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ABSTRACT

We address the problem of score level fusion of intramodal and multimodal experts in the context of biometric
identity verification. We investigate the merits of confidence based weighting of component experts. In contrast
to the conventional approach where confidence values are derived from scores, we use instead raw measures of
biometric data quality to control the influence of each expert on the final fused score. We show that quality based
fusion gives better performance than quality free fusion. The use of quality weighted scores as features in the
definition of the fusion functions leads to further improvements. We demonstrate that the achievable performance
gain is also affected by the choice of fusion architecture. The evaluation of the proposed methodology involves
6 face and one speech verification experts. It is carried out on the XM2VTS data base.

Keywords: Biometric authentication, multiple classifier system, intramodal fusion, multimodal fusion, quality
dependent fusion

1. INTRODUCTION

Biometric authentication is a process that uses a person’s physical and behavioural characteristics to verify a
claim. Classifier fusion is a process of combining output from different experts to provide error reduction in
verifying a claim. Fusion can occur at three different levels; feature level fusion, score level fusion, and decision
level fusion. In this paper, we are concerned with fusion at the score level. Several studies including 1–3 have
shown that fusing experts improves the efficiency and the accuracy of a system. The evidence available suggests
that a gain in accuracy can be achieved either with intramodal fusion or multimodal fusion. However the
latter also offers better authentication system robustness against the failure of individual biometric modalities
to acquire reliable biometric data either as a result of adverse environmental factors, user imposed constraints,
or undesirable sensor characteristics. Unfortunately, at the same time, various studies have also shown that
poor quality biometric data leads to reduction in the accuracy of the system.4, 5 The biometric data quality
degradation is particularly acute in the operational phase, due to the fact that in most cases the data capture
for training purposes is controlled by someone supervising the acquisition process, but during authentication
supervision is not always possible. The investigation of fusion controlled by Quality Measures (QM) has shown
that quality dependent fusion can offer a significant performance gain over fusion without quality.6–12

The original motivation for using sample quality information in fusion emerged in relation to multimodal
biometrics systems where it is easy to comprehend that the modalities performing poorly as a result of degraded
quality of biometric information should influence the final decision to a lesser extent than those based on good
quality data. This suggested a quality dependent weighting of modalities as the obvious solution to the fusion
problem. However, in our experiment, there is an indication that quality measures can also be used to improve
the performance of individual biometric modalities by effectively offering a dynamic decision rule with a quality
dependent threshold (Section 4). These examples of a completely different ways of using biometric data quality
information raises the question whether quality should be considered as a feature or as a confidence coefficient.

Prior studies in this direction include.6, 7, 9, 13 Karthil et al. proposed a likelihood ratio-based approach to
achieve quality dependent score fusion.9 This approach allows the designer to get as much as possible from
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each modality for any level of quality of the input data. At the same time, the less informative modalities
will produce likelihood ratio close to one and will therefore not influence the decision making process. Fierrez-
Aguilar et al. proposed a method where the fusion procedure is dynamically adapted each time a claim is made
based on the estimated quality.6 This is achieved by using quality for controlling the penalty function of the SVM
learning criterion. Moreover, quality measures also weigh the relative influence of the respective modalities and
the joint decision making system. Intuitively, the approach enables the multimodal system to focus on the single
modality of dominant quality or for comparable qualities on the joint decision making system. Unfortunately,
as a result of the SVM training strategy the joint decision making system is optimised for good quality data.
Bigun et al. proposed the Bayesian Conciliation method.7 This method relies on two components known as a
client and an impostor supervisor. The client supervisor estimates the expected true authenticity score of a claim
based on its expertise in recognising client data (likewise for the impostor supervisor). The final decision is made
by taking into account the different expertise of the two supervisors and choosing the one which comes closest to
its goal, which is defined as zero for impostor supervisor and one for client supervisor. Effectively, the supervisor
adapts to each identity claim as a function of the quality of the input data. Kryszczuk et al. proposed to use a
derived quality measure13 instead of raw quality measures as done in.6, 7, 9, 13 The derived quality measure, or
confidence is defined as the posterior probability of making the correct decision given some observed evidences,
which include both the system output and raw quality measures. In the context of bimodal fusion, this means
that if the decision of two systems are conflicting (different), one takes the decision of the system which is more
likely to be correct.

