depolarizing MMs as

EQ-TARGET;temp:intralink-;e006;116;508m ¼
X3
n¼0

ξnm̂n; (6)

where ξn are the Cloude coherency matrix eigenvalues normalized so that
P

3
n¼0 ξn ¼ 1 and m̂n

are the non-depolarizing (indicated with the hat ·̂) MMs that also have the property that
1
4

P
3
n¼0 m̂n ¼ mID. Li and Kupinski showed that, when the smaller three eigenvalues of the

Cloude coherency matrix are equal, the MM has the form

EQ-TARGET;temp:intralink-;e007;116;407M ¼ 4M00

3

��
ξ0 −

1

4

�
m̂0 þ ð1 − ξ0ÞmID

�
; (7)

where m̂0 is the dominant non-depolarizing MM and ξ0 now controls the relative weight between
this dominant process and the ideal depolarizer. This MM is referred to as being triply degenerate
(TD) because the last three eigenvalues are identical. The 16 degrees of freedom of a general MM
are reduced to eight: one for M00, one for ξ0, three for the diattenuation orientation and magni-
tude of m̂0, and three for the retardance orientation and magnitude of m̂0. Both m̂0 and ξ0 are
functions of the scattering geometry: θi, ϕi, θo, and ϕo, though this dependence is omitted for
brevity. The decomposition of an MM into a non-depolarizing component and an ideal depo-
larizer has been discussed in the literature, such as in the textbook by Brosseau in which an MM
is written as a sum of a non-depolarizing MM that depends on the input Stokes vector and an
ideal depolarizer.33 For the TD model, the non-depolarizing MM does not depend on the input
Stokes vector and the relative contribution of each component is determined by the unique coher-
ency eigenvalue.

When the dominant process is believed to be Fresnel reflection, the angular dependence of
m̂0 is known and the degrees of freedom are reduced to two. Based on knowing a priori the
dominant coherent process m̂0, Li and Kupinski proposed a method to measure ξ0 using only
two linearly independent polarimetric measurements.10 Our method would, in principle, work
with only two linearly independent polarimetric measurements as well. However, with a com-
mercially available linear Stokes camera, such as the Sony Triton 5.0MP polarization camera
used in this work, simultaneous acquisition of four (three linearly independent) polarimetric
measurements is possible. The MM extrapolations presented make use of all four measurements.
Jarecki and Kupinski34 presented initial results for low albedo measurements. In this work, high
albedo measurements and additional analysis are included.
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3 Methods

3.1 Polarimetry

The MM of a particular light-matter interaction is measured by illuminating the sample with
a known PSG and then measuring the scattered light through a known PSA as

EQ-TARGET;temp:intralink-;e008;116;668pj ¼ aTjMgj ¼ wjM16×1; (8)

where M is the object MM, gj is the j’th PSG state, aj is the j’th PSA state, and pj is the j’th
irradiance measurement at the detector. This measurement equation is rewritten in the right side
of Eq. (8) as an inner product of two vectors, where wj ¼ aj ⊗ gTj and M16×1 is the object MM
elements ordered in a vector form. Conventional full polarimetry requires that at least J ¼ 16

linearly-independent measurements be performed with different illumination and analyzer
states to constrain the 16 degrees of freedom of M. Most polarimeters have J > 16 to create
an overdetermined system for mitigating the effects of noise.1,2 The MM estimate is then recon-
structed via the pseudoinverse as

EQ-TARGET;temp:intralink-;e009;116;536M̃16×1 ¼ WþP; (9)

where W is called the polarimetric measurement matrix and has rows wj, P is the vector of flux

measurements with elements pj, and the tilde on M̃ indicates the quantity is an estimate.

3.2 Triple Degenerate Model

Using the Cloude coherency eigenanalysis of MMs, Li and Kupinski derived the TD model in
which an MM consists of a weighted sum of a dominant non-depolarizing MM and an ideal
depolarizer, and the relative weights are controlled by a single depolarization parameter as shown
in Eq. (7).10 Under the assumptions of the TD model, the degrees of freedom in an MM are
reduced from 16 to eight: one for M00, three for the diattenuation and three for the retardance
of dominant non-depolarizing MM m̂0, and one for the dominant coherency eigenvalue ξ0 that
controls the relative weights in the model.

