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Abstract. The increasing pixel density in displays demands high quality in the production of
fine metal masks (FMMs). The production process of FMMs boils down to structuring tiny holes
in thin metal sheets or foils. The manufacturing requirements of FMMs are high precision in
terms of the hole geometry to let enough light escape from each diode and high productivity to
produce the required amount. To achieve both objectives, high power ultrashort pulse (USP)
lasers can be utilized. Because USP lasers fall short of the productivity requirements, they are
combined with multibeam scanners. During production, the multibeam scanners deposit a lot of
heat in the metal foil, which can ultimately yield temperature-induced distortions. To understand
and finally avoid such distortions, a process simulation is sought. In a preceding study, the struc-
turing of a single hole (the microscale) was investigated, but due to the large differences in the
time and spatial scales involved, it was not feasible to simulate the production of the whole part
(the macroscale). Within this treatise, a multiscale approach that takes into account the necessary
information from the microscale to describe temperature-induced distortions on the macroscale
is described. This approach targets laser ablation processes with pulse durations ranging from
picoseconds up to nanoseconds provided the ablation is not melt-driven. First, a representative
volume element (RVE) is generated from the results of the microscale model. Then, this RVE is
utilized in the thermo-elastic structural mechanics simulation on the macroscale. The multiscale
model is validated numerically against a hole-resolved computation, which shows good agree-
ment. Naturally, the simulation is highly dependent on the microscale model, which in turn
depends on the material properties. To handle material changes well, an experimental calibration
has to be performed. This calibration is not part of this treatise, but it will be described in a future
publication. In addition to the calibration process, the validation with experiments will be con-
ducted in future research. Additionally, the authors envision the automation of the whole process,
resulting in a first-time-right approach for the development of FMMs. Finally, the procedure
might be extended to the requirements of other filtration purposes. © The Authors. Published
by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction
of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI:
10.1117/1.OE.61.9.095103]
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1 Introduction

In today’s consumer electronics, displays with ever-increasing pixel density are required. Within
the production of such displays, fine metal masks (FMMs) with the highest quality have to be
fabricated. Conventionally, the holes are etched into the metal foil; however, this process is
reaching its limit as the defects accumulate for pixel densities around 600 PPI.1 A technology
that allows for such quality is high power ultrashort pulsed lasers.2 The main reason for resorting
to USP lasers is their ability to insert a lot of energy into the material without too much heating,
which would destroy such thin foils.2 To meet the productivity requirements, the laser can be
combined with a multibeam scanner.3 During the production of FMMs, it is important to avoid
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distortions or discoloration due to heat accumulation.4 Therefore, process parameters and
processing strategies that avoid such problems are sought.

Within this treatise, an extension to a simulation that computes the structuring of a single
borehole, which has been explained in a prior publication,5 is described. This time-consuming
computation of a single borehole shape is used as the basis for a multiscale model with which
the simulation of larger workpieces becomes feasible. The multiscale model consists of two
scales.6–10 First, the heat conduction and deformations are computed for a single borehole, the
microscale. Second, the information on the microscale is collected in a representative volume
element (RVE) with which the heat conduction and deformations of a whole workpiece, the
macroscale, can be computed. The microscale model assumes pulse durations from femtosec-
onds up to nanoseconds as long as the ablation is not melt-driven.11

The unit cell, which is the computational domain in the microscale simulation, is the direct
result of the simulation described in the prior publication.5 Both the heat conduction and
the thermo-elastic structural mechanics problems are discretized using a Bubnov–Galerkin
method.12–14 Averaging the results over the unit cell domain yields the material properties of
the RVE.

On the macroscale, the computational domain is an FMM. It consists of two regions: one for
a hole and one for the solid material. It is essential to use the RVE in the region that accounts for
a hole and the ordinary material properties of the solid everywhere else. Again, a Bubnov–
Galerkin scheme is employed to compute the temperature field and the distortions of the
FMM.12–14

This treatise presents the multiscale approach using a simplified hole geometry. The homog-
enization of both models, the heat-conduction and the thermo-elasticity models, is performed
using an asymptotic expansion in the scale variable as described in Ref. 6. To account for multi-
beam scanners, the two-scale model can be adapted easily. This novel approach is capable of
simulating the temperature field and elastic distortions occurring during the structuring of thin
metal foils. Plastic strains and melt formation are not considered. The multiscale simulation
computes accurate results in a fraction of the time compared with a fully-resolved simulation.

2 Multiscale Model

In a prior publication, the ablation of a structure with a single beam was explained.5 This treatise
extends the results to a multiscale model with which a periodic ablation pattern can be simulated
for larger domains in a reasonable time.

The multiscale approach follows closely the works of Fish [8, Chapter I.3] or [6, Chapter
2.2]. To further reduce the computational demands, a residual-free method that allows for com-
puting the microstructure off-line and in advance of the macroscale simulation was developed.

2.1 Geometric Set-Up and Notation

Hereafter, it is assumed that two length scales that differ in size enough to be separated exist, i.e.,
0 < ζ ≔ lf

lc
≪ 1. Variables referring to a particular length scale are denoted with a subscript xf for

fine and xc for coarse. Furthermore, the notation for functions that account for information on all
scales uses a preceding superscript ζf and functions that are valid on the I’th scale use If. If not
indicated otherwise, the variable x lives on the coarse scale, whereas the variable y ≔ x∕ζ lives
on the fine scale. The computational domain is denoted as Ω with the boundary ∂Ω. To account
for different physical interactions with the environment, it is necessary to split this boundary into
a Neumann part ΓN and a Dirichlet part ΓD, such that ∂Ω ¼ ΓN ∪ ΓD and ΓN ∩ ΓD ¼ 0 (c.f.
Fig. 1). Analogously, the domain and boundaries for the unit cell are defined, except the symbol
Θ is used. Whenever a distinction between Dirichlet and Neumann Boundary has to be made,
ΓD and ΓN , respectively, are used.

The reason the artificial unit cell geometry [c.f. Fig. 1(a)] is used throughout this treatise is
twofold. First, the computation of a realistic hole is already described in a prior publication,5 and
the geometries can be easily exchanged. Second, on the large scale, the difference between the
artificial unit cell and a realistic unit cell is negligible.
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In addition to the geometric notation, the Einstein summation convention is employed, i.e.,
repeated indices are summed. The derivative of a function fðxiÞ with respect to xi is sometimes
abbreviated with ∂xif to emphasize vector field operators such as the divergence. Averaged quan-
tities are denoted with an overline, e.g., x, vectors and matrices are highlighted in a boldface x
and uppercase boldface X, respectively. Finally, the subscript fði;xjÞ is used to denote the sym-

metrized gradient tensor entry, i.e.