The aim of this paper is to investigate the merit of using as features not only quality measures but also the
cross terms obtained by taking the product of score and quality. This generalises the fusion feature space. The
study also looks at several architectures that may be appropriate in different circumstances, namely when score
and quality data for each expert and modality is made available to the fusion stage, and the situation where
each modality delivers quality dependent scores for integration in the fusion system. We show that using quality
weighted scores as features in the definition of the fusion functions leads to improved performance. We also
demonstrate that the achievable performance gain is also affected by the choice of fusion architecture.

The paper is organised as follows: Section 2 develops the methodology of quality dependent fusion. Section 3
presents the database, verification systems and evaluation methodology. Section 4 presents the experimental
results. Finally, conclusions are drawn in Section 5.

2. METHODOLOGY OF QUALITY DEPENDENT FUSION

Let x ∈ R
R be the vector of output scores of R experts, q ∈ R

P be the vector of P quality measures and
k ∈ {C, I} be one of the two possible classes of users, i.e., genuine users or clients and impostors. From the
Bayesian point of view, the generative and discriminative approaches which incorporate the quality information
directly can be written as follows:

yllr
com ≡ f llr(x, q) = log

p(x, q|C)
p(x, q|I)

(1)

yprob
com ≡ fprob(x, q) = P (C|x, q) (2)

In practice (2) is approximated by:

P (C|x, q) ≈ sigmoid
(
fdisc(x, q)

)
=

1
1 + exp (−fdisc(x, q))

(3)

where the output fdisc(x, q) ∈ [−∞,∞] does not have to be associated with probability. fdisc(x, q) is known as
a discriminative function and very often, based on the sign of its output, one classifies x as either belonging to a
client or an impostor. In this study, the function f llr(x, q) is estimated by a Gaussian Mixture Model;14 the func-
tion that outputs posterior probability, fprob(x, q), is estimated by logistic regression;15 and the discriminative
function fdisc(x, q) is estimated by a support vector machine.16 Note that the logistic regression function used
here is different from the simplified version proposed by Pigeon et al. 17 which was the first reported attempt
at biometric fusion by logistic regression. While this simplified version makes the class conditional Gaussian
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assumption over x, the one we use is purely data driven and its parameters are obtained by the “gradient ascent”
algorithm15 which is in fact a realisation of the maximum likelihood principal.

The conventional approaches without using the quality information can also be divided into either generative
or discriminative. They can be written in the similar ways as in (1) and (2) except that q is not used, i.e.,:

yllr
com ≡ f llr(x) = log

p(x|C)
p(x|I)

(4)

yprob
com ≡ fprob(x) = P (C|x). (5)

While in theory, i.e., from the Bayesian view point, both the generative and discriminative approaches of
combining the quality information are equivalent, i.e.,

fprob(x, q) = sigmoid
(

f llr(x, q) + log
P (C)
P (I)

)

and
fdisc(x, q) ∝ f llr(x, q)

in practice, we argue that the discriminative approach may be better than the generative one. This is because
a discriminative classifier aims to optimise the decision boundary and as a result, is more robust to the drift in
score distribution.

We consider here the case where the system outputs, x, can be obtained from the same biometric modality
or from different modalities. For this reason, we introduce xm,i to denote the i-th classifier of the m-th biometric
modality. There are Im systems for the m-th modality and M biometric modalities are available. As a result, the
number of systems available for fusion, P , is

∑
m Im. In our experiments, we use only face and speech modalities,

i.e, m ∈ {F, S}. The number of systems therefore is F + S where F = IF and S = IS.

