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ABSTRACT

Recent discovery of the coherent lasing from various disordered materials adds a new dimension to the con-
ventional physics of light propagation in multiply scattering media. It suggests that in the situation, when
the propagation of light is diffusive on average, the coherent feedback can be provided by the sparse disorder
configurations that efficiently trap a photon, and thus, serve as random resonators. This scenario of random
resonators has been substantiated experimentally by the ensemble averaging of the power Fourier transforms of
the random emission spectra. In this paper the current status of the experiment and theory of coherent random
lasing is reviewed.
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1. INTRODUCTION

Conceptual importance of the recently discovered phenomenon of random lasing (RL) in various disordered
materials with optical gain®? is that laser action is due to coherent (amplitude) rather than non-coherent
(power) optical feedback. The manifestation of the power feedback, first suggested by Letokhov,® is the gain-
induced spectral narrowing typical of amplified spontaneous emission (ASE).*® This process can be accurately
described within the diffusive picture of light propagation. In contrast, the amplitude feedback manifests itself
as a sequence of narrow lines,>? each corresponding to coherent emission.?>!° Clearly, the diffusive description,
that neglects coherence and deals with intensity distribution, is unable to capture the physics underlying the
amplitude feedback.

For strongly scattering media with a small light mean free path, [, of the order of the emission wavelength,
A, the amplitude feedback can be, at least qualitatively, accounted for by the proximity to the Anderson local-
ization.»*!  This is because a disorder configuration that localizes a photon mode can be viewed as an ideal
resonator for light. However, when the disorder is weak, so that the light propagation is diffusive on average,
the very existence of resonators, that are required to provide the amplitude feedback is not obvious. It was
conjectured in'''? that the underlying mechanism of lasing was formation of closed loop paths of light with a
characterisitic size comparable to A which serve as resonant cavities. Needless to say, that more quantitative
questions, concerning the dependence of the size and density of the resonators in a weakly scattering medium on
the parameters of the disorder!® remains largely unanswered.

Motivated by these experimental puzzles, in Sect. 2 of the present paper we report on our theoretical study
of random resonators, which represent a new type of solutions'® 4 of the wave equation in a weakly disordered
medium. We dubb these solutions as ”almost localized” states. They describe a wave which is confined primarily
to a small ring. In an open sample, of size L much smaller than the two-dimensional localization length &, the
almost localized states correspond to sharp resonances, residing in the high-@Q ring-shaped cavities, as discussed
throughout the paper. However, in a closed sample -which would require perfectly reflecting walls- the resonances
turn into true eigenstates, whose almost entire weight is located at the rings. In this respect the ”almost localized”
states differ from the ”prelocalized” states, extensively studied in the context of electronic transport.!>18  We
provide a quantitative theory of the almost localized states and the associated random resonators, and point out
their relevance for the phenomenon of random lasing. We stress, however, that these random resonators exist
already in the passive medium, and gain is only needed ”to make them visible”. Moreover, the resonators are
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”self-formed”, in the sense that no sharp features (like Mie scatterers or other ”resonant entities” ) are introduced:
the model is developed for a featureless dielectric medium with fluctuating dielectric constant.

Our study substantiates the intuitive image'!'? of a resonant cavity as a closed-loop trajectory of a light

wave bouncing between the point-like scatterers. The intuitive picture in'1'? assumed that light can propagate
along a loop of scatterers by simply being scattered from one scatterer to another. Such a picture, however, is
unrealistic due to the scattering out of the loop. We have demonstrated that the scenario of light traveling along
closed loops can be remedied. In our picture the ”loops”, i.e., the random resonators, can be envisaged as rings
with dielectric constant larger than the average value. The reason why such rings are able to trap the light is
that the constituting scatterers act as a single entity: only the coherent multiple scattering of light by all the
scatterers in the resonator can provide trapping. We have also established that correlations in the fluctuating
part of the dielectric constant highly facilitate trapping.

In the second part of the paper we review the experiments that provide the experimental evidence for the
scenario of random resonanators.