EQ-TARGET;temp:intralink-;e001;116;458fði;xjÞ ≔
1

2

�
∂fi
∂xj

þ ∂fj
∂xi

�
: (1)

More complex geometries can be created using a level set function ΦðxÞ∶Rn → R. Such a
level set function is the key result in the companion publication5 wherein Φ is the solution that
describes the ablation surface of a laser structuring process. A unit cell domain can be defined
using this function on voxels by removing all elements that lie completely inside the ablated
domain, i.e., for which ΦðxÞ < 0 holds. This can be seen in Fig. 2. The second result of the
simulation described in Ref. 5 is the heat distribution after the ablation process is done.
This heat distribution can be used as a volume source in Sec. 2.2.

2.2 Two-Scale Heat Conduction

The heat conduction equation for a material with specific density ρ∶ζΩ → R, specific heat capac-
ity cp∶ζΩ → R, and thermal conductivity λ∶ζΩ → R heated by a heat source Q∶ζΩ → R reads

Fig. 2 A level set function can be used to mark elements that lie inside an ablated domain
[c.f. Fig. 2(a)]. The final unit cell after removal of marked elements is shown in Fig. 2(b).

(a) (b)

Fig. 1 (a) An artificial unit cell geometry is shown. In reality, the hole shape depends on the abla-
tion strategy and the laser beam properties. (b) Displays a foil created using the unit cell in (a),
although the hole sizes are emphasized.
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EQ-TARGET;temp:intralink-;e002;116;735

ρcp
∂ζT
∂t

þ ∂ζqi
∂xi

¼ ζQ in ζΩ

ζqi ¼ −λ
∂ζT
∂xi

in ζΩ

ζqi
ζni ¼ ζqN on ζΓN

ζT ¼ ζTD on ζΓD: (2)

Herein, ni, refers to the i’th entry of the outward pointing unit normal n, e.g. n ¼ ðn1; n2; n3ÞT in
three dimensions. The solution to this problem is the temperature field T∶ζΩ → R. In general,
the functions depend on both the coarse and fine scales, but for the density and the specific heat
capacity a dependence on the fine scale variable only is assumed, i.e., ρ ≔ ρðyÞ and cp ≔ cpðyÞ.

Now, an ansatz function for the temperature is defined by means of an asymptotic
expansion15 using the scale ζ, which reads

EQ-TARGET;temp:intralink-;e003;116;564

ζTðxÞ ≔ Tðx; yÞ ¼ ζ00Tðx; yÞ þ ζ11Tðx; yÞ þOðζ2Þþ · · · : (3)

Note that terms of order 2 and above have been omitted as they do not contribute significantly to
the temperature due to the condition ζ ≪ 1. Fourier’s law in Eq. (2) relates the temperature
gradient to the heat flux; therefore, the spatial derivative of Eq. (3) is taken. Rearranging the
terms in accordance to the order of ζ yields

EQ-TARGET;temp:intralink-;e004;116;485

∂ζT
∂xi

ðxÞ ¼ ∂T
∂xi

ðx;yÞ ¼ ζ−10Tðx;yÞþ ζ0
�
∂0T
∂xi

ðx;yÞþ ∂1T
∂yi

ðx;yÞ
�
þ ζ1

∂1T
∂xi

ðx;yÞ þOðζ2Þþ · · · :

(4)

Again, higher-order terms are omitted in the two-scale formulation. Multiplying this equation
with the negative thermal conductivity and a comparison of the coefficients results in
EQ-TARGET;temp:intralink-;e005;116;405

−λ
∂T
∂xi

ðx; yÞ ¼ −ζ−1λ0Tðx; yÞ − ζ0λ

�
∂0T
∂xi

ðx; yÞ þ ∂1T
∂yi

ðx; yÞ
�
− ζ1λ

∂1T
∂xi

ðx; yÞ −Oðζ2Þ− · · ·

qiðxÞ ¼ ζ−1−1qiðx; yÞ þ ζ00qiðx; yÞ þ ζ11qiðx; yÞ þOðζ2Þþ · · · : (5)

The divergence of the heat flux is needed, too. Taking the derivative with respect to the i’th space
component and sorting in ascending orders of ζ yields

EQ-TARGET;temp:intralink-;e006;116;319

∂qi
∂xi

¼ ζ−2
∂−1qi
∂yi

þ ζ−1
�
∂−1qi
∂xi

þ ∂0qi
∂yi

�
þ ζ0

�
∂0qi
∂xi

þ ∂1qi
∂yi

�
þ ζ1

�
∂1qi
∂xi

þ ∂2qi
∂yi

�
þOðζ2Þþ · · · :

(6)

Here, the functions’ arguments are dropped for brevity. Inserting the ansatz functions—Eq. (3)
for the temperature and Eq. (5) for the heat flux—in the energy balance in Eq. (2) gives

EQ-TARGET;temp:intralink-;e007;116;239ρcp
∂ð0T þ ζ1TÞ

∂t
þ ζ−2

∂−1qi
∂yi

þ ζ−1
�
∂−1qi
∂xi

þ ∂0qi
∂yi

�
þ ζ0

�
∂0qi
∂xi

þ ∂1qi
∂yi

�
þOðζÞþ · · ·¼ ζQ:

(7)

Note the truncation at OðζÞ. The terms are now rearranged and collected in orders of ζ. More
rigorously, Eq. (7) is multiplied by ζ2 first, then by ζ1, which, after taking the limit ζ → 0þ,
yields a system of three equations:

EQ-TARGET;temp:intralink-;e008;116;143Oðζ−2Þ∶ ∂−1qi
∂yi

¼ 0; (8)

EQ-TARGET;temp:intralink-;e009;116;86Oðζ−1Þ∶ ∂−1qi
∂xi

þ ∂0qi
∂yi

¼ 0; (9)
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EQ-TARGET;temp:intralink-;e010;116;735Oðζ0Þ∶ ρcp
∂ð0T þ ζ1TÞ

∂t
þ ∂0qi

∂xi
þ ∂1qi

∂yi
¼ ζQ: (10)

Henceforth, it is assumed that the heat source ζQ and the boundary conditions ζqN and ζTD in
Eq. (2) depend on the coarse scale only. The system still needs closure.