The partial polarimetric method presented in this work relies on a priori knowledge of the
dominant process m̂0 and how it varies over the measured scattering geometries. Based on
empirical observations, Fresnel reflection due to microfacets is used as the dominant process.
The coordinate system transformations needed to calculate Fresnel reflection over the field of
view of a measurement are described in Appendix A.

For a TD MM, the contribution of mID outweighs the contribution of m̂0 when ξ0 < 0.625.
In this regime, subsurface scattering dominates the interaction, but the single largest coherent
process can still be Fresnel reflection.

3.3 Mueller Matrix Extrapolation

A noise-free model for flux measurements P of a TD MM are written as a linear system

EQ-TARGET;temp:intralink-;e010;116;211P ¼ ΦTα: (10)

Here, Φ is a matrix with rows that are the measurement matrix W applied to the dominant
process m̂0 and ideal depolarizer mID from the TD model as

EQ-TARGET;temp:intralink-;e011;116;154Φ ¼
�

pT0
pTID

�
¼

� ½Wm̂0�T
½WmID�T

�
; (11)

and the elements of α are the weights in the TD model as
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EQ-TARGET;temp:intralink-;e012;116;735α ¼
�

α0
αID

�
¼ 4M00

3

�
ξ0 − 1

4

1 − ξ0

�
: (12)

It is worth reiterating that a benefit of the TD model is that the relative weights are controlled
by a single depolarization parameter ξ0 rather than varying independently. An estimate of the
coefficients α̃ is recovered with the Moore–Penrose pseudoinverse of ΦT as

EQ-TARGET;temp:intralink-;e013;116;662α̃ ¼ ½ΦT�þP ¼ ðWm̂0 WmID ÞþP; (13)

where P here is a vector of noisy flux measurements. Solving the system in Eq. (12) for the
model parameters, estimates for ξ̃0 and M̃00 are

EQ-TARGET;temp:intralink-;e014;116;605ξ̃0 ¼
1
4
þ α̃0∕α̃ID

1þ α̃0∕α̃ID
; M̃00 ¼

3α̃0
4ξ̃0 − 1

; (14)

where α̃0 and α̃ID are the elements of α̃. ξ̃0 is the parameter of interest because it determines the
fractional contributions of the dominant coherent process and the ideal depolarizer. This frac-
tional contribution adjusts the depolarization of the MM that changes with scattering geometry,
albedo, and surface texture.35 The estimated average reflectance M̃00 is ignored in the results
because the polarimeters used were not calibrated to produce data in absolute radiometric units.
Instead, the MM results will be normalized.

3.4 Polarimeters

The ground-truth MM images were taken using a full Mueller imaging polarimeter called
the RGB950.36 The RGB950 [shown in Fig. 1(a)] is a DRR polarimeter that reconstructs an
MM image from a sequence of 40 polarimetric measurements at different retarder positions.
Data were taken at two wavelengths: 662� 11.17 nm (red) and 451� 9.83 nm (blue). Thirty
scattering geometries shown in Table 1 were measured using a rotation stage for the sample and
a goniometric swing arm for the camera.

The linear partial polarimetric experiment was performed using a Sony Triton 5.0MP polari-
zation camera, shown in Fig. 1(b). This camera has an array of micropolarizers in front of the
detector elements, so four polarimetric measurements (three of which are linearly independent)
are taken simultaneously at the cost of spatial resolution. The rank three measurement matrix
of this system is underdetermined for full Mueller polarimetry but is overdetermined for
recovering the two unknown degrees of freedom in the TD model. Designing polarimeters

Fig. 1 (a) The full Mueller imaging polarimeter referred to as the RGB950. It takes 40 polarimetric
measurements. (b) The goniometer and PSG of the RGB950 but with the PSA replaced by a com-
mercial off-the-shelf linear Stokes camera. The Stokes camera takes 4 polarimetric measure-
ments in a single snapshot with a static PSG state.
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to be overdetermined systems is a well-established practice in the literature.1,2,37 The PSG of the
RGB950 was used to keep the illumination consistent, but only horizontal linear polarization
was used with the Stokes camera measurements. In principle, unpolarized illumination would
also work. In this work, the calibration and operation software provided by the manufacturer are
used. This could lead to exaggerated errors in the extrapolation results.