In general, one expects higher dependency among the system outputs sharing the same biometric modality
and, in contrast, independence when the system fuses different biometric modalities. By assuming different types
of system output dependency, we identify the following three types of fusion architecture, in increasing level of
complexity:

1. Multi-stage single processing (MSSP): This architecture is a result of assuming independence among
all the system outputs despite the fact that systems sharing the same biometric modality may be dependent.
It can be written as:

yMSSP
com =

∏

m

∏

i

P (C|xm,i, q) =
∏

m

∏

i

fprob(xm,i, q) (6)

Note that since f(xm,i, q) operates on a single system at a time, it can be considered a quality-dependent
score normalisation procedure. It is therefore not a deterministic one-to-one mapping function as studied
in18 but rather a function of xm,i and q jointly. Note that discriminative functions fdisc(x, q), e.g., a Support
Vector Machine (SVM), do not output scores which satisfy the axiomatic properties of probabilities and
cannot therefore be used in conjunction with a product fusion rule. For this reason we investigated fusion
by the sum equivalent of (9), given as

yMSSP
com =

∑

m

∑

i

fdisc(xm,i, q) (7)

Note that by using the sum rule, one implicitly assumes that the class-conditional distributions of the
outputs fdisc(xm,i, q) across all m and i are comparable. This is, in general, not the case, thus implying
the need for normalising the outputs. Fortunately, this can be avoided by normalising the input to the
function fdisc : R

R+P → R. Suppose that each of the R
R+P input elements is normalised to having zero

mean and unit variance (across all the training examples), and the same complexity of fdisc(xm,i, q) is used
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for all m and i, then the outputs fdisc(xm,i, q) will be comparable. For the generative approach, using the
sum rule, i.e.,

yMSSP
com =

∑

m

∑

i

f llr(xm,i, q), (8)

is a direct implication of assuming independence among the output of systems xm,i for all m and i. Whether
with sum or product, we refer to the fusion assuming independent system outputs as Architecture 1.

2. Multi-stage joint processing (MSJP): This architecture takes into consideration the dependency
among system outputs sharing the same biometric modality yet ignores the dependency of the system
outputs coming from different biometric modalities. It can be written as:

yMSJP
com =

∏

m

P (C|xm, q) = fprob(xm, q), (9)

where xm denotes a vector the components of which are the system outputs sharing the m-th biometric
modality, i.e., xm ≡ [xm,1, . . . , xm,Pm ]. The practical implication of this architecture is that one designs a
fusion classifier per biometric modality and then combines all M resulting fusion classifiers using a fixed
rule, e.g., the product rule for fprob(xm, q) and the sum rule for fdisc(xm, q) and f llr(xm, q).

This architecture is referred to as Architecture 2.

3. Single-stage joint processing (SSJP): This architecture does not assume system output independence.
It can be written as:

ySSJP
com = P (C|x, q) = fprob(x, q), (10)

where x is a vector containing all the system outputs, i.e., x = {xm,i|∀i,m}. The function fprob(x, q) is
simply replaced by f llr(x, q) when using a GMM classifier and by fprob(x, q) when using logistic regression.
This architecture is referred to as Architecture 3.

In the discussion that follows, we will focus on training the discriminative function fdisc(x, q). However, the
discussion generalises to the functions f llr(x, q) and fprob(x, q). For this reason, we will use the generic term
f(x, q) and refer to one of the three particular fusion algorithms, i.e., f llr(x, q), fprob(x, q) or fdisc(x, q), only
when necessary.

For any function f(x, q), the following decision function is used:

decision(f(x, q)) =
{

accept if f(x, q) > ∆
reject otherwise

}
, (11)

where ∆ is a threshold tuned a priori to minimise a specific criterion on a separate development set. This will
be discussed in Section 3. Note that the decision threshold is trained independently from the fusion classifier
f(x, q). This is sensible because the fusion algorithms we used, i.e., SVM, GMM and logistic regression, are not
designed specifically to minimise biometric performance, e.g., equal error rate (EER). For instance, SVM max-
imises margin; and the optimisation algorithms for GMM and logistic regression follow the maximum likelihood
principle.

In both the discriminative and generative approaches, jointly estimating x and q is a challenging problem.
Suppose that one uses a linear function in f(x, q) to distinguish the client class from the impostor one. In this
case a weight will be associated with each element in x and q. The result after training is that magnitude of the
weight associated with q will be comparatively small because q has no discriminative information. This suggests
that using non-linear function of f(x, q) may be more useful.