Multiplying Eq. (8) with 0T and integrating over the unit cell gives

EQ-TARGET;temp:intralink-;e011;116;662

Z
Θ

0T
∂−1qi
∂yi

dy ¼ 0: (11)

which, after applying the product rule of the divergence operator and the divergence theorem,
reads

EQ-TARGET;temp:intralink-;e012;116;593

Z
∂Θ

0T−1qinidy −
Z
Θ

∂0T
∂yi

−1qidy ¼ 0: (12)

Because periodic boundary conditions are employed on the unit cell, the temperature and heat
flux on opposite points of the boundary are equal, but the normal points in exactly opposite
directions, and therefore, the boundary integral vanishes. Inserting the corresponding coefficient
from the ansatz in Fourier’s law Eq. (5) gives

EQ-TARGET;temp:intralink-;e013;116;500

Z
Θ

∂0T
∂yi

λ
∂0T
∂yi

dy ¼ 0: (13)

From λ > 0 follows ∂0T
∂yi

¼ 0, which implies an independence on the fine scale, i.e., 0T ≔ 0TðxÞ.
Through Eq. (5), this also holds for the corresponding part of the heat flux

EQ-TARGET;temp:intralink-;e014;116;427

−1qi ¼ −λ
∂0T
∂yi

¼ 0: (14)

Now, Eq. (9) is considered. Inserting Eq. (14) results in

EQ-TARGET;temp:intralink-;e015;116;369

∂0qi
∂yi

¼ 0: (15)

Again, the expression for the corresponding part of the heat flux from Eq. (5) can be inserted,
which yields

EQ-TARGET;temp:intralink-;e016;116;300

∂
∂yi

�
λ

�
∂0T
∂xi

þ ∂1T
∂yi

��
¼ 0: (16)

Using the ansatz 1Tðx; yÞ ¼ HjðyÞ∂xj0TðxÞ and factoring out ∂xj
0TðxÞ gives

EQ-TARGET;temp:intralink-;e017;116;240

∂
∂yi

�
λ

�
δij þ

∂HjðyÞ
∂yi

��
¼ 0; (17)

with the temperature influence function Hj∶ζΩ → R ∈ C0ðΘÞ and the usual Dirac delta δij.
Boundary conditions depend on the coarse scale only, and the fact that 0T already accounts for
all information on the boundary, the fine scale problem reads

Find HjðyÞ, such that

EQ-TARGET;temp:intralink-;e018;116;144

∂
∂yi

�
λ

�
δij þ

∂HjðyÞ
∂yi

��
¼ 0; in Θ

HjðyÞ ¼ 0 on ∂Θ: (18)

With the current information, the temperature ansatz Eq. (3) is given as

Heinigk et al.: Multiscale model for ultrashort pulsed parallel laser structuring—Part II. The macroscale model

Optical Engineering 095103-5 September 2022 • Vol. 61(9)



EQ-TARGET;temp:intralink-;e019;116;735

ζTðxÞ ¼ Tðx; yÞ ≈ 0TðxÞ þ ζ1HjðyÞ
∂0TðxÞ
∂xj

: (19)

On the coarse scale, the temperature is defined to be the multiscale temperature averaged over the
unit cell:

EQ-TARGET;temp:intralink-;e020;116;674

cTðxÞ ¼ 1

volðΘÞ
Z
Θ

ζTðxÞdy ≈ 1

volðΘÞ
Z
Θ

0TðxÞ þ ζ1HjðyÞ
∂0TðxÞ
∂xj

dy

¼
0TðxÞ
volðΘÞ

Z
Θ
dyþ ζ1∂xj

0TðxÞ
volðΘÞ

Z
Θ
HjðyÞdy; (20)

and thus, cT ¼ 0T, if and only if ∫ ΘHjðyÞdy ¼ 0.
Inserting the corresponding relation of the heat flux ansatz Eq. (5) into Eq. (17) yields

EQ-TARGET;temp:intralink-;e021;116;572

0qi ¼ −Λij
∂0T
∂xj

Λij ≔ λ

�
δij þ

∂Hj

∂yi

�
; (21)

in which Λij is termed the heat flux influence function.
Finally, the zeroth-order terms of ζ Eq. (10) are averaged over the unit cell, resulting in

EQ-TARGET;temp:intralink-;e022;116;472

1

volðΘÞ
Z
Θ
ρcp

∂0T
∂t

þ ∂0qi
∂xi

dyþ 1

volðΘÞ
Z
Θ

∂1qi
∂yi

dy −
1

volðΘÞ
Z
Θ

ζQdy ¼ 0: (22)

Rearranging the first integral and applying the divergence theorem to the second gives

EQ-TARGET;temp:intralink-;e023;116;414

∂0T
∂t

1

volðΘÞ
Z
Θ
ρcpdyþ

∂
∂xi

�
1

volðΘÞ
Z
Θ

0qidy

�
þ 1

volðΘÞ
Z
∂Θ

1qinidy −
1

volðΘÞ
Z
Θ

ζQdy ¼ 0;

(23)

wherein the boundary integral vanishes due to 1qi ¼ −λ∂xi
1T ¼ −λHj∂xj

0T and Hj ¼ 0 for

y ∈ ∂Θ, resulting in

EQ-TARGET;temp:intralink-;e024;116;329

∂0T
∂t

1

volðΘÞ
Z
Θ
ρcpdyþ

∂
∂xi

�
1

volðΘÞ
Z
Θ

0qidy

�
−

1

volðΘÞ
Z
Θ

ζQdy ¼ 0: (24)

Henceforth, averaged quantities are denoted with a horizontal line above them, e.g.,
ρcp ≔ 1

volðΘÞ ∫ Θρcpdy. With this notation in place, the coarse scale heat conduction reads

EQ-TARGET;temp:intralink-;e025;116;256

∂0T
∂t

ρcp þ
∂0qi
∂xi

− ζQ ¼ 0: (25)

In summary, two problems have to be solved: one on the fine scale and one on the coarse
scale. The fine scale problem reads

Find HjðyÞ, such that

EQ-TARGET;temp:intralink-;e026;116;172

∂
∂yi

�
λ

�
δij þ

∂Hj

∂yi

��
¼ 0; in Θ Hj ¼ 0; on ∂Θ: (26)

From the solution, the heat flux influence function Λij can be computed using Eq. (21).
The coarse scale problem is then defined as
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Find 0TðxÞ, such that

EQ-TARGET;temp:intralink-;e027;116;723

ρcp
∂0T
∂t

−
∂
∂xi

ðΛij
∂0T
∂xj

Þ ¼ Q; in Ω × ½0; tmax�
0T ¼ T0; in Ω × f0g

Λij
∂0T
∂xj

ni ¼ qN; on ∂Ω : (27)

The overall temperature function ζT can then be constructed as

EQ-TARGET;temp:intralink-;e028;116;618

ζTðx; yÞ ≈ 0T þ ζHjðyÞ
∂0TðxÞ
∂xj

: (28)

2.3 Thermo-Elastic Deformations

To define the multiscale structural-mechanics equations, which describe the deformation of
a solid under volume and thermal loading conditions, a few functions have to be introduced.
For an n-dimensional domain, the displacement is denoted u∶ζΩ → Rn. Note that it does not
depend on time. The body forces acting on the work piece are written as b∶ζΩ → Rn. The nota-
tions for strains and stresses resulting from the loads read ϵ∶ζΩ → Rn×n and σ∶ζΩ → Rn×n,
respectively. They are related through the stiffness tensor C ∈ Rn×n×n×n. Using these definitions,
the static equilibrium of stresses in index notation is given as