3.5 Samples

The samples measured in this work are a collection of blue LEGO bricks shown in Fig. 2. These
are the same LEGOs used by Li and Kupinski and are a collection of individual objects with the
same material properties and albedo but with varying textures.10 The surface roughness of each
brick was measured using a white light interferometer. The roughness averages (Ra) in microns
for each brick are top: 0.49, 0.56, 3.35, middle: 3.55, 2.62, 0.35, and bottom: 1.68, 1.26, 6.32.
Because the bricks are blue, the different wavelengths represent different albedo cases: 662 nm
illumination is low albedo and 451 nm illumination is high albedo. Umov’s effect states that the

Fig. 2 A tower of blue plastic LEGO bricks, each being sanded with a different grit of sandpaper.
This represents a group of objects with similar properties and albedos for a given wavelength but
with different surface textures. The Ra in microns for each brick are top: 0.49, 0.56, 3.35, middle:
3.55, 2.62, 0.35, and bottom: 1.68, 1.26, 6.32.

Table 1 A total of 30 acquisition geometries specified on-axis where ϕi and ϕo are 0 deg. For
each angle between the sample surface normal and source, θi , measurements are performed for
six angles between the surface normal and the camera, θo . The scattering geometries across
the field of view of an image will have θi , ϕi , θo , and ϕo that deviate from these on-axis values.
Some acquisition geometries are omitted from analysis because exposure issues with the linear
Stokes camera produced non-physical MM extrapolations.

θi θo;1 θo;2 θo;3 θo;4 θo;5 θo;6

−10 deg 10 deg 20 deg 30 deg 40 deg 50 deg 60 deg

−25 deg 15 deg 25 deg 35 deg 45 deg 55 deg 65 deg

−40 deg 20 deg 30 deg 40 deg 50 deg 60 deg 70 deg

−55 deg 25 deg 35 deg 45 deg 55 deg 65 deg 75 deg

−70 deg 30 deg 40 deg 50 deg 60 deg 70 deg 80 deg
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amount of depolarization is expected to trend positively with albedo, so these albedo cases also
represent cases with different amounts of depolarization.38

4 Results

Figure 3(a) shows a MM image at 451 nm calculated from conventional Mueller polarimetry
with 40 measurements compared to Fig. 3(b) which shows an MM image extrapolated from 4
measurements. Figures 3(c) and 3(d) show this same comparison at 662 nm. Figures 3(a) and
3(b) are a still from Video 1 and Figs. 3(c) and 3(d) are a still from Video 2. Videos 1 and 2
compare full MM reconstructions to extrapolations at multiple geometries. Depolarization can be
qualitatively observed by comparing the magnitude of M00 with other matrix elements: regions
of the image where all matrix elements have a smaller magnitude than M00 have larger depo-
larization. Depolarization is expected to be stronger for the high albedo case of blue bricks under

Fig. 3 Comparison of the MM image results at 451 nm of (a) full reconstruction with 40 polarimetric
measurements to (b) MM image results of partial polarimetric extrapolation (Video 1) and at
662 nm of (c) full reconstruction and (d) extrapolation (Video 2). The still images are for the geom-
etry θi ¼ −25 deg, θo ¼ 25 deg (Video 1, MP4, 3 MB [URL: https://doi.org/10.1117/1.OE.61.12
.123104.s1]; Video 2, MP4, 4 MB [URL: https://doi.org/10.1117/1.OE.61.12.123104.s2).
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blue illumination, and this can be seen by the relatively lower magnitudes across the field of view
in both the reconstruction and extrapolation. Likewise, the expectation of lower depolarization is
met for the low albedo case of the blue bricks under red illumination. The trend of increased
depolarization with surface roughness is also captured by the extrapolation.

4.1 Error in Dominant Eigenvalue Estimate

Figure 4 shows the estimated values of ξ̃0 for the smoothest and roughest textured bricks. Larger
values correspond to a larger estimated contribution of the dominant process, or equivalently
lower depolarization. For both brick textures, estimates of ξ̃0 are larger in the low albedo case
of 662 nm illumination than in the high albedo case of 451 nm illumination. This is in agreement
with expectations from Umov’s effect in which depolarization trends positively with albedo.
Furthermore, for both wavelengths, estimates of ξ̃0 are larger for the smooth brick and smaller
for the rough brick. This trend matches the expectation of a rougher texture resulting in higher
depolarization.