2. THEORY: LIKELIHOOD OF RANDOM RESONATORS
2.1. Almost Localized Modes in Random Media
2.1.1. Basic Relations

In this paper we restrict our consideration to the two-dimensional case (a disordered film). We start from the
scalar wave equation
AU+ [K2 - U(p)] ¥ =0, (1)

where p is the in-plane coordinate. For a light wave with frequency w, traveling in a medium with average
dielectric constant €, corresponding expressions for k% and U (p) take the form

B = e (%)2 ek, UP) = —de(p)R @)

where de(p) is the fluctuating part of the dielectric constant.
We assume that the flutuations are gaussian, so that the probability of the fluctuation de(p) is given by

1 o -
P = oo | [ dptse(ac i~ ) 3)
where the kernel k(g — /') is the inverse of the correlator K (g — 7')
[ k(- 9K = 7 =6 7). @
The correlator is defined as
(0e(P)oe(p)) = WK (5~ §'), K(0)=1, (5)

so that W is the mean square fluctuation of the dielectric constant. Trapping of a light wave is provided by
specific fluctuations, de(p), for which the solution, ¥(p) of Eq. (1) assumes anomalously large value within the
area of the fluctuation. Outside the fluctuation, this solution propagates in a “normal” (diffusive) fashion, so
that the “buildup” of ¥(p) within the fluctuation translates into the long trapping time, 7.
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Figure 1. Rationale for the structure of the resonator. Upon wrapping a stripe with enhanced dielectric constant into a
ring, a waveguided mode transforms into a whispering-gallery mode.

2.1.2. Trapping Configuration of the Disorder

The key idea concerning the geometry of the trap was proposed by Karpov for trapping acoustic waves'* and
electrons!? in three dimensions. Below we explain this idea for the two-dimensional geometry.

Suppose that within a certain stripe the effective in-plane dielectric constant of a film is enhanced by some
small value €; < €. Then such a stripe can play a role of a waveguide, i.e., it can capture a transverse mode, as it
is illustrated in Fig. 1. There is no threshold for such a waveguiding, which means that the transverse mode will
be captured even if the width of the stripe is small. Now, in order to form a trap, one has to roll the stripe into
a ring. Upon this procedure, the mode propagating along the waveguide transforms into a whispering-gallery
mode of a ring. An immediate consequence of the curving of the waveguide is emergence of the evanescent
leakage - the optical analog of the under-the-barrier tunneling in quantum mechanics (see Fig. 2). This leakage
is responsible for a finite lifetime, 7, of the whispering-gallery mode.

Due to the azimuthal symmetry, the modes of the ring are characterized by the angular momentum, m.
Denote by N, (kl,wT) the areal density of traps which capture the light wave for a long period of time 7 > w™?
in the film with a transport mean free path I. In the diffusive regime, kI > 1, the density N, (kl,wT) is
exponentially small. In this domain N, (kl,wT) can be presented as

N (kl,wT) o exp [—Sp, (kl,wT)] , (6)

with Sy, (kl,wT) > 1. The latter condition justifies the application of the optimal fluctuation approach?®:2! to
the calculation of S,,.

2.1.3. Optimal Fluctuation Approach

We search for fluctuations of a type shown in Fig. 2, i.e., de is azimuthally symmetric (depends only on the radius,
p) and is non-zero within the relatively narrow ring of width w < pg, where pg is the radius corresponding to
the middle of the ring (see Fig. 2a). For such a fluctuation the wave equation for field distribution corresponding
to the angular momentum, m, has a general solution of the form

U(p,0) = (27p) 2 Xm(p) exp(imh), (7)

where xm(p) is the radial function. The fact that de is non-zero within a narrow interval of p around pg allows
to simplify the equation for x,,(p) to

2 _ Pxm 2 _ 2
LXm = W + de k()Xm = €1 kOXm ) (8)

2
where © = p — pp. The “eigenvalue” in the r.h.s. of Eq. (8) is defined as ¢; = (k::)o) — e. It is independent of

x by virtue of the condition py > w.
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Figure 2. (a) The structure of a two-dimensional resonator is illustrated schematically; only a half of the ring-shaped
waveguide (blank region) is shown. (b) Optimal fluctuation of the dielectric constant, de(p) (solid line), and the corre-
sponding field distribution (dotted line) are shown. Dashed line outside the shaded region of a width, d, illustrates the
evanescent leakage.

