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ABSTRACT 

Augmented Reality (AR) enhances user interaction with digital content through real-world overlays, finding applications 

across various fields. AR glasses, serving as an excellent AR platform, have been developed in both optical see-through 

and video see-through types. Professional video see-through devices and advanced optical see-through devices with 

vision systems can perform environment recognition and hand detection but are often bulky and heavy for prolonged 

wear. Conversely, lightweight optical see-through AR glasses, which lack embedded systems and have limited sensors, 

serve primarily as displays. While they offer the advantage of reduced weight, they lack advanced interaction 

capabilities. In this research, we utilize an Android mobile phone as the computing unit and present an interactable 

framework for AR glasses with limited sensors. This framework supports head motion estimation, hand gesture detection 

and tracking, providing a robust AR experience without the need for high-end hardware. It has been tested on lightweight 

optical see-through AR glasses only equipped with an Inertial Measurement Unit (IMU) and single camera. Our solution 

offers a cost-effective and portable approach, enhancing data visualization and virtual object operation. 
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1. INTRODUCTION 

Augmented Reality (AR) is a user-centric technology that enhances engagement with digital content by overlaying it 

onto the real world. AR applications have been found in various fields, including education, entertainment, industry, and 

agriculture1-8. 

AR systems can utilize cameras and Time-of-Flight (ToF) sensors to perform environment recognition and interaction. 

These sensors enable AR devices to map surroundings accurately, detect objects, and provide real-time feedback, 

enhancing the user experience by creating a seamless blend of digital and physical environments9-16. 

AR glasses as an excellent platform for AR applications, enabling users to interact naturally with augmented content. 

These glasses come in two primary types: video see through and optical see through17.  

Video see-through AR glasses capture the real-world using cameras and then display the combined digital and real-world 

view on screens inside the glasses. Video see-through AR glasses tend to have a larger size due to the built-in processing 

unit and lens structures. In contrast, optical see-through AR glasses use micro-LED projection, and overlay digital 

content directly onto transparent lenses, enabling users to see both the real and virtual worlds simultaneously. 

Professional video-see-through AR glasses18,19 and high-end optical see-through AR glasses20,21 often include 

multi-camera vision systems, providing superior environmental recognition and enabling more sophisticated interactions22-25 

with augmented content. However, these advanced capabilities contribute to their larger size or higher hardware costs. 

Conversely, lightweight optical see-through AR glasses, which lack embedded systems and have limited sensors, serve 

primarily as displays. While they offer the advantage of reduced weight, they lack advanced interaction capabilities. 

In this research, we use a general Android mobile phone as the processing unit and present a mobile framework that can 

achieve visualization interaction and hand control interaction by using only the AR glasses’ built-in IMU (Inertial 
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Measurement Unit) and single camera, without the need for high-end vision systems or additional hardware26, making 

AR technology more accessible and portable. 

The framework supports head motion estimation, hand gesture detection and tracking. Head motion estimation allows 

the system to track the user’s head movements, providing a stable and immersive view of the augmented content. Hand 

gesture detection and tracking enable users to control digital content naturally and intuitively, enhancing the overall user 

experience. The framework has been tested on an Android mobile phone with lightweight optical see-through AR glasses 

equipped with a USB Video Class (UVC) camera and an IMU sensor. By leveraging these components, our solution 

offers a cost-effective and portable approach to AR, enhancing data visualization and virtual object operation. 

2. METHOD 

In this section, we introduce the hardware used for testing, along with the interaction design, mobile framework, and 

implementation. 

2.1 AR glasses hardware 

We utilized a pair of lightweight optical see-through AR glasses as the development hardware27. The glasses are 

equipped with left and right micro displays and lenses, offering a 45-degree field of view (FOV), 6-degree-of-freedom 

(6-DOF) Inertial Measurement Unit (IMU) and a single camera. The AR glasses can read the DisplayPort output from 

external devices via USB-C and project it to the lenses. The AR glasses’ hardware driver can split a 32:9 image input 

into left and right images, allowing the user to see a 3D view by outputting left and right side-by-side image frames from 

mobile devices. The IMU can be accessed as a Human Interface Device (HID), and the camera operates as a USB Video 

Class (UVC) camera. For this study, we use a general Android mobile phone to communicate with built-in sensors and 

control the AR glasses’ displays to achieve AR functions. The AR glasses and the connection with mobile phone are 

shown in Figure 1 and their specifications are listed in Table 1. 

