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ABSTRACT 

Earth Observation satellite systems are considered the main source of information used for delivering up-to-date land 

cover/use maps. Medium to high spatial resolution images, such as the ones provided by Sentinel-2 sensors, can improve 

significantly mapping and monitoring of vegetation communities and are utilized in a wide range of applications such as 

the management of natural resources and forest inventories. The aim of this work was to employ Sentinel-2 images for 

accurately classifying vegetation cover in selected areas of Greece that present diverse vegetation characteristics. Cloud-

free Sentinel 2 (L2A) images were acquired for each area during 2021 for the months of February, June, and September, 

in order to capture the reflectance changes due to seasonal variations. Two machine-learning techniques, namely 

Random Forest (RF) and Support Vector Machines (SVM), were applied and assessed for their performance in mapping 

vegetation cover and species in the study areas. The training patterns, used as input in both classifiers, were acquired 

through photo-interpretation of stratified random points, distributed across forested areas. Consequently, validation of the 

classification results was performed, in order to estimate accuracy metrics for each model per site. More specifically, the 

kappa coefficient, overall (OA), user’s and producers’ accuracy were calculated. The accuracy results demonstrated 

higher scores for RF (OA over 90% for all areas) than SVM (OA ranging from 81 to 89%, respectively). Overall, our 

study demonstrates the capability of seasonal Sentinel-2 data to accurately discriminate vegetation communities over 

diverse biomes, when combined with advanced classification methods. 
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1. INTRODUCTION  

Land cover/use (LCLU) mapping provides essential information in climate change research[1]. Classifying vegetation 

characteristics is a crucial process for terrestrial carbon estimation, which facilitates climate change mitigation[2]. 

Vegetation maps are also used, in a plethora of applications in the field of natural resources management such as forest 

inventory, wildfire mapping, and water resources management[3]. 

  

Traditionally, LCLU mapping is based on field measurements, providing accurate results, although time-consuming and 

costly, especially in large and remote areas. Contrarily, remote sensing (RS) offers the opportunity for accurate and cost-

effective LCLU  mapping on different scales, utilizing airborne and spaceborne sensors [4]. With recent developments in  

RS systems, satellites can provide data at various spatial and temporal resolutions[5]. In the last decades, many studies 

on LULC mapping and monitoring have been carried out employing multispectral imagery from satellites, such as 

Landsat, Satellite for observation of Earth (SPOT), Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER), Moderate Resolution Imaging Spectroradiometer (MODIS), and more[3], [4], [6], [7].  

 

However, several authors have reported that medium to low-resolution observations, have a negative impact on the 

accuracy of the final product[8]–[11]. To overcome these limitations, machine learning (ML) approaches have been 

applied, instead of more traditional approaches (e.g. Maximum Likelihood and Minimum Distance) to classify remotely 

sensed images. Over a wide range of ML methods (e.g. Decision Tree, K-Nearest Neighbor, Artificial Neural Network, 

and XGBoost) Random Forest (RF) and Support Vector Machines (SVM), have gained a lot of attention in recent 
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studies, due to their ability to provide reliable classification results, in different biomes and vegetation characteristics 

[12], [13].  

 

With full constellation employed, Sentinel- 2A and Sentinel-2B satellites (launched on 23 June 2015 and 7 March 2017 

respectively) provide high spatial (10m, 20m and 60m) and temporal resolution (approximately 5-day revisit cycle). In 

this study, we introduce a classification approach, based on machine learning techniques, for mapping mainly forest 

vegetation in three study areas in Greece. More specifically, we implement RF and SVM classification algorithms and 

compare their performance in mapping accurately vegetation species and cover, by employing seasonal Sentinel-2 

multispectral imagery. The areas, selected for classification present different vegetation characteristics, including 

Greece’s most dominant vegetation species. Therefore, one of the goals of this research is to also provide a reliable 

mapping methodology that could be used at national level for supporting forest management and forest inventory 

planning. 