EQ-TARGET;temp:intralink-;e029;116;457

∂ζσij
∂xj

þ ζbi ¼ 0; in ζΩ

ζσij ¼ ζCijkl
ζϵelkl; in ζΩ

ζσijnj ¼ ζti; on ζΓN

ζui ¼ ζui; on ζΓD: (29)

Herein, the total ϵtot strain is the sum of the elastic ϵel, plastic ϵpl, and thermal ϵth strains:

EQ-TARGET;temp:intralink-;e030;116;344

ζϵtotkl ¼ ζϵelkl þ ζϵthkl; in ζΩ

ζϵtotkl ¼ 1

2

�
∂ζuk
∂xl

þ ∂ζul
∂xk

�
; in ζΩ

ζϵthkl ¼ −αΔζTδkl; in ζΩ: (30)

The stiffness tensor obeys a symmetry condition

EQ-TARGET;temp:intralink-;e031;116;253

ζCijkl ¼ ζCjikl ¼ ζCijlk ¼ ζCklij; (31)

and is positive in the sense that

EQ-TARGET;temp:intralink-;e032;116;207∃ c > 0∶ ζCijklnijnkl ≥ cnijnij; ∀ nij ¼ nji: (32)

Analogously to the two-scale heat conduction in Sec. 2.2, the asymptotic ansatz for the
displacement is defined to be

EQ-TARGET;temp:intralink-;e033;116;149

ζuiðxÞ ≔ uiðx; yÞ ¼ 0uiðx; yÞ þ ζ1uiðx; yÞ þ ζ22uiðx; yÞ þOðζ3Þþ · · · : (33)

From Eq. (29), it is obvious that the derivative is required, too. Taking the derivative with respect
to xj, applying the chain rule, and sorting in ascending order of ζ yields
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EQ-TARGET;temp:intralink-;e034;116;735

∂ui
∂xj

ðx; yÞ ¼ ζ−1
∂0ui
∂yj

ðx; yÞ þ ζ0
�
∂0ui
∂xj

ðx; yÞ þ ∂1ui
∂yj

ðx; yÞ
�
þ ζ1

�
∂1ui
∂xj

ðx; yÞ þ ∂2ui
∂yj

ðx; yÞ
�

þ ζ2
�
∂2ui
∂xj

ðx; yÞ þ ∂3ui
∂yj

ðx; yÞ
�
þOðζ3Þþ · · ·

¼ ζ−1
∂0ui
∂yj

ðx; yÞ þ
X2
s¼0

ζs
�
∂sui
∂xj

ðx; yÞ þ ∂sþ1ui
∂yj

ðx; yÞ
�
þOðζ3Þþ · · · : (34)

Inserting into the strain–displacement relation in Eq. (30) gives

EQ-TARGET;temp:intralink-;e035;116;622

ϵelijðx; yÞ ¼ ζ−1
1

2

�
∂0ui
∂yj

þ ∂0uj
∂yi

�
þ
X2
s¼0

ζs
1

2

�
∂sui
∂xj

þ ∂sui
∂xj

þ ∂sþ1ui
∂yj

þ ∂sþ1ui
∂yj

�
þOðζ3Þþ · · ·

¼ ζ−1−1ϵelij þ
X2
s¼0

ζssϵelij þOðζ3Þþ · · · : (35)

Assuming the stiffness tensor is independent of the coarse scale, i.e., Cijklðx; yÞ ≔ CijklðyÞ, and
inserting the ansatz for the elastic strain Eq. (35) into the stress–strain relation Eq. (29) results in
the two-scale ansatz for the stress

EQ-TARGET;temp:intralink-;e036;116;501

σijðx; yÞ ¼ CijklðyÞ
�
ζ−1−1εelij þ

X2
s¼0

ζssεelij

�
þOðζ3Þþ · · ·

¼ ζ−1−1σij þ
X2
s¼0

ζssσij þOðζ3Þþ · · · : (36)

Again, the derivative of the stress with respect to space is needed as it appears in Eq. (29). Thus,
inserting the derivative, which reads

EQ-TARGET;temp:intralink-;e037;116;393

∂σij
∂xj

ðx; yÞ ¼ ζ−2
∂−1σij
∂yj

þ ζ−1
�
∂−1σij
∂xj

þ ∂0σij
∂yj

�
þ ζ0

�
∂0σij
∂xj

þ ∂1σij
∂yj

�
þOðζÞ; (37)

in the stress balance and sorting in ascending order of ζ yields

EQ-TARGET;temp:intralink-;e038;116;334ζ−2
∂−1σij
∂yj

þ ζ−1
�
∂−1σij
∂xj

þ ∂0σij
∂yj

�
þ ζ0

�
∂0σij
∂xj

þ ∂1σij
∂yj

þ ζbi

�
þOðζÞ ¼ 0: (38)

Analogously to the derivation of the two-scale heat conduction problem, the leading order terms
of the stress balance are obtained by multiplication with ζ2 and ζ, respectively, and taking the
limit ζ → 0:

EQ-TARGET;temp:intralink-;e039;116;251Oðζ−2Þ∶ ∂−1σij
∂yj

¼ 0; (39)

EQ-TARGET;temp:intralink-;e040;116;192Oðζ−1Þ∶ ∂−1σij
∂xj

þ ∂0σij
∂yj

¼ 0; (40)

EQ-TARGET;temp:intralink-;e041;116;155Oðζ0Þ∶ ∂0σij
∂xj

þ ∂1σij
∂yj

þ ζbi ¼ 0: (41)

It is, hereafter, assumed that the body force depends on the fine scale only ζbiðxÞ ≔ biðyÞ, and
the boundary conditions in Eq. (29) are coarse scale functions ζtiðxÞ ≔ tiðxÞ and ζuiðxÞ ≔ uiðxÞ.
For closure, the moments are computed for each order. Therefore, multiplying Eq. (39) by 0ui
and integrating over the unit cell gives
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EQ-TARGET;temp:intralink-;e042;116;735

Z
Θ

0ui
∂−1σij
∂yj

dy ¼ 0: (42)

Using the product rule of divergence and the divergence theorem, as well as noting that the
resulting boundary integral vanishes due to periodicity of both integrands and opposing normals,
results in

EQ-TARGET;temp:intralink-;e043;116;662

Z
Θ

∂0ui
∂yj

−1σijdy ¼ 0: (43)

Inserting the definitions of −1σij and −1ϵelij from Eqs. (36) and (35), respectively, yields

EQ-TARGET;temp:intralink-;e044;116;601

Z
Θ

∂0ui
∂yj

Cijkl
1

2

�
∂0uk
∂xl

þ ∂0ul
∂xk

�
dy ¼ 0: (44)

From the symmetry and positiveness of the stiffness tensor C, it can be inferred that

EQ-TARGET;temp:intralink-;e045;116;543

∂0ui
∂xj

¼ 0; (45)

and, with Eqs. (36) and (35),

EQ-TARGET;temp:intralink-;e046;116;485

−1σij ¼ 0: (46)