 

Figure 1. Optical see-through AR glasses and connection with mobile phone. 

Table 1. Specifications of AR glasses. 

Dimension 162 × 51 × 180 mm 

Weight 78 g 

AR Glasses FOV 45° 

Display Resolution 1920 × 1080 per eye 

Refresh Rate 60 Hz 

Camera Resolution 1280 × 720 

Camera FOV 90° 

IMU 3-axis accelerometer, 3-axis gyroscope 

Port USB Type C 
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2.2 Interaction design 

2.2.1 Visualization interaction. Visualization interaction is a key feature that leverages the capabilities of AR technology 

to create a rich and immersive user experience, bridging the gap between the virtual and real world. A fundamental 

dynamic visualization interaction is used in our study, it allows users to view virtual objects by moving their heads, 

thereby navigating the AR environment, as shown in Figure 2. The 3D view movements in the AR environment should 

be synchronized with the user’s head movements, creating the illusion that virtual objects exist in the real world.  

 

Figure 2. Dynamic visualization interaction. 

2.2.2 Hand-based control interaction. To achieve interaction without additional devices, vision systems have been used 

to capture hand gestures. Multiple cameras can detect depth and obtain 3D and skeleton information28. However, such 

approaches typically require additional and expensive hardware. To address this, we designed a hand gesture control 

interaction using only a single camera. Our approach utilizes 3 hand gestures: hand open, fist, and pinch, as shown in 

Figure 3. 

   

(a) (b) (c) 

Figure 3. Hand gestures in our approach. (a): hand open gesture; (b): fist gesture; (c): pinch gesture. 

Utilizing these simple gestures, our approach provides a cost-effective solution for hand gesture control interaction, 

eliminating the need for complex hardware setups. By detecting and tracking the gestures and movements, users can 

perform, move, rotate, and release operations using different gesture combinations, providing an intuitive and natural 

way to interact with the AR environment. Figures 4 and 5 show rotate and move control interaction using fist gesture and 

pinch gesture. 

  

Figure 4. Rotate control using a fist gesture. Figure 5. Move control using pinch gesture. 

Rotate control allows the user to control the rotation using the first gesture. The gesture’s moving speed determines the 

virtual object’s rotating speed: the faster the hand moves, the faster the object rotates. When the hand stops or releases 

(hand open gesture), the rotation will stop. Move control allows the user to control the movement of virtual objects using 

the pinch gesture. The gesture’s moving speed determines the object’s movement speed: the faster the hand moves, the 

faster the object moves. When the hand stops or releases, the movement will stop. 
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2.3 Mobile framework design and implementation 

The AR glasses serve primarily as a display, requiring an external device for control and rendering. In this study, a 

general Android mobile phone was used for 3D rendering and control. The 6-DOF IMU data is read at 50Hz, and the 

camera frames are captured at 30fps. Unity, a 3D engine platform, was employed for development. Within the Unity 

scene, two cameras were set up to mimic human eye views. By reading the IMU data from the AR glasses, head motion 

can be estimated and mirrored in the virtual environment. The AR glasses camera captures the user’s hand in real time, 

detecting gestures and movements to control the virtual scene. The system schematic and mobile framework are shown 

in Figure 6.  

 

Figure 6. Proposed interactable mobile framework for AR glasses with an IMU and single camera. 

2.3.1 Mobile framework design and implementation. To implement 2.1.1 head motion estimation, we use a nonlinear 

complementary filter29 for IMU data fusion to get head attitude pitch, roll, and yaw. The complementary filter effectively 

combines data from the gyroscope, which provides accurate angular velocity information but tends to drift over time, 

with data from the accelerometer, which provides stable orientation information but is susceptible to high-frequency 

noise and external accelerations. The filter is computationally efficient and well-suited for real-time applications in our 

AR glasses, ensuring timely and accurate head tracking that is crucial for user interaction and overall system 

performance. 