Figure 5 shows the difference between the true value of ξ0 from the complete MM recon-
struction and the estimated ξ̃0 from the linear Stokes measurements. Positive-valued differences
correspond to an overestimation of the dominant non-depolarizing process or equivalently
an underestimation of the amount of depolarization.

Extrapolations at 451 nm tended to overestimate ξ̃0 at more geometries than at 662 nm.
662 nm is the low-albedo case, where Umov’s effect indicates that depolarization is lower,
so it is possible that the method is most successful for low-depolarization cases.

4.2 Simulated Flux Vectors

To compare the MMs, the measurement matrix of the RGB950 W40 is applied to a 2 × 2 pixel

average of the normalized extrapolated MM and the full reconstructed MM to simulate the flux
measurements that the RGB950 would take. Additionally, the measurement noise is indicated

Fig. 4 The estimate ξ̃0 calculated with Eq. (14) versus acquisition geometry at 451 nm for (a) the
smoothest brick and (b) the roughest brick, and at 662 nm for (c) the smoothest brick and (d) the
roughest brick. Geometries at which the dynamic range of the linear Stokes camera caused
non-physical MM extrapolations are omitted.
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by the standard deviation error bar on each flux measurement. The resulting flux vectors for
two bricks multiple geometries are shown in Video 3 at 451 nm and in Video 4 at 662 nm.
Figures 6(a) and 6(b) are a still from Video 3 and Figs. 6(c) and 6(d) are a still from Video 4.
Also shown in Fig. 6 is the nearest TD approximation of the reconstructed MM. This is calcu-

lated by setting the three smallest coherency eigenvalues to 1−ξ0
3
. This TD approximation has the

exact correct dominant process m̂0 and represents the best possible extrapolation based on a TD
model. Flux vectors in which the TD approximation and extrapolation show a similar deviation
from the full reconstruction could indicate that the TD assumption is not valid. However,
Videos 3 and 4 do not consistently show disagreement between the reconstruction and TD
approximation where the extrapolation deviates from the reconstruction. The measurements
at 662 nm (the low albedo case) exhibit larger error bars for both the smooth and rough brick
compared with measurements at 451 nm (high albedo). This matches the expectation because,
despite larger polarization modulation for low albedo per Umov’s effect, the overall amount of
light is lower.38 The largest realizations of measurement noise occur for the rough brick at scat-
tering geometries near those with non-physical results but are not yet themselves non-physical.
However, for all other measurements, the disagreement between the extrapolations and the full
reconstruction is larger than the error bars. This means that errors in the extrapolation are more
likely the result of discrepancies in the assumed dominant process.

To compare MMs with a single-valued metric, the flux error ϵ is defined as

EQ-TARGET;temp:intralink-;e015;116;164ϵ ¼
P

40
j jpj − p̃jjP

40
j pj

; (15)

where pj are the elements of the flux vector simulated by applying the RGB950 measurement
matrix W40 to the ground truth MM (i.e., the full reconstruction) and p̃j are the elements of
the flux vector simulated by applying W40 to the MM being tested. This can be interpreted
as adding up all of the discrepancies and normalizing by the total expected flux. A flux error

Fig. 5 The estimate ξ̃0 calculated with Eq. (14) minus the true ξ0 versus acquisition geometry at
451 nm for (a) the smoothest brick and (b) the roughest brick, and at 662 nm for (c) the smoothest
brick and (d) the roughest brick. When the difference is positive valued, the contribution of the
dominant non-depolarizing term is overestimated. Geometries at which the dynamic range of the
linear Stokes camera caused non-physical MM extrapolations are omitted.
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ϵ ¼ 0 would mean that the two MMs yield the same RGB950 measurements. This physical inter-
pretation is the motivation for choosing Eq. (15) as our figure of merit instead of a sum of squared
differences between two MMs. Furthermore, small disagreements in multiple off-diagonal MM
elements could yield a small squared difference in MM elements but be an appreciable retardance
difference.