The next step is to find the “most probable” distribution de(x) for a given trapping time 7. This is equivalent
to finding the most probable de(z) for a given eigenvalue €7, since, with logarithmic accuracy, €; uniquely defines
T as we demonstrate below

Lifetime of a Trapped Mode. It is obvious that at large distances, p > po (see Fig. 2b), the behavior of
Xm is oscillatory, xm o< exp(ie'/?kqp), manifesting that the waveguided mode of a ring has a finite lifetime. In
other words, due to evanescent leakage, the eigenvalue, €, in Eq. (8) has an imaginary part, €¢;. The quality
factor is inversely proportional to €, namely, w7 = €/é;. The leading contribution to €, comes from the region
of a width, d, adjacent to the waveguide (see Fig. 2a). To find d we have to take into account that the r.h.s in

2
Eq. (8) does in fact depend on z. This is because the precise form of the r.h.s is not (pﬂo) — €k3, but rather

potz
form

2
( m ) — €kZ. In the region outside the waveguide, when z > 1/61/2]60 (but still < pg) Eq. (8) takes the

A*Xm ‘ T

where the width of the decay region is given by d = €;k2p3/2m?. Equation (9) is of Airy-type. Semiclassical
calculations with exponential accuracy yields for the rate of evanescent leakage & o exp[—(2m/3)(e1/€)*/?], and
hence 5 3/2
m /€1
e =2(2)
n(wT) 3\
Eq. (10) is the sought relation between the evanescent lifetime and the magnitude of the fluctuation, e;.

(10)

Ounce the lifetime is expressed through €;, the search for the most probable de(z) reduces to a standard
problem, for which the optimal fluctuation approach?® 2! prescribes minimization of auxiliary functional

=0} =10 P = X [(xmlLIxm) = €1k (X )] (1)

where A is the Lagrange multiplier. In Eq. (11) de and x should be varied independently. It is convenient to
choose \ = 2mpo/W?k3. Then the minimization of the auxiliary functional Eq. (11) yields

de(x) = /dleo(:r; —21)x2, (21). (12)
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The above expression reminds the standard result?® for a correlated random potential. The difference is, however,
that, due to the angular integration in Eq (3 ) the kernel in Eq. (12) is given by a function Ky, which is related
to the correlator, K(g), as Ko(x1 — x2) « WK (\/(x1 —22)* +y?). A natural z-scale for the eigenmode

Xm 18 ((—:}/ 2k:o)_l. Thus, we present the outcome of the optimal fluctuation approach in terms of a dimensionless

. 1/2
variable z = 61/ kox.

T
S = elkg)gvz / dzidza X2, (z1)x3, (22) Ko (21 — 22) (13)
where the dimensionless equation for the function y,, reads
d®xm ()
d;nz + 2 3/2 /dleo z—21)xX2(21) = xm(2) - (14)

2.1.4. Variational Solution

A very accurate analytical solution of Eq. (14) can be obtained by employing the variational approach. The
function x,,(z) corresponds to the minimum of the following functional

o = ([aio) l [ae (222Y - o [ [ttt - | 15

To proceed further we have to specify the correlator, K. We have chosen the Gaussian form K (p) = exp (— 0%/ Rf) )
The form of the function x,, = A(R.) exp[—((R.)z?] allows to cover the entire range of correlation radii, from
“white noise” (R. — 0) to the limit of a smooth disorder (koR. > 1). Indeed, for large R, this form becomes
exact. In the opposite limit, R. — 0, using the above trial function instead of the exact solution x,, o 1/ cosh(z)
leads to the overestimate of S,, by a factor (r/3)'/? ~ 1.023. The parameter A(R.) and ((R.) of the trial
function can be found analytically. Evaluation of Eq. (13) reduces to the Gaussian integration which for a given

m = €'/?kopo yields
5N\ 1/2 g l/2g
e . ®(e;'“koR,)
943-3/2.1/2 € 1
Sm =231 "m - 7(WkoRc) , (16)

where the dimensionless function ®(u) is defined as

oo 3 5+ VI +16u?)?
20 (349 + 16u2)3/2’

This function is plotted in Fig. 3. It is seen that at w > 1 it increases roughly linearly from ®(0) = 1 with a
slope & 0.3. The analysis of the result Eq. (16) is given in the next subsection.