Inserting Eq. (46) into Eq. (40) gives

EQ-TARGET;temp:intralink-;e047;116;439

∂0σij
∂yj

¼ 0; (47)

which, with the definition of 0σij from Eq. (36) and 0ϵij from Eq. (35), results in

EQ-TARGET;temp:intralink-;e048;116;379

∂
∂yj

�
Cijkl

�
1

2

�
∂0uk
∂xl

þ ∂0ul
∂xk

�
þ 1

2

�
∂1uk
∂xl

þ ∂1ul
∂xk

���
¼ 0: (48)

This shows a direct dependence between the displacement of the zeroth and first scale. Hence,
the separation of variables ansatz

EQ-TARGET;temp:intralink-;e049;116;308

1ui ≔ mnHiðyÞ
1

2

�
∂0um
∂xn

þ ∂0un
∂xm

�
; (49)

with the first-order displacement influence function H, is employed. It is assumed that the
influence function is symmetric mnHi ¼ mnHi, locally periodic, and continuous H ∈ C0ðΩÞ.
Inserting the ansatz in Eq. (48) yields

EQ-TARGET;temp:intralink-;e050;116;226

∂
∂yj

ðCijklð0uðk;xlÞ þ mnH0
ðk;ylÞuðm;xnÞÞÞ ¼ 0; (50)

and after factoring out 0uðm;xnÞ

EQ-TARGET;temp:intralink-;e051;116;166

∂
∂yj

ðCijklðIklmn þ mnHðk;ylÞÞÞ0uðm;xnÞ ¼ 0; (51)

with the definition Iklmn ≔ 1
2
ðδkmδln þ δlmδknÞ. Because 0uðm;xnÞ is arbitrary, it is required that

EQ-TARGET;temp:intralink-;e052;116;107

∂
∂yj

ðCijklðIklmn þ mnHðk;ylÞÞÞ ¼ 0: (52)
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To have a well-defined problem in the sense of Hadamard, an additional condition is needed. In
the literature,6–8 two conditions are reported:

1. mnHkðyÞ ¼ 0; on ∂Θvert, and
2. ∫ Θ

mnHkðyÞdy ¼ 0; in Θ.

Herein, ∂Θvert denotes the vertices of the unit cell boundary ∂Θ. As always, each has advantages
over the other. Although condition 1 is simpler to implement, condition 2 associates 0uiðxÞ with
the average displacement cui through

EQ-TARGET;temp:intralink-;e053;116;633

cuðxÞ :¼ 1

volðΘÞ
Z
Θ

ζuðx; yÞdy: (53)

With the fine-scale displacement ansatz, the overall displacement function reads

EQ-TARGET;temp:intralink-;e054;116;577uiðx; yÞ ¼ 0uiðxÞ þ ζmnHiðyÞ0uðm;xnÞðxÞ þOðζ2Þ; (54)

which can be inserted into Eq. (53)

EQ-TARGET;temp:intralink-;e055;116;531

cuiðxÞ ≔
1

volðΘÞ
Z
Θ

0uiðxÞ þ ζmnHiðyÞ0uðm;xnÞðxÞ þOðζ2Þdy

¼ 0uðm;xnÞðxÞ
1

volðΘÞ
Z
Θ
1dy

¼ 0uðxÞ: (55)

Within this treatise, condition 2 has been applied. From this, the leading order strain is
given as

EQ-TARGET;temp:intralink-;e056;116;418

0ϵtotij ¼ 0uði;xjÞ þ 1uði;xjÞ

¼ ðIijkl þ mnHðk;ylÞðyÞÞ0uðm;xnÞ

¼ Emnkl
0uðm;xnÞ

¼ ∶fϵtotkl ðx; yÞ; (56)

with the strain influence function Emnkl ≔ Iijkl þ mnHðk;ylÞðyÞ and the fine-scale total strain fϵtot.

Averaging the fine-scale total strain over the unit cell yields the coarse-scale total strain

EQ-TARGET;temp:intralink-;e057;116;301

cϵtotmnðxÞ ≔
1

volðΘÞ
Z
Θ

fϵtotmnðx; yÞdy ¼ 0uðm;xnÞ: (57)

Herein, the integral vanishes due to the divergence identity, the divergence theorem, and the
local periodicity of the displacement influence function. With this, the coarse scale total strain
is given as

EQ-TARGET;temp:intralink-;e058;116;221

fϵtotkl ðx; yÞ ≔ EmnklðyÞcϵtotmnðxÞ: (58)

The leading stress is computed according to

EQ-TARGET;temp:intralink-;e059;116;177

0σijðx; yÞ ≔ ΣijmnðyÞcϵtotmnðxÞ ¼ ∶fσijðx; yÞ; (59)

with the stress influence function Σijmn ≔ CijklEklmn.
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Finally, the highest order, i.e., Eq. (41), averaged over the unit cell reads
EQ-TARGET;temp:intralink-;e060;116;723

1

volðΘÞ
Z
Θ

∂0σij
∂yj

þ ∂1uij
∂yj

þ ζbidy ¼ 0

1

volðΘÞ
Z
Θ

∂0σij
∂yj

þ ζbidy ¼ 0: (60)

Herein, the second term vanishes after applying the divergence theorem and due to local perio-
dicity. Inserting the stress–strain and strain–displacement relations for the respective scale yields

EQ-TARGET;temp:intralink-;e061;116;622

1

volðΘÞ
Z
Θ
CijklEklmnðyÞdy

∂
∂xj

0uðm;xnÞðxÞÞ þ
1

volðΘÞ
Z
Θ

ζbidy ¼ 0

cCijmn
∂
∂xj

ðcϵtotmnÞ þ cbi ¼ 0

∂cσij
∂xj

þ cbi ¼ 0; (61)

with the according definitions of cCijmn and cσij.
In summary, on the fine scale, the problem reads
Find mnHiðyÞ, such that

EQ-TARGET;temp:intralink-;e062;116;482

∂
∂yj

ðCijklðmnHðk;ylÞ þ IklmnÞÞ ¼ 0; in Θ
Z
Θ

mnHiðyÞdy ¼ 0; in Θ

mnHiðyÞ ¼ mnHiðyþ lÞ; on ∂Θ; (62)

where l is chosen, such that yþ l is the point on the boundary opposite of y. The problem on the
coarse scale is

Find cuiðxÞ, such that
EQ-TARGET;temp:intralink-;e063;116;357

∂cσij
∂xj

þ cbi ¼ 0; in Ω

cσij ¼ cCijmn
cϵtotmn; in Ω

cui ¼ cui; on ΓD

cσijnj ¼ cti; on ΓN: (63)

Finally, the overall displacements can be recovered with

EQ-TARGET;temp:intralink-;e064;116;248uiðx; yÞ ¼ 0uiðxÞ þ ζmnHkðyÞ0uðm;xnÞðxÞ: (64)

3 Weak Formulation

To solve the aforementioned systems numerically, a Galerkin method is applied in the space
dimension. The time discretization is performed using the Euler method. First, the two-scale
heat conduction is explained, and second, the thermo-elasticity problem is discussed.