Figure 7 shows histograms of flux errors calculated from the same flux vectors as in Fig. 6 but
also includes the other textures. Figure 7(a) is the histogram of flux errors between the full recon-
struction MMs and the MMs extrapolated from linear Stokes images using an assumed Fresnel
reflection dominant process. The sources of error are measurement noise, the assumed dominant
process, and the assumption of a TD eigenspectrum. The mean is 11.65%, and the mode is
1.03%. Figure 7(b) shows the histogram of flux errors between the full reconstruction MMs
and those same MMs truncated to have a TD eigenspectrum. The process of TD truncation,
explained above, preserves the exact dominant process and is not a new noise-realization, so the
only source of error is the difference in eigenspectrum. The mean is 3.61%, and the mode is
0.54%. The narrower distribution in Fig. 7(b) compared with that in Fig. 7(a) indicates that the
assumption of a TD eigenspectrum is not the largest source of error.

For both bricks and both wavelengths, Fig. 8 shows that the larger flux errors tend to occur
for the larger incident and scattering angles. The maximum flux error is 0.42 and occurs for the
rough brick under 662-nm illumination at θi ¼ −60 deg, θo ¼ 65 deg, despite the maximum
error in ξ0 occurring for the smooth brick at 451 nm at θi ¼ −40 deg, θo ¼ 60 deg.

Fig. 6 Flux vectors at 451 nm of (a) the smoothest brick and (b) the roughest brick (Video 3) and at
662 nm of (c) smoothest brick and (d) the roughest brick (Video 4). Flux vectors are calculated by
averaging the normalized MM on a 2 × 2 pixel region of interest and then applyingW40 to simulate
what the RGB950 would measure. The error bars are �1 standard deviation in the region of
interest. The flux vectors shown here are for the full MM reconstructions (blue), the nearest TD
approximation of the reconstruction (orange), and the extrapolated MMs (green) at θi ¼ −25 deg,
θo ¼ 25 deg. Geometries at which the dynamic range of the linear Stokes camera caused
non-physical MM extrapolations are omitted from the videos (Video 3, MP4, 9 MB [URL:
https://doi.org/10.1117/1.OE.61.12.123104.s3; Video 4, MP4, 9 MB [URL: https://doi.org/
10.1117/1.OE.61.12.123104.s4).

Jarecki and Kupinski: Underdetermined polarimetric measurements for Mueller extrapolations

Optical Engineering 123104-11 December 2022 • Vol. 61(12)

https://doi.org/10.1117/1.OE.61.12.123104.s3
https://doi.org/10.1117/1.OE.61.12.123104.s4
https://doi.org/10.1117/1.OE.61.12.123104.s3
https://doi.org/10.1117/1.OE.61.12.123104.s3
https://doi.org/10.1117/1.OE.61.12.123104.s3
https://doi.org/10.1117/1.OE.61.12.123104.s3
https://doi.org/10.1117/1.OE.61.12.123104.s3
https://doi.org/10.1117/1.OE.61.12.123104.s3
https://doi.org/10.1117/1.OE.61.12.123104.s3
https://doi.org/10.1117/1.OE.61.12.123104.s3
https://doi.org/10.1117/1.OE.61.12.123104.s3
https://doi.org/10.1117/1.OE.61.12.123104.s4
https://doi.org/10.1117/1.OE.61.12.123104.s4
https://doi.org/10.1117/1.OE.61.12.123104.s4


Table 2 gives the flux error ϵ averaged over the acquisition geometry for each brick and
at both wavelengths. Both the overall minimum and maximum flux errors occur for 662 nm
illumination on the 0.56 and 3.35 μm Ra bricks, respectively. Because these extrema do not
correspond to the smoothest or roughest textures, it is likely that texture is not the dominant
contributing factor to the error. Averaging over texture, the high-albedo case has an error of
10.50% and the low-albedo case has an error of 11.65%.

Fig. 8 Flux vector error ϵ, as defined in Eq. (15), of the LEGO brick MMs extrapolated from linear
Stokes images and MMs reconstructed by the RGB950 plotted versus acquisition geometry for
(a) and (c) the smoothest brick and (b) and (e) the roughest brick. (a) and (b) The high albedo case
and (c) and (d) the low albedo case. Each flux vector was calculated by averaging the normalized
MM on a 2 × 2 pixel region and then applying W40 to simulate what the RGB950 would measure.
Each point corresponds to an acquisition geometry according to Table 1. Geometries at which the
dynamic range of the linear Stokes camera caused non-physical MM extrapolations are omitted.