(17)

2.1.5. Likelihood of Trapping as a Function of the Scattering Strength

The remaining task is to express the transport mean free path in terms of W and R.. Using the golden rule, the
product kl can be expressed through the correlator, /X, as follows

) — e /dq do ¢*6(q* + 2kqcos @) /dp K (p)exp(iqp) =
252 pm/2
= %/g do sin204/0 dp p K(p) Jo(2kpsina), (18)

where Jy is the Bessel function of zero order. With a gaussian correlator K (p) = exp(—p?/R?) the above integral
can be evaluated analytically. Substituting this form into (18), we obtain

. (WkoR.\* ., [K*R?
= (SR (R, a9)
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Figure 3. Dimensionless function ®(u) defined in Eq. (17) is plotted. Inset: Normalized modulus of the log-density of
random resonators, Sy, = Sm (koR:)/Sm (0), calculated from Eq. (24) for e = 4, @ = 50, and m = 15 is plotted versus the
dimensionless correlation radius, koR..

where the dimensionless function F' is defined as
F(z) = e *[Iy(z) - L(z)]. (20)

Here Iy and I; are the modified Bessel functions of zero and first order, respectively. The above expression
simplifies in two limits corresponding to the short-range and to the smooth disorder.

4e
Bl= ——  for kR <1 21
Tlho Ry or kofte < (21)
4" 2 ko R,
kl = 71_1/27)/0\}2 for kORc >1 . (22)

Eq. (21) allows us to cast the result Eq. (16) for the exponent in the density of traps into a remarkably
simple form. Indeed, upon expressing €¢; from Eq. (10) and W from Eq. (21), and substituying both into Eq.
(16), we obtain

7T3

1/2
Sp(koR. < 1) =2 < 3 ) El|lnwT] , (23)

Equation (23) quantifies the effectiveness of trapping of light in a random medium with short-range flutuations
of the dielectric constant. It follows from Eq. (23) that the likelihood of the efficient trap is really small. Indeed,
even for rather strong disorder, kI = 5, the exponent, S,,, in the probability of having a trap with w7 = 50
is close to S, = 120. We emphasize that in two-dimensional case under consideration, this exponent does not
depend on m and, thus, on the radius py = m/el/2k0 of the ring-shape fluctuation trapping the light.

The effectiveness of trapping is strongly enhanced when disorder is correlated, i.e., when the correlation
radius, R., exceeds the wavelength, 27 /kq. To see this, consider the ratio of the exponents S, for the cases of
the long-range and short-range disorder that correspond to the same transport mean free path, [. From Eq. (16)
we obtain

Sm(koRe >1)  ®(e)/’koR.) 24)
Sm(koRe < 1) 71/2(e2koR,)®
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Figure 4. This drawing illustrates the optimal character of the ring-shape resonator.

We see that, with increasing R., the exponent, S,,, falls off roughly as R, 3, making the formation of the efficient
traps exponentially more likely than in the case of the short-range disorder. This is illustrated in the inset in Fig.
3, where the ratio Eq. (24) is plotted. To estimate quantitatively the degree to which finite correlation radius
facilitates the trapping, we choose koR. & 2, which already corresponds to the limit koR. > 1 in Eq. (22), but
still allows to set ® = 1. Then for w7 = 50, kIl = 5 we obtain S,, ~ 1.1, suggesting that the resonators with
this w7 are quite frequent. In the latter estimate we have set € = 4. In conclusion of this subsection we would
like to emphasize that the likelihood of traps increases with correlation radius for a given value of the scattering
strength kl.

2.2. Qualitative discussion
2.2.1. Why Rings?

The answer to this question is illustrated in Fig. 4. The distinguishing property of a ring is that the local
curvature radius is the same at each point. Upon any deviation from the ring geometry, the curvature in a
certain region of the fluctuation would be higher than in all other regions. Since the evanescent losses are
governed by this curvature, the quality factor of the resonator would be determined exclusively by this region
(see Fig. 4), so that the remaining low-curvature part would be “unnecessary”, in the sense, that a ring with
a radius corresponding to the maximal curvature would have the same quality factor as a square in Fig. 4 but
significantly higher probability of formation. It is also quite obvious that, for the purpose of supporting a wave-
guided mode of the whispering-gallery type, a ring is much superior to a disk of the same radius: indeed, the
internal area of the disk remains unused in the guiding process, whereas a heavy penalty in terms of probability
is paid in creating this area.