One way to introduce non-linearity is by using some kind of expansion between y and q, i.e., x ⊗ q, where ⊗
is called a tensor product. Note that x and q are not vectors of the same length. If x has R elements and q has P
elements, then x⊗ q will result in P ×R elements and each element is a product between a pair of the elements
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Table 1. The complexity of the function f(x, q) when implemented using a linear classifier, in increasing level of complexity
due to different input arrangements.

no. arrangement the resulting function fdisc(x, q) no. of parameters
1 [x]

∑
i xiwi R

2 [x, q]
∑

i xiwi +
∑

j qjvj R + P

3 [x, x ⊗ q]
∑

i xi

(∑
j qjwi,j + wi

)
R × (P + 1)

4 [x, q, x ⊗ q]
∑

i xi

(∑
j qjwi,j + wi

)
+

∑
j vjqj R + P + R × P

in x and q. Therefore, when training f(x, q), we need to feed the fusion classifier with inputs [x, q, x⊗ q] instead
of [x, q]. When one uses [x, q, x ⊗ q], the linear function can be written as:

f(x, q) =
∑

i

∑

j

wi,jxiqj +
∑

i

wixi +
∑

j

vjqj

=
∑

i

xi

⎛

⎜
⎜
⎝

∑

j

qjwi,j

︸ ︷︷ ︸

+wi

⎞

⎟
⎟
⎠ +

∑

j

vjqj

︸ ︷︷ ︸

, (12)

where the weight wi,j is associated with xiqj , the weight wi is associated with xi, and vj is associated with
qj . In this notation, xi is an element of vector x and qj is an element of vector q. (12) clearly shows that the
resulting classifier is linear except that the weight is modified dynamically by the quality measures via the first
underbraced term. The second underbraced term shows that q dynamically adjusts the decision threshold in
addition to that controlled by ∆ shown in (11). In theory, due to the weights wi,j and vj , one does not need to
normalise the quality measures. The same argument also applies to wi. In practice, however, normalising the
elements in x and q can accelerate convergence of a particular chosen algorithm. More over, for some fusion rules
such as product, it may be absolutely essential. To this end, we use the z-norm such that after the normalisation,
a variable has zero mean and unit variance over all the examples in the training set and a min-max normalisation.

We outline here several possible “arrangements” in Table 1, presented in the order of increasing complexity,
i.e., the number of parameters. We will write f([x, q]) to explicitly refer to the second arrangement, f([x, x⊗ q])
to refer to the third arrangement, etc. The second column shows the four possible arrangements, i.e., the way
the features are used as input to a fusion algorithm. The third column shows the resulting discriminative linear
function fdisc(x, q). While similar analyses cannot be done for the linear discriminative function fprob(x, q)
(due to the sigmoid function) and for the generative function f llk(x, q), our purpose of showing the elements
in the expanded input vector along with their associated weight parameters is to illustrate the complexity of
each arrangement. For instance, the first arrangement, i.e., f([x]), does not use any quality information. The
second arrangement, i.e., f([x, q]) does not contain any interaction between x and q. However, it considers the
case where the decision threshold may be modified by q. In the third arrangement, one creates a linear classifier
whose weights can change dynamically as a function of q. The last arrangement, i.e., f([x, q, x ⊗ q]) or (12), is
the most general one since it contains all possible interactions between x and q of the first three arrangements.

The quality-enhanced discriminative fusion classifier with the input [x, x ⊗ q] (the third arrangement) is
structurally very similar to the one proposed in19 where a reduced polynomial discriminative function was used.
In our case, one can use any discriminative classifier to implement it. This is an elegant solution because one no
longer needs to design a dedicated fusion algorithm such as those proposed in19 and6, 7 to achieve the same goal.