3.1 Two-Scale Heat Conduction

Remembering the equation for the temperature influence function, i.e., Eq. (26), and choosing
trial and test functions from the Hilbert space ϕ;φ ∈ H1

0ðΩÞ, containing functions vanishing on
the boundary, the temperature influence function can be approximated within this space to read
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EQ-TARGET;temp:intralink-;e065;116;735HjðyÞ ≈ ĤjkϕkðyÞ; k ¼ 1; : : : ; K: (65)

Multiplying Eq. (26) by arbitrary test functions and integrating over the unit cell yields

EQ-TARGET;temp:intralink-;e066;116;699

Z
Θ

∂
∂yi

�
λ

�
δij þ

∂Ĥjkϕk

∂yi

��
φldy ¼ 0; ∀ φl; l ¼ 1; : : : ; L: (66)

Constant terms can be factored out and brought to the right side. Using the product rule for the
divergence operator and applying the divergence theorem gives

EQ-TARGET;temp:intralink-;e067;116;628−
Z
Θ
λ

∂
∂yi

ðĤjkϕkÞ
∂φl

∂yi
dy ¼ −

Z
Θ

∂
∂yi

ðλδijφlÞdy: (67)

Note that the boundary integral vanishes due to vanishing test functions. With the definition of a
system matrix A ∈ RL×K and a thermal load vector bj ∈ RL, such that

EQ-TARGET;temp:intralink-;e068;116;559

Alk ≔
Z
Θ
λ
∂ϕk

∂yi
∂φl

∂yi
dy;

bl ≔
Z
Θ

∂
∂yi

ðλδijÞφldy: (68)

The problem can be written in matrix form, i.e.

EQ-TARGET;temp:intralink-;e069;116;476AĤj ¼ bj: (69)

Solving Eq. (69) for the coefficient vector Ĥj ∈ RK yields the approximate solution through
Eq. (65), which in turn gives the heat flux influence function

EQ-TARGET;temp:intralink-;e070;116;415Λij ¼ λ

�
δij þ Ĥjk

∂ϕk

∂yi

�
: (70)

On the macroscale, the discretization in space is performed analogously. Again, the same
notation is used to refer to trial and test functions. Note, however, that the functions are defined
on the macroscopic space this time, e.g., ϕ ¼ ϕðxÞ. Representing the temperature in the Hilbert

space H1
0ðΩÞ with time-dependent coefficients T̂ ¼ T̂ðtÞ

EQ-TARGET;temp:intralink-;e071;116;318

0T ≈ T̂kðtÞϕkðxÞ; k ¼ 1; : : : ; K; (71)

and multiplying Eq. (27) by test functions φlðxÞ yields
EQ-TARGET;temp:intralink-;e072;116;273 Z

Ω
ρcp

∂T̂kðtÞ
∂t

ϕkðxÞφlðxÞ − T̂kðtÞ
∂
∂xi

�
Λij

∂ϕkðxÞ
∂xj

�
φlðxÞdx ¼

Z
Ω
QφlðxÞdx;

∀ φl; l ¼ 1; : : : ; L: (72)

Henceforth, the arguments of test and trial functions are dropped for a terser notation. The second
term can be rewritten using the divergence theorem and integrating the Neumann boundary con-
dition from Eq. (27) and, therefore, it can be brought to the right side, too:

EQ-TARGET;temp:intralink-;e073;116;173

Z
Ω
ρcp

∂T̂kðtÞ
∂t

ϕkφldx ¼
Z
Ω
Qφldxþ

Z
ΓN

qNφldx: (73)

Now, the time domain is discretized using an explicit Euler scheme. Henceforth, the time
step is denoted with a superscript n and the time step with Δt. With this notation in place, the

temperature coefficients at the next time step T̂nþ1
k can be computed as
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EQ-TARGET;temp:intralink-;e074;116;735

Z
Ω
ρcpT̂

nþ1
k ϕkφldx ¼

Z
Ω
ρcpT̂

n
kϕkφldxþ Δt

�Z
Ω
Qnφldxþ

Z
ΓN

qnNφldx

�
: (74)

With the definition of the system matrix A ∈ RL×K and the thermal load vector bn ∈ RL, i.e.
EQ-TARGET;temp:intralink-;e075;116;687

Alk ≔
Z
Ω
ρcpϕkφldx;

bnl ≔
Z
Ω
ρcpT̂

n
kϕkφldxþ Δt

�Z
Ω
Qnφldxþ

Z
ΓN

qnNφldx

�
; (75)

the matrix form of Eq. (74) reads

EQ-TARGET;temp:intralink-;e076;116;604AT̂nþ1 ¼ bn: (76)

3.2 Thermo-Elastic Deformations

In analogy to Sec. 3.1, the weak formulation is now derived for the thermo-elastic deformations.
For the fine-scale problem, the test and trial functions are chosen from the same Hilbert space
H1

0ðΘÞ of functions vanishing on the boundary. With the approximation

EQ-TARGET;temp:intralink-;e077;116;504

mnH ≈ mnĤq
qϕ; q ¼ 1; : : : ; Q; (77)

for the stress influence function, and after Eq. (62) is multiplied by test functions φp and
integrated over the unit cell, the problem reads

EQ-TARGET;temp:intralink-;e078;116;445

Z
Θ

∂
∂yj

ðCijklðmnĤq
qϕðk;ylÞ þ IklmnÞÞφpdy ¼ 0; ∀ φp; p ¼ 1; : : : ; P: (78)

Applying the product identity for the divergence operator followed by the divergence theorem
and taking into account the test functions vanishing on the boundary gives

EQ-TARGET;temp:intralink-;e079;116;376 −
Z
Θ
CijklðmnĤq

qϕðk;ylÞ þ IklmnÞ
∂φp

∂yj
dy ¼ 0: (79)

The known terms can be written on the right side, which reads

EQ-TARGET;temp:intralink-;e080;116;319

Z
Θ
Cijkl

mnĤq
qϕðk;ylÞ

∂φp

∂yj
dy ¼ −

Z
Θ
CijklIklmn

∂φp

∂yj
dy: (80)

To turn this expression into matrix form, the system matrix A ∈ RP×Q and load vector
b ∈ RP are defined. In coefficient notation, they read

EQ-TARGET;temp:intralink-;e081;116;249

Ai
pq ≔

Z
Θ
Cq
ijklϕðk;ylÞ

∂φp

∂yj
dy;

mnbi ≔ −
Z
Θ
CijklIklmn

∂φp

∂yj
dy: (81)