The head motion estimation flow is illustrated by the following equations. These equations detail the process of 

combining gyroscope and accelerometer data to compute the head’s attitude in terms of pitch, roll, and yaw using a 

quaternion-based complementary filter. 

The estimated gravity vector in the current orientation frame is calculated as: 

 𝑔̂𝑡 = 𝑅̂𝑡−1 (
0
0
1

) (1) 

Where 𝑅̂𝑡−1 is the rotation matrix derived from the last quaternion. 

The error vector 𝑒𝑡 is computed as the cross product of the measured gravity vector from the accelerometer 𝑎̃𝑡 and the 

estimated gravity vector 𝑔̂𝑡: 

 𝑒𝑡 = 𝑎̃𝑡 × 𝑔̂𝑡 (2) 

The correction term is computed using a proportional-integral (PI) controller: 

 𝛿𝑡 = 𝐾𝑝𝑒𝑡 + 𝐾𝑖 ∑ 𝑒𝑖
𝑡
𝑖 𝑑𝑡 (3) 

where 𝐾𝑝 and 𝐾𝑖 are the proportional and integral gains, respectively. This equation ensures that both the current error 

and the accumulated past errors are considered, providing a balance between immediate correction and long-term 

stability. 

The quaternion differential equation incorporates the angular velocity 𝜔̃𝑡 from the gyroscope and the correction term 

𝛿𝑡, ⊗ denotes the quaternion multiplication: 
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 𝑞̇𝑡 =
1

2
𝑞𝑡−1⨂(𝜔̃𝑡 + 𝛿𝑡) (4) 

The quaternion 𝑞𝑡 is updated by integrating the quaternion differential over the time step 𝑑𝑡: 

 𝑞𝑡 = 𝑞𝑡−1 + 𝑞̇𝑡  𝑑𝑡. (5) 

After each update, the quaternion is normalized: 

 𝑞𝑡 =
𝑞𝑡

∥ 𝑞𝑡 ∥⁄  . (6) 

The quaternion can be converted to Euler angles (pitch, roll, and yaw) using the following formulas: 

 𝑝𝑖𝑡𝑐ℎ𝑡 = sin−1(𝑞0𝑞2 − 𝑞3𝑞1)  (7) 

 𝑟𝑜𝑙𝑙𝑡 = tan−1 2(2(𝑞0𝑞3 + 𝑞1𝑞2), 1 − 2(𝑞1
2 + 𝑞2

2))  (8) 

 𝑦𝑎𝑤𝑡 = 𝑦𝑎𝑤𝑡−1 + 𝜔̃𝑧𝑡𝑑𝑡 (9) 

The yaw angle is calculated by integrating the calibrated z-axis angular velocity 𝜔̃𝑧𝑡 to prevent drift. Then, the Euler 

angles can be used to control the Unity scene cameras. 

2.3.2 Hand detection and tracking implementation. To achieve real-time and efficient hand detection and tracking on 

general mobile devices, the MobileNet-SSD quantized model30 is used. This model is selected for its balance between 

accuracy and efficiency, making it suitable for real-time applications on resource-constrained devices such as AR 

glasses. 

To train the model, we followed a systematic process involving data collection and annotation. We labeled a total of 774 

images, with 700 images allocated for training and 74 images reserved for evaluation. The dataset includes a diverse 

range of conditions to ensure robust performance across different scenarios. The images were captured under various 

lighting conditions, with different backgrounds, at varying distances, and featuring multiple hand postures. Examples of 

labeled data are shown in Figure 7. 

 

Figure 7. Examples of labeled data used for training the hand detection model. 

The bounding box of each detected hand gesture provides feedback on the position within the camera view. By 

calculating the position derivative between two consecutive camera frames, we can determine the velocity of the 

gestures. The velocity data is then used to control the rotation and movement of virtual objects, creating an intuitive and 

responsive interaction. 