When considering multimodal fusion, e.g., using face and speech in our case (m ∈ {S, F}), the ⊗ operator is
applied to x and q of the same biometric modality, i.e., [xm ⊗ qm] for each m. For instance, for arrangement
four, the resulting vector is [xS, qS, xS ⊗ qS, xF, qF, xF ⊗ qF]. By doing so we assume that there is no interaction
between the quality measures of one modality with the system outputs of another modality, hence, resulting in
less number of parameters needed to be estimated as compared to the full expansion

[
[xFxS], [qFqS], [xFxS]⊗[qFqS]

]
.
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f(x,q)

f(x,q)

f(x,q)

f(x,q)

f(x,q)

f(x,q)

FIXED
RULE

qF

qS

xf,1

xf,2

xf,F

xs,1

xs,2

xs,S

ycom

(a) Architecture 1

f(x,q)

f(x,q)

FIXED
RULE

qF

qS

xf,1...F

xs,1...S

ycom

(b) Architecture 2

f(x,q)

qF

qS

xf,1...F

xs,1...S

ycom

(c) Architecture 3

Figure 1. The proposed three architectures. In each figure, the function f(x, q) can be implemented by any of the four
arrangements shown in Table 1. In our study, the function f(x, q) is implemented using logistic regression, SVM and
GMM. In Architecture 1, f(xm,i, q) for i-th system of the m-th modality can be considered a quality-dependent score
normalisation procedure since xm,i is a scalar. In Architectures 2 and 3, the fixed rule is chosen to be a product for
fprob(x, q) (approximated by logistic regression) and sum for f llr(x, q) (GMM) and fdisc(x, q) (SVM).

To summarise, firstly, we have proposed three possible types of architecture for the task of multimodal fusion
involving several systems per biometric modality, i.e., (6), (9), and (10) defining the discriminative function
fprob(x, q) (based on logistic regression). They differ mainly in the different underlying assumptions made for
the system outputs. Similar functions, with the exception of the sum rule, can be applied to the discriminative
function fdisc(x, q) (based on SVM) and the generative function f llr(x, q) (based on GMM). A graphical diagram
of each of the three types of architecture is shown in Figure 2. Secondly, we have proposed four training strategies
to estimate the functions f(x, q). Note that the input [x, q, x ⊗ q] is a generalisation of the conventional fusion
classifier and of the work reported in.19 We argue that such an arrangement is potentially better than using
[x, q] in conjunction with a more complex non-linear classifier because it guards against overtraining, yet realises
a linear classifier whose weights are modified dynamically by a weighted sum of quality measures.

3. DATABASE, SYSTEMS AND EVALUATION

3.1. Database

In the current study, we used the original XM2VTS database20 and its degraded version21 in both the training
and the testing phase of the fusion methods. The original database contains mugshot images with well controlled
illumination. The degraded ones, on the other hand, are images taken under strong side illumination, which
has been shown to degrade significantly face verification performance.21 This database contains 295 subjects,
which includes 200 subjects selected to be clients, 25 to be impostors for the algorithm development (training),
70 to be impostors for algorithm evaluation (testing). For each subject, face and speech biometric modalities
are acquired in four sessions; the first three are used for training the classifiers and the last one for testing. For
the face modality we consider the dark dataset with left illumination as the ”fifth session” and the one with
right illumination as the ”sixth” session. There is unfortunately no equivalent of degraded speech data that can
be paired with the degraded face images. We did so by first introducing additive white noise with a uniform
random distribution between 0 and 20dB signal-to-noise ratio on the clean speech database, hence resulting in a
degraded speech database with exactly the same size as the clean database. We then paired the degraded face
images with the degraded speech data according to Table 3.1. For instance, the first row shows that the first
shot of degraded face image in the fifth session is matched with the second shot of the degraded speech recorded
in session one, and so on. Building the database this way will give us two types of data sets: good and degraded
quality data sets for both modalities. A shortcoming is that there is no scenario where one modality is of good
quality and the other one is degraded. Although this is more realistic, there is no obvious solution to introducing
this scenario. However, it will be investigated in the future.
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Degraded face Degraded speech
session shot session shot

5 1 1 2
5 2 2 2
6 1 3 2
6 2 4 2

Table 2. Matching of degraded face and speech data

Sessions Shots 180 Clients 20 Clients 25 Imposter 70 Imposter

S1 1 Training Training
2 Evaluation Evaluation

S2 1 Training Training
2 Evaluation Evaluation Evaluation Test

S3 1 Training Training
2 Evaluation Evalaution

S4 1 Test Test
2

Degraded L1,R1 Test Evalaution Evaluation Test
L2,R2 degraded degarded degraded degraded

Table 3. The XM2VTS clean and degraded protocol.

