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ABSTRACT  
In the past years we have perceived within the USCT research community a demand for freely available USCT data sets. 
Inspired by the idea of Open Science, this collection of data sets could stimulate the collaboration and the exchange of 
ideas and experiences between USCT researchers. In addition, it may lead to comprehensive comparison of different 
reconstruction algorithms and their results. Finally, by collecting feedback from the users about data and system 
architecture, valuable information is gathered for further development of measurement setups. For the above reasons, we 
have initiated a digital portal with several reference data sets and access scripts under free licenses. To kick off this 
initiative, we organized a USCT data challenge event at SPIE Medical Imaging 2017. 
 
Keywords: Ultrasound computer tomography, data challenge, open science, open data 
 

1. INTRODUCTION 
 
Ultrasound Computer Tomography is an exciting new technology mostly aimed at breast cancer imaging. Due to the 
complex interaction of ultrasound with human tissue, the large amount of raw data, and the large volumes of interest, 
image reconstruction is challenging both from a physical and a computational point of view. Many different image 
reconstruction methods can be applied, ranging from simple ray based methods to full inversion with very different 
approximations of the linear acoustic wave equation, see e.g. [1]. While the ray based algorithms offer fast 
reconstruction, the inversion algorithms promise high image quality and resolution. 
 
In recent years various groups have proposed a number of different approaches for image reconstruction, e.g. [1-23]. 
Direct comparison and analysis of the algorithms is difficult as they are usually applied to simulated data or – if available 
– to real data acquired with very different measurement setups, e.g. [24-28]. The relatively few experimental data sets are 
usually not commonly available. Moreover, even if they would be readily available, using the different date sets to test a 
new reconstruction method would require accurate (and often not freely available) knowledge about the experimental 
setup and data handling. 
 
To mitigate such challenges for the scientific communities, there is an ongoing endeavor for so-called “Open science”. 
Several leading European academic institutions signed in 2003 the “Berlin Declaration” on “open access to knowledge” 
to enable easier exchange, participation and collaboration within the scientific community [33-35]. 
 
Following this idea and to mend gaps within the US(C)T community, the establishment of open and easy to use data and 
code interfaces is the long term goal of this initiative. To stimulate the exchange of the available reconstruction 
algorithms and raw data sets of different USCT devices, a reference database with freely available and open licensed 
USCT data for comparison of reconstruction algorithms will be established, maintained and updated. Additionally, the 
feedback about data and system architecture of the scientists working on reconstruction methods will help to drive 
further development of the various measurement setups. 
 

2. DESCRIPTION OF CHALLENGE 
This challenge aims on applying available image reconstruction algorithms on provided USCT data in order to establish 
a first intercommunication and standards for open data interface. In addition, this challenge marks the start of the USCT 
reference database. The data sets and software for data access are available via the USCT challenge home page and the 
linked data and code repository [29]. The long term goals of this work is to build up a free and open licensed reference 
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with a bandwidth of 1.5 MHz at -6 dB. The semi-elliptical aperture has a diameter of 26 cm and a height of 16 cm. 
Rotational and translational movements, so-called aperture positions, of the complete sensor system create additional 
virtual positions of the transducers. 
 
The 2041 individual transducers are either operated as emitter (628) or receiver (1413). The transducers have opening 
angles of 38.2° (standard deviation ±1.5°) at -6 dB. Four emitters and nine receivers are grouped together including pre-
amplifier and control electronics in so-called Transducer Array Systems (TAS). Each of the 157 TAS contains a 
temperature sensor for tracking the temperature distribution within the water basin and the shift at each TAS position 
during measurements. Additionally, two calibrated PT100 temperature sensors are embedded in the TAS holder to 
enable increased accuracy. 
 
The data acquisition is carried out with an FPGA based system, which can store up to 80 ݁ݐݕܤܩ of A-scans [31]. The 
digitalization is performed by 480 parallel channels (12 ݐ݅ܤ at 20 ݖܪܯ), enabling data acquisition at one aperture 
position in approx. ten seconds. After digitization, the parallel data streams are processed as follows: First, the data 
streams are bandpass filtered (1.67 to 3.33 ݖܪܯ at −60 ݀ܤ). Next, the data rate is reduced by a factor of six by 
performing bandpass undersampling. Finally, the reduced data is stored in the internal memory buffer. Using this 
approach up to 47 data sets at different aperture positions can be stored in one data acquisition step. A detailed 
description of the 3D USCT system can be found in [32]. 

 

The emitters are excited with a coded excitation signal, e.g. frequency coded chirps can be applied to increase the signal-
to-noise ratio of the data. Also the gain of the receiving channels is set individually based on an initial measurement. The 
applied coded excitation, the individual gain, the temperature data and the spatial positions of the aperture are stored along 
with the A-scans for each measurement and can be used for signal (pre-) processing and image reconstruction. Empty 
measurements are also provided and exemplary data is depicted in Figure 3. 