2.2.2. Why Smooth Disorder Facilitates Trapping?

At the qualitative level, the enhancement of the probability of formation of the cavity with increasing R. can
be understood for a toy model of the disorder, illustrated in Fig. 5. Suppose that all the disks, that model the
scatterers, are identical. Then R, scales with the radius of the disk, R. Since the disks cannot interpenetrate,
the ring-shaped cavity corresponds to their arrangement in the form of a necklace. The probability of formation
of such a cavity can be estimated as follows. Suppose that a sector, d¢, is “allocated” for a single disk. The
probability to find a disk within this sector, at the distance py from the center , is ~ n(pod@)?, where n is the

concentration of the disks. Thus, the probability of formation of the necklace is exp —g—g In (W)], where
0

g—” is the number of sectors. It is obvious that if a necklace is “loose”, the quality factor of the corresponding

cavity would be low. In order for @) to be high, neighboring disks must almost touch each other. This implies
that d¢ ~ 2R/pg. Then the above estimate for probability takes the form exp [—’%0 In (%)], where f = nTR?
is the filling fraction. This probability increases exponentially with R, i.e., with R., reflecting the fact that, for
a given po, the number of disks to be arranged is smaller when R is larger. The above estimate was based on
the assumption that the positions of the disks are uncorrelated, i.e., f < 1. We have used the model of hard
disks as an easiest illustration of the role of R..

Proc. of SPIE Vol. 5472



Figure 5. A schematic illustration explaining why larger correlation radius for a fixed filling fraction facilitates trapping.
A sector, shown with dashed lines, illustrates the tolerance in the arrangement of disks into a necklace.

2.2.3. “Vulnerability” of the Ring-Shaped Cavities.

The value Sy, given by Eq. (16), which was derived within the optimal fluctuation approach, is the exponent in
the probability of formation of an ideal ring. Obviously, any actual disorder realization is not ideal, in the sense,
that actual distribution of dielectric constant differs from the optimal. For the same reason, the probability of
formation of ideal necklace of the type shown in Fig. 5 is zero. In order for the probability to be finite, we should
allow a certain tolerance in the positions of the centers of the disks, as illustrated in Fig. 5. In the conventional
applications of the optimal fluctuation approach,??> deviations from the optimal distribution do not affect the
value of the exponent, S,,. However, in application to the random cavities, we have searched for the fluctuation
which is optimal for a given trapping time, w~'Q. In this particular application, a “normal” gaussian deviation
from the optimal geometry can have a catastrophic effect on trapping by scattering the light wave out of the
whispering-gallery trajectory. This scattering is discussed below.

Scattering within the plane. Two-dimensional picture adopted throughout this paper, implies that electro-
magnetic field is confined within a thin film in the z-direction. This confinement results from the fact that the
average dielectric constant of the film is higher than in the adjacent regions. Then the filed distribution, &y(z),
along z corresponds to a transverse waveguide mode. For a given frequency, w, the almost localized state on a
ring can be destroyed due to the scattering into states with the same distribution of the field in the z-direction,
which propagate freely along the film. More precisely, the almost localized state with a given angular momentum
m, which is protected from the outside world by the centrifugal barrier, can be scattered out to the continua
of states with smaller m’s, for which there is no barrier. It is essential to estimate the lifetime, 7, with respect
to these scattering processes and to verify that it is feasible to have 7 larger than the prescribed trapping time,
w™1Q, so that the almost localized state is not destroyed.??

The effect can be also illustrated with the model of randomly positioned hard disks (Fig. 5), although the
disorder in this model is non-gaussian. It is seen from Fig. 5, that spacings between the rings, which are due
to tolerance, open a channel for the light escape, that is different from evanescent leakage. A typical lifetime
with respect to such an escape is quite short, i.e., even a small tolerance, which affects weakly the exponent in
the probability of the cavity formation, seems to be detrimental for trapping. At this point we emphasize that,
in calculation of the scattering rate out of the whispering-gallery trajectory, the disks constituting the necklace
must be considered as a single entity. As a result, for a given configuration of the disks, the rate of scattering
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out caused by a single disk must be multiplied by the following form-factor
doy o
F = / o Xi:exp (zk:pi)

where p; is the position of the center of the i-th disk in the necklace. The form-factor, F, is the sum of (’T—l,_pzo)2 >1
terms. Out of this number, (kR) ™" (™£2) terms (for kR < 1) and £ terms (for kR > 1), for which k|7 — ;| < 1,
are close to unity. The portion of these terms is small. Other terms have random sign. This leads us to the
important conclusion that, for certain realizations of the necklace in Fig. 5, the form-factor can take anomalously
small values. For these realizations the quality factor will be still determined by the evanescent leakage. The
“phase volume” of these realizaions is exponentially small and depends strongly on the model of the disorder.