According to the original experimental protocol known as the Lausanne Protocols, the degraded data sets
were not designed for algorithm development but for algorithm evaluation. In this paper, however, in order to
show the advantage of having observed some degraded data, we used the 25-impostor data set in which good and
degraded quality data is available. However, there is simply no degraded client data for algorithm development.
Given the fact that these scores can only be found in the 200-client data set, we further divided this data set into
20- and 180-client data sets such that the 20-client data set is set aside uniquely for algorithm development and
the 180-client for both algorithm development and evaluation. The resulting protocol for the good and degraded
quality scenarios is summarised in Table 3.

3.2. Experts and Quality Measures

In this paper, we use a set of proprietary quality measures developed by Omniperception Ltd for the face image
quality assessment. These measures are: “frontal quality”, measuring the deviation from the frontal face; and
“illumination quality”, quantifying the uniformity of illumination of the face. It should be noted that none of
these quality detectors were designed specifically to distinguish the three strong dominant quality states of the
face images in the XM2VTS database: good illumination, left illumination and right illumination. Using the
above quality measures makes the problem of quality-dependent fusion classifier more challenging.

The classifiers used for the face experts in this paper can be found in.22 There are two classifiers with
three types of pre-processing, hence resulting in a matrix of six classifiers. The two classifiers used are Linear
Discriminant Analysis (LDA) with correlation as a measure of similarity23 and Gaussian Mixture Model (GMM)
with maximum a posteriori adaptation, described in.24 The use of the GMM in face authentication can be found
in.25 The face pre-processing algorithms used include the photometric normalisation as proposed by Gross and
Brajovic,26 histogram equalisation and local binary pattern (LBP) as reported in.22 The feature extraction and
classification algorithms are implemented on the open-source Torch Vision Library∗.

Two quality measures are used for the speech system: signal-to-noise ratio (SNR) and “entropy quality”.
Both measures are used for voice activity detection, i.e., to separate speech from non-speech. According to the
“Murphy algorithm”,27 an SNR is obtained by calculating the magnitude or energy of speech versus that of
non-speech in decibels. The entropy quality28 measures the degree of peakiness of the distribution of the power
spectrum within an observed short-term window of speech frames. A speech signal has consistent energy and

∗Available at “http://torch3vision.idiap.ch”. See also a tutorial at “http://www.idiap.ch/ marcel/labs/faceverif.php”.
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thus its resulting distribution is likely to be peaky. This results in low entropy values. In contrast, a pause
or random signal will have a wider distribution of energy, thus resulting in high entropy values. Both these
measures can be found in.29 The speech system used is based on the ALIZE toolkit.30

3.3. A posteriori versus a priori Performance Evaluation

In this paper, two types of performance are quoted: a posteriori and a priori performance. In the former, one
assumes that the class-conditional score distributions of the test set are known. Consequently, the decision
threshold can be tuned directly on the test score set. This assumption is somewhat unrealistic in a real applica-
tion. However, the advantage is that this method allows for the evaluation to be carried out without the need to
address the global threshold selection problem. In the latter case, one needs to devise such a strategy and this
requires an additional development (combined) score data set. We use both type of evaluations. For the a priori
evaluation, we obtain the threshold by minimising the weighted error rate, which is defined as:

WERα(∆) = αFAR(∆) + (1 − α)FRR(∆), (13)

for α = 1
2 . This corresponds to the optimal Equal Error Rate on the development set. The performance on the

evaluation set is measured by Half Total Error Rate (HTER), i.e.,

HTER =
FAR + FRR

2
(14)

4. EXPERIMENTS

We have designed fusion experiments so as to study the relative merits of

• using the conventional fusion algorithm without quality, i.e., using the input x; features [x, q], and the
proposed quality-weighted features, i.e., [x, x ⊗ q] and [x, q, x ⊗ q].

• different types of fusion algorithms, i.e., discriminative or generative. For the discriminative classifier, SVM
and logistic regression are used whereas for the generative classifier, GMM is used.

• different architecture types, i.e., (6), (9), and (10).