Fig. 7 Histograms of flux error, as defined in Eq. (15), of (a) the extrapolated MMs based on
assuming the dominant process is Fresnel reflection and (b) the nearest TD truncations of the
true MMs relative to the true MMs. Each histogram contains the data over all textures, all geom-
etries, and both wavelengths. The narrower distribution in (b) compared with (a) indicates that the
assumption of a TD eigenspectrum is not the largest source of error. The mean of (a) is 11.06%,
and the mode is 1.03%. The mean of (b) is 3.61%, and the mode is 0.54%.
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5 Conclusion

For materials described by the simple triple-degenerate polarized light scattering model, this
work proposes a new and simplified way to measure the MM. Typical Mueller polarimetry
requires 16 or more polarimetric measurements to reconstruct an MM, whereas the TD MM
model allows for extrapolation from as few as two measurements when the dominant process
is known a priori. Existing methods for extrapolating full MMs from partial polarimetry require
non-depolarizing MMs30,31 or, at most, a rank-two coherency matrix.39 To the authors’ knowl-
edge, this work is the only method for extrapolating full-rank depolarizing MMs. Additionally,
this method is compatible with existing DoFP polarimeter technology and, therefore, can be
made into a snapshot polarimeter.

To demonstrate the method, extrapolations at different geometries of LEGO bricks with vary-
ing roughness are performed with a commercial linear Stokes camera and compared with the
full MM polarimeter reconstructions. The depolarization, which varies with surface roughness,
is apparent even on visual inspection of the diagonal elements of the extrapolated MMs. Over
varying textures, geometries, and albedos, the partial polarimetric extrapolations achieve flux
error mean and mode of 11.06% and 1.03%, respectively, despite a 10× reduction in the number
of polarimetric measurements.

6 Appendix A: Calculation of Rotated Fresnel Reflection Matrix

From the vectors ω̂i and ω̂o, the Fresnel reflection matrix at a given scattering geometry can be
found using conventions from polarization ray trace calculus and then converting to an MM
formalism.

6.1 Unrotated Fresnel Reflection

Based on the microfacet assumption, there are subresolution facets that cause specular reflection

from ω̂i to ω̂o. The surface normal of such a microfacet is called the halfway vector ĥ and
is calculated as

EQ-TARGET;temp:intralink-;e016;116;252ĥ ¼ ω̂o − ω̂i

jω̂o − ω̂ij
: (16)

The angle of incidence onto the facet is called the difference angle θd and is calculated as

EQ-TARGET;temp:intralink-;e017;116;195θd ¼ arccosðĥ · ð−ω̂iÞÞ: (17)

From the angle of incidence, the Fresnel reflection coefficients are

EQ-TARGET;temp:intralink-;e018;116;149rsðθdÞ ¼
cosðθdÞ − n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2ðθdÞ

n2

q
cosðθdÞ þ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2ðθdÞ

n2

q and rpðθdÞ ¼
n cosðθdÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2ðθdÞ

n2

q
n cosðθdÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2ðθdÞ

n2

q ; (18)

where n is an estimate of the index of refraction for the measured material and the index of
the incident material is assumed to be 1. The MM for Fresnel reflection is given in Eq. (4).

Table 2 The flux error ϵ, as defined in Eq. (15), averaged over acquisition geometry for each brick.
Acquisition geometries that produced non-physical MM extrapolations due to the dynamic range of
the linear Stokes camera are omitted.

Brick Ra (μm) 0.35 0.49 0.56 1.26 1.68 2.62 3.35 3.55 6.32

ϵ at 451 nm (%) 11.50 11.40 8.96 8.33 7.79 11.06 13.28 12.28 9.93

ϵ at 662 nm (%) 10.42 8.42 7.23 12.82 8.75 12.95 15.55 15.16 14.89
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6.2 Coordinate System of Microfacet

The input eigenpolarization basis Σ̂i − Π̂i for the microfacet with normal ĥ in the transverse
plane to ω̂i is calculated as

EQ-TARGET;temp:intralink-;e019;116;690Σ̂i ¼ ĥ × ω̂i and Π̂i ¼ ω̂i × Σ̂i: (19)

The output eigenpolarization basis Σ̂o − Π̂o for the microfacet with normal ĥ in the plane
transverse to ω̂o is calculated as

EQ-TARGET;temp:intralink-;e020;116;630Σ̂o ¼ bh × ω̂o and Π̂o ¼ ω̂o × Σ̂o: (20)

Greek letters are used to differentiate the microfacet s-p basis coordinates from the macro-
surface s-p basis coordinates conventionally used in polarization ray tracing.