2
=Y Jo (k|7 = 7), (25)
i

Scattering out of the plane. Compared to the previous case, two modifications are in order. Firstly, since
the final state of the scattered cavity mode is a plane wave with the wave vector pointing in a certain direction
within the solid angle 47, the expression Eq. (25) for the form-factor should be replaced by

- sin (ko|g; — P

7= Z ( Olpl _’pJ |) . (26)
> kolpi — 7j]

Secondly, for kR > 1, i.e., when the disorder is smooth, scattering out of the plane that is caused by a single

disk, requires a large wave vector transfer, ~ k. Thus, the corresponding rate is suppressed as compared to the

in-plane scattering.

3. EXPERIMENT: CONFIRMATION OF THE RANDOM RESONATORS
SCENARIO

It is crucial to establish experimentally to what extent the scenario of random resonators is viable to various
weakly scattering media. The ability to test this scenario relies on the fact that the occurrence of a random
resonator is a rare event, which corresponds to a certain disorder configuration that is capable to capture light
for a long time, 7. Then it immediately follows that for a given 7, there exists a dominant disorder configuration
that can provide the trapping. In other words, all random resonators with a given 7, are approximately identical.
Since for a weakly scattering medium, light trapping is feasible only within spatial scales much larger than the
wavelength, the identity of different resonators implies almost equal pathlengths Lo > X of light in all resonators.
This suggests the following strategy?*~2% for testing the scenario of the random resonators in random lasing.

Firstly, to overcome loss, the vale of Ly is determined by the threshold condition. Secondly, the modes of a
large-size resonator are close and almost even-spaced in frequency. If the width of the gain spectrum exceeds the
spacing between the modes, then a single resonator would contribute more than one mode to the laser emission.
As a result a “hidden” order would be present in random lasing spectra of the random media. Discerning the
hidden order would provide the evidence for random resonators in random lasing. To unravel the hidden order, we
have employed, following our earlier studies,?*~2¢ the ensemble-averaging of the power Fourier transform (PFT)
of the random lasing emission spectra. Note, that a similar procedure has been previously used in electron
transport. In particular, the analysis of the PFT of magnetoresistance fluctuations of metallic mesoscopic rings
allowed to reveal the underlying fundamental period, h/e.?” Ensemble-averaging of PFT of magnetoresistance
in a semiconductor ring allowed to unravel even more delicate feature — the splitting of the fundamental period
caused by spin-orbit coupling.?® Our analysis of the averaged PFT spectrum of random lasing indicates that
rather than converging into a smooth curve similar to that of regular ASE, it contains a sharp, well-resolved
Fourier component and its harmonics, which are characteristic of a well-defined laser resonator.

We have studied coherent random lasing in three different organic media with optical gain in the weak
scattering regime. The PFT averaging was done over the sample area or illumination time, depending on
the specific organic gain medium. Three different media studied are: (i) a m-conjugated polymer films of poly
(dioctyloxy) phenylene vinylene (DOO-PPV),?? (ii) a laser dye (Rhodamine 6G [R6G,?°]) in methanol infiltrated
into a synthetic opal,®! and (iii) a methanol suspension of 702 balls in R6G enclosed in a cuvette. A homemade
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Figure 6. Ensemble average power Fourier transform spectroscopy of random lasing in polymer films. (a) Three random
lasing emission spectra of a DOO-PPV polymer film spin casted from a toluene solution, which were collected from three
different illuminated stripes on the film. (b) The PFT spectra of the emission spectra shown in (a). (c) Ensemble-averaged
PFT spectra of random lasing emission spectra such as in (a), which were averaged from different illuminated stripes
over the film area. The numbers in the upper right corner denote the number of random lasing spectra collected in the
averaging process. (d) Ensemble-averaged PFT spectra of 125 different random lasing emission spectra of DOO-PPV
films spin casted from solutions of different solvents.

coherent backscattering (CBS) apparatus? was used to measure the light mean free path, [. Each of the obtained
[ for the three samples falls in the region of [ > \; in fact [/\ ranged between 300 and 5000.%?