We will first report the baseline system performance and then the intramodal expert fusion performance.
Then, we present and analyse the multimodal biometric expert fusion performance.

4.1. Baseline System Performance

The performance of the six face and one speech baseline systems are shown in Table 4(a). As the test data
includes samples of good and degraded qualities, the overall performance is not very high. In fact one can glean
the impact of the degraded quality test data on the overall performance from the last two columns of the table
where the overall error is split into the contributions of the expert performance obtained on good and degraded
quality data respectively. We can see, for instance, that the second best face expert (f5) on good quality data
becomes the worst face expert on degraded data as well as the individually worst face expert on the mixed data.

4.2. Performance of Intramodal Quality-Dependent Fusion/ Score Normalisation

The results of the intramodal fusion of the six face systems are shown in Table 4(b). Since we have only one
speech system, we effectively performed quality-dependent score normalisation, thus fusing x and q where x is a
scalar value and q has two components given by SNR and the entropy quality measure. The results are shown
in Table 4(c).

The results of intramodal fusion of face modalities are shown in the second section from the top in Table 4(b).
As expected, conventional intramodal fusion (ignoring quality information) leads to a 30% improvement in
performance over the individually best expert (expert f2). However, the use of quality information allows a
further reduction in HTER to some 45% improvement over the performance of the best expert. Note in the table
that the generative method of fusion using the Gaussian mixture model (GMM) begins to struggle with the extra
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(a) Baseline systems
good + degraded good degraded

modality no. HTER (%) HTER (%) HTER (%)
face 1 11.06 6.66 13.50
face 2 7.67 3.48 9.78
face 3 8.29 5.86 9.57
face 4 10.39 2.13 17.17
face 5 24.56 2.97 39.28
face 6 16.96 5.51 23.42

speech 1 11.40 1.15 17.48
(b) Fusion of all six face systems

arrangement algo. good + degraded good degraded

[x]
lr 5.31 1.63 7.41
svm 5.38 1.70 7.49
gmm 5.61 2.22 7.61

[x,q]
lr 4.47 1.45 6.64
svm 4.23 1.34 6.61
gmm 5.28 1.63 7.70

[x,x⊗q]
lr 4.44 1.30 6.59
svm 4.43 1.28 6.96
gmm 12.44 3.56 18.04

[x,q,x⊗q]
lr 4.52 1.51 6.38
svm 4.23 1.34 6.26
gmm 8.03 3.27 10.65

(c) Quality-dependent score normalisation of the speech system
arrangement algo. good + degraded good degraded

[x]
lr 11.44 1.15 17.54
svm 11.40 1.15 17.48
gmm 11.40 1.15 17.48

[x,q]
lr 11.22 1.07 17.37
svm 11.59 1.19 17.88
gmm 11.59 1.28 17.65

[x,x⊗q]
lr 11.35 1.14 17.41
svm 11.35 1.14 17.42
gmm 13.08 1.59 19.52

[x,q,x⊗q]
lr 11.06 1.19 17.07
svm 11.38 1.14 17.68
gmm 10.77 1.06 16.79

Table 4. A priori HTER (%) of good + degraded test data, with the a priori HTER (%) of the good and degraded data
sets recorded separately. The separate good and degraded data results were obtain by using the threshold (∆) set on the
good + degraded training data. (a) baseline systems of six face experts and one speech expert, (b) intramodal fusion of
all six face experts using four different arrangements, and (b) quality-dependent score normalisation of the speech systems
using four different arrangements.

degrees of freedom offered by the quality related features. When examined closely, we found that the distribution
of the feature xiqj for any system i and any quality measure j is not Gaussian. As a result, the generalisation
performance based on GMM when using xiqj is not expected to be better than the two discriminative classifiers.
In fact, the score-quality product feature is designed for these classifiers and not for generative classifiers.
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Figure 2. Comparison of (a) separate (Architecture 1) and (b) joint processing (Architecture 2 or 3 ; in the Y-axes) with
respect to the baseline system (without using quality; in the X-axes). Each point in the figures are the a posteriori EER
(%) of one of the possible 63 face and speech multimodal fusion tasks. In both figures, the numbers in the legend are the
number of experts used in one of the 63 multimodal fusion tasks.