Assuming the bounding box positions in frame n-1 and frame n are 𝒑𝒏−𝟏 and 𝒑𝒏 respectively, the bounding velocity 

can be calculated as follows: 

 𝒗𝒃𝒐𝒙𝑛 =
𝒑𝑛−𝒑𝑛−1

𝑡
  (10) 

where 𝒗𝒃𝒐𝒙𝑛 is the speed of the bounding box, 𝒑𝒏 and 𝒑𝒏−𝟏 are the coordinates of the bounding box in frame n and 

frame n-1, and t is the time interval between the two frames. 

By introducing a low-pass (LPF) filter and sensitivity factor a, the virtual object’s rotation and position are calculated as 

follows: 

 𝑹𝑜𝑏𝑗𝑒𝑐𝑡 = 𝛼𝑟𝑜𝑡𝑎𝑡𝑒 ∙ 𝐿𝑃𝐹(𝒗𝒃𝒐𝒙𝑛) (11) 

 𝑷𝑜𝑏𝑗𝑒𝑐𝑡 = 𝑷𝑜𝑏𝑗𝑒𝑐𝑡 + 𝛼𝑚𝑜𝑣𝑒 ∙ 𝐿𝑃𝐹(𝒗𝒃𝒐𝒙𝑛) (12) 

 𝑃𝐹(𝒗𝒃𝒐𝒙𝑛) = 𝛽 ∙ 𝒗𝒃𝒐𝒙𝑛 + (1 − 𝛽)𝒗𝒃𝒐𝒙𝑛−1 (13) 
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where 𝑹𝑜𝑏𝑗𝑒𝑐𝑡  and 𝑷𝑜𝑏𝑗𝑒𝑐𝑡  are Unity game object property object.transform.rotation and object.transform.position, 

respectively. and are sensitivity factors. To avoid the noise caused by differentiation, a low-pass filter is used to smooth 

the bounding box’s velocity, resulting in more stable control. The low-pass filter for the bounding box velocity 𝒗𝒃𝒐𝒙 is 

defined using the current 𝑛 and previous 𝑛 − 1 time steps, 𝛽 is the filter coefficient. 

3. RESULTS 

3.1 Hand detection training results 

We used the collected data introduced in Section 2.2.2 to train the MobileNet-SSD quantized model. Data augmentation 

such as random horizontal flip and SSD random crop were employed to enhance model robustness. 

Figure 8 shows the mAP (Mean Average Precision) at different Intersection over Union (IoU) thresholds during training. 

The left graph illustrates the mAP@0.50 IoU, indicating the precision of the model at a 50% Intersection over Union 

threshold, with a final result of 0.990. The right graph illustrates the mAP@0.75 IoU, indicating the precision at a 75% 

Intersection over Union threshold, with a final result of 0.926. The graphs demonstrate the model’s performance 

improvement over 3000 training steps. 

 

Figure 8. Mean Average Precision (mAP) for hand gesture detection at different IoU thresholds. 

Figure 9 shows the training losses over 3000 steps. The left graph illustrates the classification loss, which measures the 

error in predicting the correct class labels for detected objects, with a final value of 1.858. The right graph illustrates the 

localization loss, which measures the error in predicting the bounding box coordinates of the detected objects, with a 

final value of 0.231. Both graphs indicate a decreasing trend, demonstrating that the model is learning effectively and 

improving its performance over time.  

 

Figure 9. Classification and localization loss during hand gesture detection training. 

Figure 10 shows examples of hand gesture detection results. The images on the left in each pair display the detection 

results, while the images on the right display the ground truth annotations. 

 

Figure 10. Examples of detection results with trained MobileNet model. 

3.2 Demo applications 

We developed multiple demo scenes in Unity to evaluate visualization interaction using head motion estimation and 
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hand gesture control integrated with the trained MobileNet model.  

Unity demo scene setup and configurations are shown in Figure 11.  

   

(a) (b) (c) 

Figure 11. Unity scene setup and configurations for visualization and hand control interactions. 