 

 

 

Figure 2: The RF data measured with the DBUS system in absence of an object; (top) B-scan showing the field measured as a 
function of time and receiver angle for single source position; (bottom-left and -right) single A-scan in time and frequency domain. 
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5.  DATASETS 

In total eight data sets have been made available; two sets are obtained with the system from the TU Delft, and six with 
the system from KIT. The data is available under “Open Data Commons Attribution License” and the access scripts 
under the 3-clause BSD license. 
 
A compact overview of the available data sets is presented in Table 1 and Figure 4 shows photos of the phantoms and 
exemplary reconstructed slices. 
 
TU Delft data sets 
Two data sets are provided by the TU Delft. The first data set is made in absence of an object and can be used as 
reference measurement. It covers one source and 450 receiver positions equally distributed over 360o. The second data 
set is an agar based phantom with dimensions of 20 mm x 50 mm, and covers 45 source and 450 receiver positions, all 
equally distributed over 360o. The tissue mimicking phantom has a volume density of mass of approx. 1004 kg/m3 and a 
speed of sound of approx. 1479 m/s. However, care has to be taken with these values as the conditions under which these 
values have been obtained may deviate from the actual scanning conditions. The three inclusions were generated by 
embedding drinking straws in the agar based phantom during curing. Prior to scanning the object, the straws were 
removed and the inclusions were filled with water. 
 
KIT data set 
Three data sets of different phantoms are provided, each with an empty scan acquired at the same day as the phantom 
and identical settings of the system’s parameters.  
 

 

Figure 3: RF data measured with the 3D USCT system in absence of an object; (top) B-scan of the raw data of one emitter in the first 
TAS of top transducer row of aperture as a function of time and one receiver of each TAS counter-clockwise from top to bottom; 
bottom-left shows a single A-scan (receiver opposite of emitter element) in time and bottom-right a frequency coded chirp applied 
for coded excitation. 
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allow discussing the first steps towards standardized interfaces to access the data of very different USCT systems and 
brainstorming about specifications for phantoms and real patient data to be included in the data base. 
 
Table 1: Overview of the scans made available. 

 
After the kick off of opening the data base for the public and establishing easy to use data access further challenges are 
planned, e.g. challenging the different algorithms by comparison of obtained image quality or computational 
performance. The data sets are freely available and open licensed, so they can also be used outside of challenges for 
evaluation of advanced reconstruction techniques on real data, further development of algorithms for image 
reconstruction and signal processing. 
 
The feedback about data and USCT systems resulting from the use with different algorithms can also lead to drive 
further development of the system architecture, e.g. to research the optimization of transducer positioning or limits on 
signal-to-noise levels. 
 
We hope also that these challenges will lead to a growth of the data base by increasing the number of imaged objects 
and/or data acquired with different USCT architectures. 
 
Finally, the overall motivation for all of our work is to support early breast cancer diagnosis. Thus, we also need to learn 
more about the properties of breast cancer tissues and how to image them to make the most distinguishing properties 
available for diagnosis. This upcoming knowledge needs to be included into the data base by imaging and if possible 
quantify the properties of appropriate phantoms and tissue structures. 
 
 

 TU Delft KIT 
Object None (empty scan) None (empty scan) with parameters 

fitting gelatin 3 measurement 
Center frequency / bandwidth /  
chirp length 

0.5 MHz / - / - 2.5 MHz / 2.67 MHz / 25.6 µs 

Original sampling rate (stored) 400 MHz (400 MHz) 20 MHz (6.6 MHz) 
NAperture pos. x NSource x NReceiver 1 x 1 x 450 10 x (157 x 4) x (157 x 9) 
 TU Delft KIT
Object Agar based tissue mimicking phantom Gelatin phantom with two water 

inclusions (Gelatin 3) 
Center frequency / bandwidth /  
chirp length 

0.5 MHz / - / - 2.5 MHz / 2.67 MHz / 25.6 µs 

Original sampling rate (stored)  400 MHz (400 MHz) 20 MHz (6.6 MHz) 
NAperture pos. x NSource x NReceiver 1 x 45 x 450 10 x (157 x 4) x (157 x 9) 
 KIT KIT
Object None (empty scan) with parameters 

fitting Turkey phantom measurement 
None (empty scan) with parameters 
fitting Nylon threads measurement 

Center frequency / bandwidth /  
chirp length  

2.5 MHz / 2.67 MHz / 25.6 µs 2.5 MHz / 2.67 MHz / 25.6 µs 

Original sampling rate (stored) 20 MHz (6.6 MHz) 20 MHz (6.6 MHz) 
NAperture pos. x NSource x NReceiver 20 x (157 x 4) x (157 x 9) 1 x (157 x 4) x (157 x 9)  
 KIT KIT
Object  Turkey phantom: Olives embedded in 

a turkey steak and gelatin 
Nylon thread embedded in gelatin 
cylinder 

Center frequency / bandwidth /  
chirp length  

2.5 MHz / 2.67 MHz / 25.6 µs 2.5 MHz / 2.67 MHz / 25.6 µs 

Original sampling rate (stored)  20 MHz (6.6 MHz) 20 MHz (6.6 MHz) 
NAperture pos. x NSource x NReceiver 20x (157 x 4) x (157 x 9) 23 x (157 x 4) x (157 x 9) 
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