6.3 Coordinate Systems of PSG and PSA

When light is reflected off a surface, the polarization states also undergo a geometric transform
independent of the material properties. The polarization state is initially parameterized in the
coordinate system of the PSG and ends in the coordinate system of the PSA. Using a point
source illumination model and a pinhole camera model, the polarization states are best described
using a double pole basis.

Local basis vectors in a double-pole system are determined by an antipole direction, a rota-
tion matrix from the antipole to the propagation direction, and a reference basis vector. With
the object centered at the origin, the antipole directions of the input and output, âi and âo,
respectively, are calculated as

EQ-TARGET;temp:intralink-;e021;116;427âi ¼ −
s
jsj and âo ¼

c
jcj ; (21)

where s is the coordinate of the point source and c is the coordinate of the camera pinhole.
A 3 × 3 rotation matrix by angle ϕ about the axis r̂ ¼ ðrx; ry; rzÞ is calculated as

EQ-TARGET;temp:intralink-;e022;116;360

R3ðr̂;ϕÞ ¼

2
64

r2xð1− cos ϕÞþ cos ϕ rxryð1− cos ϕÞ− rz sin ϕ rxrzð1− cos ϕÞþ ry sin ϕ

ryrxð1− cos ϕÞþ rz sin ϕ r2yð1− cos ϕÞþ cos ϕ ryrzð1− cos ϕÞ− rx sin ϕ

rzrxð1− cos ϕÞ− ry sin ϕ rzryð1− cos ϕÞþ rx sin ϕ r2zð1− cos ϕÞþ cos ϕ:

3
75:

(22)

The basis vectors for the input direction ω̂i are calculated using rotation axis r̂i and rotation
angle ϕi

EQ-TARGET;temp:intralink-;e023;116;252r̂i ¼ ω̂i × âi and ϕi ¼ − arccosðω̂i · âiÞ; (23)

where basis vectors for the outward direction ω̂o are calculated using rotation axis r̂o and rotation
angle ϕo

EQ-TARGET;temp:intralink-;e024;116;197r̂o ¼ ω̂o × âo and ϕo ¼ − arccosðω̂o · âoÞ: (24)

Assuming the global vertical is ŷ ¼ ð0;1; 0Þ, then the local vertical polarization in the PSG
and PSA coordinate systems, ŷi;loc and ŷo;loc, respectively, are calculated as

EQ-TARGET;temp:intralink-;e025;116;140ŷi;loc ¼ R3ðr̂i; θiÞŷ and ŷo;loc ¼ R3ðr̂o; θoÞŷ: (25)
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6.4 Rotated Fresnel Mueller Matrix

The rotation matrix in Mueller calculus has the form

EQ-TARGET;temp:intralink-;e026;116;704RðαÞ ¼

2
664
1 0 0 0

0 cos 2α − sin 2α 0

0 sin 2α cos 2α 0

0 0 0 1

3
775: (26)

The angle of rotation in the transverse plane αi from the coordinates to the microfacet basis is
calculated as

EQ-TARGET;temp:intralink-;e027;116;611αi ¼ 2 arccosðŷi;loc · Π̂iÞsignððŷi;loc × Π̂iÞ · ω̂iÞ; (27)

and the angle of rotation in the transverse plane from the microfacet basis to the PSA coordinates
is calculated as

EQ-TARGET;temp:intralink-;e028;116;554αo ¼ 2 arccosðΠ̂o · ŷo;locÞsignððΠ̂o × ŷo;locÞ · ω̂oÞ: (28)

The rotated Fresnel reflection MM is then calculated as

EQ-TARGET;temp:intralink-;e029;116;507M ¼ Rð−αoÞFRðθdÞRð−αiÞ: (29)
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