(a) 3D weather objects scene, tested for visualization interaction and move control interaction; 

(b) Virtual planet scene, tested for rotate control interaction; 

(c) Head motion estimation and hand detection model configurations. 

Figure 11a shows 3D weather icons were set in the 3D virtual scene. The Main Camera, which includes left and right 

cameras for stereo vision, has its rotation controlled by the head motion estimator’s output. This scene was tested for 

both visualization interaction and pinch gesture control interaction. 

Figure 11b shows the virtual planet scene for testing the first gesture. It displays the layout of virtual objects and the 

configuration of the Main Camera with its left and right cameras. 

Figure 11c shows the configuration settings in the Unity Inspector, including the head motion estimator and the gesture 

control configurations. The integration of the trained MobileNet model for hand gesture detection and the label file used 

for detecting gestures are also indicated. 

These demo scenes were installed and tested on a Samsung S10 Android phone. 

3.2.1 Visualization interaction test. As detailed in section 2.2.1, the head motion estimator processes IMU data from the 

AR glasses and delivers Euler angles to the Main Camera in Unity application. This setup allows users to move their 

heads and view virtual objects in the AR environment as if they were suspended in the air.  

Figure 12 shows the user’s view in the AR glasses when moving the head in different directions. Figure 12 illustrates 

tilting the head (roll angle), looking up and down (pitch angle), and looking from left to right (yaw angle), respectively. 

The images from top to bottom represent a time series demonstrating head movement in various directions. The black 

frame visible at the edges is the frame of the AR glasses. 
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(a) Head tilting (roll angle) (b) Looking from up to down (pitch angle) (c) Turning head from left to right (yaw angle)

Figure 12. Visualization interaction demo.

Figure 12 demonstrates that head motion is accurately estimated and synchronizes the Main Camera’s orientation in the 

virtual environment with the user’s head movements. This enables the content displayed in the AR glasses to adjust 

precisely as the user moves their head in various directions. Consequently, virtual objects appear stable relative to the 

real world. 

3.2.2 Hand gesture interaction test. We utilized the trained hand detection model within the Unity environment to 

implement the detection and tracking features. 

Figure 13a shows the virtual objects’ movement when the user uses the pinch gesture to move the objects shown in 

Figure 11a. Figure 13b shows the virtual objects’ rotation when using the pinch gesture to rotate the objects shown in 

Figure 11b. The images from top to bottom represent a time series demonstrating the progression of these gestures. 

Figure 13a is a screen recording of the view of the Unity main camera, with the background captured by the AR glasses 

camera. Figure 13b is recorded from behind the AR glasses lens. 

(a) Move control using a pinch gesture, sensitivity factor: 0.09 (b) Rotate control using a fist gesture, sensitivity factor: 0.0005

Figure 13. Hand control interaction demo. 

Figure 13 demonstrates that the spatial movement and rotation of virtual objects can be achieved through gesture 

detection and tracking. By adjusting the sensitivity factor, even small movements within the camera’s field of view can 

be amplified to control the amount of movement and rotation. 

4. CONCLUSIONS
The results presented in this study demonstrate a mobile framework for effective hand gesture detection, tracking, and 
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head motion estimation in AR environments using a single camera and IMU. By employing the MobileNet-SSD 

quantized model, we achieved high accuracy in detecting hand gestures, which facilitated intuitive and responsive 

interactions with virtual objects. Additionally, the complementary filter used for head motion estimation provided precise 

tracking of pitch, roll, and yaw movements, enhancing the immersive experience. Our approach proved to be efficient for 

real-time applications, running smoothly on a mobile device. 

The gesture control capabilities extend beyond basic movement and rotation. The system can also interpret gestures to 

perform actions such as zooming in and out and scaling objects up and down. These additional functionalities enable a 

richer and more versatile interaction experience in the AR environment, allowing users to manipulate virtual objects in 

more detailed and nuanced ways. 

With the improvement of mobile devices and advancements in AI models, we will implement more sophisticated and 

intelligent functions on such simple hardware. Additionally, we will focus on applying our approach to real-world AR 

scenes and applications, such as the remote control of robots and other interactive systems. 
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