2. MATERIALS AND METHODS  

2.1 Study area 

 

The study was conducted in 2021 in the municipalities of Arta, Pella, and Korinthos (Fig.1) with approximate areas of 

401km2, 2506km2, and 2297 km2 respectively. The landscape of the selected sites exhibits a complex vegetation structure 

and consists of various species, with coniferous and broadleaves trees, shrubs, and grasslands covering the main bulk of 

the area. Moreover, the selected study sites include some of the most widespread forest species in Greece, such as 

Quercus coccifera, Pinus halepensis, Pinus brutia, and Abies cephalonica. The climate in all areas can be characterized as 

typical Mediterranean, with hot, dry summers and mild, rainy winters.  

 

 

 
     Figure 1. Study areas in Greece; Municipalities of Korinthos (left), Pella (center), Arta (right)  

 
2.2 Satellite imagery 

 
Three Sentinel-2 (Level-2A) images were acquired for each study area. More specifically, cloud-free images selected 

over three different seasons, namely from February, June and September of 2021, were utilized in the study. The scope 

here was to derive the seasonal spectral variations captured by Sentinel-2A images, in order to assist the mapping 

process and species discrimination. For the classification, eight spectral bands were utilized (Table 1). Basic pre-

processing operations involving downloading, subsetting, cloud masking and stacking, were carried out in the Google 

Earth Engine (GEE) platform. 
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Table 1.  Sentinel-2 bands used in this study. 

Band Description Resolution 

B02 Blue 10m 

B03 Green 10m 

B04 Red 10m 

B05 Red-edge 20m 

B06 Red-edge 20m 

B8A Narrow-NIR 20m 

B11 SWIR1 20m 

B12 SWIR2 20m 

 

2.3 Vegetation mapping 

 

Overall, the classification process included the implementation of two ML models (RF and SVM) for producing 

vegetation maps in principally forested areas. In order to ensure that only forested areas will be classified, a masking 

process was performed based on official land cover maps acquired from the Cadastral Agency of Greece[14]. Polygons 

that are characterized as “non-forested” or “other type of cover” were excluded from further analysis. The rest of the 

polygons representing forested areas were used to clip the Sentinel-2 images.  

 

To prepare the classification set, a number of stratified random points were distributed across the forested areas and 

labeled with photo-interpretation, using Google Earth imagery. For Korinthos, Arta, and Pella 954, 1386, and 1415 

random points were used respectively. The dataset was labeled according to eight vegetation types namely Oaks, Fir, 

Pines, Conifers, Beech, Broadleaves, Evergreen Broadleaves, and Grasslands. Prior to classification, the dataset was 

separated into two sets, namely training (70%) and testing (30%).After the training phase, the models were applied to 

Sentinel-2 images to derive the thematic maps with the aforementioned classes. Finally, the validation of the results was 

performed, in order to obtain the classification accuracy of each model. More specifically, the kappa coefficient, overall 

(OA), user’s (UA), and producers’ (PA) accuracy were calculated. For training, testing and classification ArcGIS Pro 

was used. 

3. RESULTS AND DISCUSSION 

Overall, the results of this study showcased that RF provided stronger classification capability (OA= 0.96, 0.90, and 0.95 

with kappa=0.94, 0.85, and 0.93) than SVM (OA=0.89, 0.85, and 0.81 with kappa=0.84, 0.77, and 0.85) in all tested 

regions (table 2). The highest classification performance for both classifiers was observed in the Korinthos region. This 

can be attributed to the fact that Korinthos consists of a more homogenous landscape than the rest of the study areas. 

Also, the spectral discrimination of the vegetation types is more explicit in Korinthos than in Arta and Pella. 

 
Table 2.  Classification results in the three study areas using RF and SVM. 