The samples were excited under inert atmosphere, using a beam from the second harmonic of a pulsed Nd:
YAG regenerative laser amplifier, which was operated at wavelength of 532nm, 100H 2z repetition rate, with
pulses of about 0.1 energy/pulse and 100ps time duration.?? The excitation beam was focused on the samples
through a cylindrical lens to form a narrow illuminated stripe of 2mm x 100mm. The emission light was collected
using a fiber and sent to a 0.5-meter spectrometer, where a charged coupled device camera recorded the emission
spectrum; the overall spectral resolution of the collecting system was 0.02nm.'® PFT was performed for each
spectrum with about 5um resolution. For the polymer film and dye infiltrated opal, averaging of the PFT
spectra was done by changing the illuminated stripe on the film. However for the dye/TiOy suspension PFT
was performed for the emission spectrum collected for each excitation pulse. Averaging was then simply done
over time from the same excitation stripe since self-averaging occurs with time due to the low viscosity of the
suspension.

We demonstrate the PFT averaging technique using the 7-conjugated polymer film. At low excitation inten-
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Figure 7. Ensemble average PFT spectroscopy of 125 random lasing spectra of a R6G dye infiltrated into synthetic opal
(a), and a methanol suspension of R6G dye with TiO2 balls (b). The insets show three individual random lasing emission
spectra from the respective gain medium; the spectra were vertically displaced for ease of comparison.

sity I < 20 nJ/pulse, the PL emission band of the DOO-PPV film is approx. 150nm wide.® This band collapses
into a narrow ASE band of about 7nm wide at moderately high excitation intensities, 30 < I < 100 nJ/pulse;
the emission intensity in this intensity range depends exponentially? on I. However, at I > 100 nJ/pulse the
emission spectrum develops narrow, laser-like lines as shown in Fig. 6a, which are superimposed on the ASE
band,*1° and the emission intensity depends linearly? on I. Withint this excitation regime the random lasing
is due to the amplitude feedback,"? since the narrow lines were shown to be coherent radiation that is typical
of conventional lasers.>'® We emphasize that the entire spectrum is reproducible at the same intensity and
illuminated stripe on the film. However the emission spectrum dramatically changes when different stripes on the
film are illuminated.? An example of uncorrelated random lasing emission spectra for three different illuminated
stripes of a DOO-PPV film is shown in Fig. 6a. Fig. 6b shows the calculated PFT of the three random lasing
emission spectra shown in Fig. 6a. Recall, that for a well-defined laser cavity, the PFT shows even-spaced peaks
dm, given by d,,, = mLn/7.?® Although each PFT spectrum in Fig. 6b contains sharp Fourier components,
there is no apparent correlation between the individual PFT spectra.

To find out whether the hidden order is present in the random lasing spectra we performed ensemble averaging
of many PFT’s measured from different illuminated stripes of the DOO-PPYV film. Fig. 6¢ shows the ensemble
averaged PFT spectra of increasing numbers, j, of random lasing emission spectra ranging from ;7 = 25 to
j = 125. As the number j of averaged spectra increases it is seen that the background FT increases; this is
expected, since with increasing j, more random FT components contribute to the average PFT. The background
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FT spectrum is similar to 1/f noise in resistance fluctuations,

function.

and it can be fit with a stretched exponential

The most striking phenomenon, however, is that the averaged PFT spectrum does not smooth out with
increasing j, but instead develops rather sharp features at d; ~ 18um with about five harmonics up to dg ~
110pum. This observation, revealing the hidden order in the random lasing spectra in three different media, is our
central result. It is obvious that, in terms of disorder, different illuminated spots are statistically independent.
Therefore, the almost periodic structure in the averaged PFT indicates that: (i) the random lasing is due to well-
defined laser cavities, and (ii) the pathlengths of all cavities responsible for random lasing are almost indetical.
Using n = 1.8 for DOO-PPV we obtain from d; = nLy/m an ensemble-averaged random cavity pathlength,
Loy =~ 30um. Also from the CBS albedo cone of the DOO-PPYV polymer film we obtained [ &~ 5.2um. We thus
have for the random lasing resonator [ >> A that falls in the category of weak light scattering, the case considered
in Sect. 2.

We emphasize, that not only the presence of the features in the average PFT spectra is common for different
random media studied, but the shapes of the average PFT’s are identical for these media. This observation
provide a conclusive experimental evidence that random lasing in the weak scattering regime is due to random
resonators.
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