With this, the matrix form

EQ-TARGET;temp:intralink-;e082;116;162Ai mnĤ ¼ mnib; (82)

can be solved for the coefficient vector mnĤ ∈ RQ.
The solution to the discretized fine-scale problem is used to define the homogenized coarse-

scale material properties. First, the displacement influence function can be reconstructed using

EQ-TARGET;temp:intralink-;e083;116;91

mnHiðyÞ ≈ mnĤqϕqiðyÞ: (83)
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Then, the strain influence function is given as
EQ-TARGET;temp:intralink-;e084;116;723

mnEklðyÞ ≈ Iklmn þ mnHðk;ylÞðyÞ;
mnHðk;ylÞðyÞ ¼

mnĤq
1

2

�
∂ϕqk

∂yl
ðyÞ þ ∂ϕql

∂yk
ðyÞ

�
: (84)

With this, and the stress influence function

EQ-TARGET;temp:intralink-;e085;116;648

mnΣijðyÞ ≈ CijklðyÞmnEklðyÞ; (85)

the coarse-scale stress tensor can finally be computed to

EQ-TARGET;temp:intralink-;e086;116;604

cCijkl ≈
1

volðΘÞ
Z
Θ

mnΣijðyÞdy: (86)

Now, the coarse-scale stress equilibrium problem Eq. (63) is considered. Multiplying with
suitable test functions φp ∈ H1

0ðΩÞ ¼ ff ∈ H1jfjΓD
¼ 0g and integrating over the domain Ω

yields

EQ-TARGET;temp:intralink-;e087;116;521

Z
Ω

∂cσij
∂xj

φpdx ¼ −
Z
Ω

cbiφpdx; ∀ φp; p ¼ 1; : : : ; P: (87)

Using, again, the product rule of the divergence operator and the divergence theorem, after
inserting the traction defined on the Neumann boundary, gives

EQ-TARGET;temp:intralink-;e088;116;451

Z
Ω

cσij
∂φp

∂xj
dx ¼

Z
Ω

cbiφpdxþ
Z
ΓN

ctiφpdx: (88)

Inserting the stress–strain and in turn the strain–displacement relations yields

EQ-TARGET;temp:intralink-;e089;116;395

Z
Ω

cCijklðcûqqϕðk;xlÞ þ αΔcTδklÞ
∂φp

∂xj
dx ¼

Z
Ω

cbiφpdxþ
Z
ΓN

ctiφpdx: (89)

Again, constant terms are brought to the right, i.e.

EQ-TARGET;temp:intralink-;e090;116;340

Z
Ω

cCijkl
cûqqϕðk;xlÞ

∂φp

∂xj
dx ¼

Z
Ω

cbiφp − cCijklαΔcTδkl
∂φp

∂xj
dxþ

Z
ΓN

ctiφpdx: (90)

Factoring out the coefficients yields

EQ-TARGET;temp:intralink-;e091;116;283

Z
Ω

cCq
ijklϕðk;xlÞ

∂φp

∂xj
dxcûq ¼

Z
Ω

cbiφp − cCijklαΔcTδkl
∂φp

∂xj
dxþ

Z
ΓN

ctiφpdx; (91)

which can be brought into the matrix form
EQ-TARGET;temp:intralink-;e092;116;226

Ai
cû ¼ cbi;

RP×Q ∋ Aipq ≔
Z
Ω

cCijkl
qϕðk;xlÞ

∂φp

∂xj
dx;

RP ∋ bip ≔
Z
Ω

cbiφp − cCijklαΔcTδkl
∂φp

∂xj
dxþ

Z
ΓN

ctiφpdx: (92)

4 From a Single Beam to Multibeam Patches

To scale up production, the laser beam can be split into multiple beams, each structuring the same
cavity in parallel. This scenario can also be accounted for in the described model. The trick is to
replace the periodic unit cell domain to account for a multibeam patch. Therefore, instead of the
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unit cell shown in Fig. 1(a), the unit cell consists of multiple holes ablated from a cuboid (c.f.
Fig. 3). Naturally, the volume heat source, which is included in the two-scale heat conduction
problem in Sec. 2.2, has to account for the multiple beams as well. In addition, the two-scale
formulation is the same.

5 Numerical Experiments

To validate the two-scale model, the structuring of a foil is simulated with the multiscale
approach and compared with a hole-resolved simulation.

The geometric setup is similar to the foil shown in Fig. 1(b). The foil’s thickness is
2 × 10−5 m. The holes are assumed to be rectangular (c.f. Fig. 1) with a size of 4 × 10−5 m

by 4 × 10−5 m on the top and a size of 2 × 10−5 m by 2 × 10−5 m on the bottom of the foil.
There are 14 × 14 patches in the middle of the foil with 8 × 8 holes per patch. The holes are
distributed on a patch with a hole pitch size of 5.7 × 10−5 m. This setup models a multibeam
scanner unit with eight times eight laser beams (c.f. Table 1 for the beam parameters).

To structure the hole foil, a hatch strategy is needed. The scanner is set to move in the
y-direction first and then in the x-direction with a speed of 0.05 m∕s. For the hole-resolved
simulation, each hole is discretized with a mesh of 2 × 2 × 1 elements in the x, y, and z direc-
tions, respectively. On the other hand, in the multiscale simulation, the discretization is patch
resolved; therefore, each patch corresponds to 1 element.

Beneath the foil, which is made of INVAR36 (c.f. Ref. 16 for the material parameters),
an air layer and a soda-lime float glass layer, with a thickness of 5 × 10−6 m each, are added
to dissipate heat and avoid thermally induced plastic distortions which cannot be handled by
the described model. The material parameters for air and glass are shown in Tables 2 and 3,
respectively.

Table 1 Laser beam.