Study area Model Overall 

accuracy 

Kappa 

Korinthos 
RF 0.96 0.94 

SVM 0.89 0.84 

Arta RF 0.90 0.85 
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SVM 0.85 0.77 

Pella 
RF 0.95 0.93 

SVM 0.81 0.85 

 

To access the performance of the best model (RF) for each vegetation type, Producer’s accuracy (PA) and User’s 

accuracy (UA) metrics were investigated (table 3). More specifically, the classes that were better distinguished were 

Evergreen Broadleaves, Grasslands and Beech achieving PA and UA above 90%. However, it should be noted that 

Beech was not observed in two of the three study areas. In the case of Oaks, RF achieved good results in all tested sites 

(above 80%), while the lower PA value was observed in Arta (0.8). This is due to the misclassification of pixels between 

Oaks and Evergreen Broadleaves, which can be explained by the fact that both vegetation types are phenologically 

similar. Fir also provided good results (above 85% in both metrics) in Korinthos and Arta. A lower PA value (0.83) in 

Pella, indicates a minor underestimation of Fir, as some pixels were omitted to Beech and Pines classes. Regarding 

Pines, over 0.95 values were observed in Pella and Korinthos. On the other hand, Pines cannot be distinguished clearly 

from Fir and Evergreen Broadleaves, in Arta (PA=0.65 and UA=0.75). For Broadleaves, although, high accuracy 

metrics were obtained in Korinthos, lower PA (0.74) was reported in Pella. After a closer examination of the results, it is 

observed that Broadleaves were misclassified as Oaks. The reason behind the confusion between these classes is the 

same described for the misclassification between Oaks and Evergreen Broadleaves in Arta. Overall, all classes provided 

good results (PA and UA above 70%). Only one exception can be observed, for Conifers in Korinthos, where significant 

omission errors were reported (PA=0.55).  This can be attributed to the fact that Conifers and Evergreen Broadleaves 

could not be discriminated properly, as some species (mainly shrubs) tend to have similar phenological characteristics. 

The vegetation maps resulted from RF implementation are illustrated in figure 2. 

 
Table 3.  User’s and producer’s accuracy for vegetation types in the three study areas using RF. 

 Korinthos Arta Pella 

Vegetation 

Type 

Producer’s  User’s Producer’s  User’s Producer’s  User’s 

Oaks 0.91 1 0.8 
0.9 

0.98 0.93 

Fir 1 0.91 0.88 
0.93 

0.83 0.9 

Pines 0.96 0.99 0.65 0.75 0.98 0.97 

Beech - - - - 0.97 0.97 

Broadleaves 1 0.83 - - 0.74 0.98 

Conifers 0.55 1 - - - - 

Evergreen 

Broadleaves 

0.98 0.95 0.95 0.9 0.92 0.95 

Grasslands 0.94 0.94 0.94 0.94 0.89 0.95 
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     Figure 2. Vegetation maps (2021) for Arta (left), Korinthos (center) and Pella (right).  

4. CONCLUSIONS 

In this study we investigated the potential of Sentinel-2 imagery in vegetation mapping, using two popular ML methods, 

namely RF and SVM. The proposed method relies upon multi-temporal imagery, in order to capture the spectral 

variations, occurring due to different phenological phases. To test the proposed methodology, we selected 3 study areas 

in Greece, based on their different vegetation characteristics. The results of the study demonstrated that the combination 

of Sentinel-2 imagery with both methods can provide reliable vegetation maps in Mediterranean ecosystems. Both 

classifiers achieved high classification accuracies, with Random Forest outperforming SVM in all of the study areas. 

Despite the fact that this research reached its goals, some limitations should be further investigated in future work. More 

specifically, the rather small sample size could be enhanced, in order to avoid uncertainty in the results. Furthermore, the 

extraction of additional phenological traits, potentially utilizing time-series imagery, could contribute to better 

discrimination of Oaks and Broadleaves. Finally, a more holistic approach will also encompass a more detailed 

validation of the results, using very high-resolution imagery and/or field data. Overall, our study provides a reliable 

framework that can be used in the future as the basis for accurately mapping vegetation patterns in Mediterranean 

ecosystems, at regional and national scale.  
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