Description Variable

Type Gaussian beam

Polarization Circular

Wavelength 1 × 10−6 m

Beam radius 90 × 10−6 m

Power 100 W

Focal length 0.0 m

Rayleigh length 500 m

Fig. 3 A unit cell accounting for multiple holes produced by a multibeam parallel ablation process.
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It remains to define the initial conditions, the boundary conditions, and the sources. The load
vectors for the microscale heat conduction problem read b0 ¼ ð1;0; 0ÞT , b1 ¼ ð0;1; 0ÞT , and
b2 ¼ ð0;0; 1ÞT . For the mechanical microscale problem, the fine scale stiffness tensor has to
be defined. In Voigt notation, i.e., after compressing the symmetric coefficients, the stiffness
tensor can be represented as a symmetric matrix, which in turn can be stored as a vector with
the entries C ¼ ðC11; C22; C33; C12; C23; C13Þ. The six load cases read C6 ¼ ð1;0; 0;0; 0;0Þ,
C7 ¼ ð0;1; 0;0; 0;0Þ, C8 ¼ ð0;0; 1;0; 0;0Þ, C9 ¼ ð0;0; 0;1; 0;0Þ, C10 ¼ ð0;0; 0;0; 1;0Þ, and
C11 ¼ ð0;0; 0;0; 0;1Þ. For the heat conduction problem, the initial condition is ambient temper-
ature, i.e., TD ≔ Ta ¼ 298.15 K. The Neumann boundary is chosen to be isolating on all
boundaries except for the bottom one, on which a heat transition condition is set, i.e.,
qN ≔ 10ðT − TaÞ. Finally, the source is given by Q ≔ APh∕ðVelnephÞ with the absorption coef-
ficient A ¼ 0.4, the hole power Ph ¼ 0.0163416 W, the volume of the hole Velneph, and the
number of elements per hole neph. For the mechanical problem, there is neither an initial con-
dition nor a source. Instead, two boundary conditions have to be provided. The foil is clamped
uðxÞ ¼ ð0;0; 0ÞT at x ¼ ð−1000;−1000;0ÞT . Additionally, it is constrained in the x-direction at
x ¼ ð−1000;1000; 0ÞT and in the y-direction at x ¼ ð1000;−1000;0ÞT . There are no traction
forces applied to the surface; therefore, cti ¼ 0.

To solve the time dependent system Eq. (82), the time step is chosen to yield a Courant–
Friedrichs–Lewy number of C ¼ 1000 and a total of 400 time steps is simulated. Then, the
system is solved using the GMRES17 algorithm and the ILU018 preconditioner from the PETSc
project.19 The algorithm stops when either a tolerance of 1 × 10−6 is reached or the number of
iterations surpasses 100. The structural mechanics problem Eq. (92) is solved using the iterative
Newton SOR method20 with a relaxation factor of 1.5.

6 Results

The solutions to the microscale problem were computed once per load case. This information
was then fed into the patch-resolved simulation. Therefore, there are no comparisons to the hole-

Table 3 Material parameters for soda-lime float FL glass.

Description Variable Value

Poisson ratio ν 0.156

Young’s modulus E 9.1 × 104 MPa

Thermal expansion coefficient α 4.6 × 10−6 1∕K

Thermal conductivity λ 0.76 W/(m K)

Specific heat capacity cp 800 J/kg K

Density ρ 2530 kg∕m3

Table 2 Material parameters for air.

Description Variable Value

Poisson ratio ν 0.156

Young’s modulus E 0.1 MPa

Thermal expansion coefficient α 4.6 × 10−16 1∕K

Thermal conductivity λ 0.026 W/(m K)

Specific heat capacity cp 1000 J/kg K

Density ρ 1 kg∕m3
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resolved simulation. It can be seen that the temperature influence function depends highly on
the fine scale thermal conductivity λ, which enters Eq. (26) on the right side (c.f. the left and
middle pictures compared with the right one in Fig. 4).

Figure 5 shows the displacement influence function for the first three load cases. Again, it can
be seen that the geometry and the stiffness tensor play the dominant role as the displacement
influence function in the right most plot is not as affected as in the other two cases.

In Fig. 6, it can be seen that the temperature field is highest in the middle of the structured
area. Even though the ablation area is rectangular, there is an almost radial symmetric temper-
ature dissipation. Note, however, that the midpoint of this radial symmetric field is slightly
shifted toward the right and the top of the structured area. This is an effect of the hatch strategy,
which drives the laser from the lower left to the upper right corner. Because the heat cannot
dissipate into the holes, the cooling rate is highest at the corners, high at the border of the pattern,
and lowest at the midpoint. Hence, it is a radial symmetric temperature field.

Fig. 4 The temperature influence function Hj for the three load cases ð1;0; 0ÞT , ð0;1; 0ÞT , and
ð0;0; 1ÞT is shown in Figs. 4(a)–4(c), respectively.

Fig. 5 The magnitude of the displacement influence function mnH for the first three (out of six)
load cases, i.e., ð1;0; 0;0; 0;0ÞT , ð0;1; 0;0; 0;0ÞT , and ð0;0; 1;0; 0;0ÞT is shown in Figs. 5(a)–5(c),
respectively.
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The displacements in Fig. 7 are higher in the positive x or y direction, respectively. As the
deformation is solely driven by the temperature differences, this is again an impact of the hatch-
ing strategy. The elastic deformations in the left or bottom edge are already reducing to the initial
configuration, whereas the deformation at the upper and right edges have just occurred. The
somewhat lower displacements at the corner are a direct result of the clamping boundary con-
ditions, which act on the bottom side of the foil.

The von Mises stresses in Fig. 8 are lower at the corners and the edges of the foil and highest
in the middle. This actually visualizes the clamping conditions and explains the reduced defor-
mations toward the corners. Because the process is temperature based, it is obvious that the von
Mises stress show a similar pattern as the temperature field.

Finally, it is observed that the results of both the hole-resolved and the patch-resolved sim-
ulations coincide. The total runtime for the hole-resolved simulation was 36 067 s. The patch-
resolved simulation took 421 s to compute the RVEs and 23 s to simulate the foil using the RVEs.
In total, it is an improvement of over 98%, but because the RVEs only need to be computed once
per material and hole shape, the improvement for further runs is even better at over 99%.

Fig. 6 The temperature of the hole-resolved simulation is displayed in Fig. 6(a) and the multiscale
simulation in Fig. 6(b).

Fig. 7 The displacement of the hole-resolved simulation in the x - and y -directions [c.f. Figs. 7(a)
and 7(b)] and the multiscale simulation in the x - and y -directions [c.f. Figs. 7(c) and 7(d)].
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7 Conclusion and Outlook

To develop the necessary process understanding to allow for a first-time-right production of
FMMs, it is essential to have a fast simulation that aids in the search for better processing strat-
egies. Therefore, a multiscale approach was developed within this treatise. This mathematical
model consists of a two-scale heat conduction problem and a two-scale thermo-elasticity prob-
lem. In total, four tasks needed to be solved, two for the heat conduction and two for the struc-
tural mechanics. The discretization in space was performed using a Bubnov-Galerkin method,
and the time discretization of the heat conduction problem was realized with the Euler method.

The implementation of the multiscale model is capable of reproducing the results simulated
with a microscale model in a fraction of the time. The total achieved improvement in runtime is
over 98% with an absolute runtime of a few seconds for the shown experiment.

The multiscale simulation enables scientists and researchers to explore and evaluate different
scanning strategies with respect to the temperature-induced distortions in the work piece.
Additionally, the processing strategies for filters or FMMs can be found faster compared with
experiments, which might yield a quicker production ramp-up.

The current model does not account for plastic deformations. However, the yield stress is a
good indicator for the occurrence of plastic deformations and can therefore be used to prevent
situations in which the model fails to work. In future research, the authors plan to validate the
model against physical experiments. In addition, the automation of the chain of calibrations
and simulations is desired. Finally, the simulation might be used as a basis for an optimization
algorithm, which selects the best scanning strategy for structuring thin foils.
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