4.3. The Performance of Quality-Enhanced Multimodal Fusion

To demonstrate the advantage of the proposed feature space [x, q, x⊗ q], we opted for one specific algorithm, i.e.,
logistic regression, but with different architectures (hence different dependency assumptions on the intramodal
face fusion). We designed a set of 26 − 1 = 63 intramodal fusion tasks corresponding to all the possible com-
binations of the six experts into distinct groups of increasing size, constituted by individual experts, all pairs,
all triplets, etc. The two types of architectures considered are separate and joint processing. Note that in this
experiment, (9) and (10) are the same. The results of using Architecture 1 and Architecture 2 (or Architecture 3)
are shown in Figure 2. As can be observed, the proposed approach using [x, q, x ⊗ q] is almost always better
than the baseline fusion approach using only [x]. We then repeated the same experiment except that the other
two arrangements, i.e., [x, q] and [x, q, x ⊗ q] were also used. The absolute and relative performance measures
expressed in terms of a posteriori EER are shown in Figure 3. All three arrangements with quality measures
show improvement over the baseline fusion [x]. The average observed relative improvement is about 25% but up
to 40% can be attained. In particular, the arrangement [x, q, x ⊗ q] delivers the lowest absolute EER among all
three arrangements considering the quality information.

The result for multimodal fusion are presented in Figure 4(b) for the different architectures. In Table 4, and
Figures 3 and 4 we observe the tendency for the quality dependent fusion to yield better performance than the
conventional fusion methods which ignore quality measurements. We also observe in Figure 4 that multimodal
fusion performs better than intramodal fusion. Figure 4(b) also shows that the architectures can be listed in
order of performance: Architecture 3, 2, and 1, with Architecture 3 being the most complex and Architecture 1
being the least complex.

In Architecture 1 all the expert outputs are effectively individually quality-normalised before being combined
by averaging. When the quality measures are ignored, the architecture implements a fusion rule akin to the sum
rule. Interestingly, the inclusion of the speech expert is beneficial. However, the results are not as good as those
obtained by the quality free trained fusion methods realised by Architecture 3. For the logistic regression fusion
the incorporation of the quality information in Architecture 1 did not enhance the fused system performance. The
reason for that could be that combining quality measures with the scores of the respective experts individually,
we create quality normalised scores that are correlated. Their capacity to enhance the performance by fusion is
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(b) Relative a posteriori EER

Figure 3. Absolute and relative change of a posteriori EER (%) of Architecture 3 implemented using logistic regression
for the four arrangements, evaluated on the good and degraded XM2VTS face database on modified Lausanne Protocol
I. Each box plot contains 63 values corresponding to the 63 possible face and speech multimodal fusion tasks obtained by
exhaustively matching all face and all speech systems in fusion. In arrangement [x], the quality information is not used.
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Figure 4. A priori HTER (%) of three types of classifiers (logistic regression, SVM and GMM), with four types of
arrangements according to Table 1, evaluated on the good and degraded XM2VTS face images on: (a) Intramodal fusion
on face and speech modality, (b) Multimodal fusion on three types of architectures. The bar plots in (a) are the good
and dark HTER shown in Tables 4(b) and (c) for the face and the speech modalities, respectively.

then severely compromised. We can therefore conclude that, in all respects, Architecture 1 represents the least
promising approach to fusion, whether quality information is used or not.

Architecture 3, on the other hand, appears to be consistently the best. The only exception is the GMM fusion
classifier in [x, x ⊗ q] and [x, q, x ⊗ q]. This supports the finding that in general, discriminative methods tend to
be more stable than generative ones, especially when the number of degrees of freedom increases. Although we
can get very good results by a trained fusion rule of multimodal experts even without using quality measures,
we get up to 20% gain in performance for quality dependent fusion. In comparison with the individually best
expert, the performance improves overall by a factor of more than three.

Figure 4 also shows that for [x, x ⊗ q] and [x, q, x ⊗ q] GMM performs better in Architecture one. The main
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reason for that is the low dimensionality of the feature spaces associated with the individual models of the
architecture as compared with Architecture 2 and 3. The additional factor is that x ⊗ q is not Gaussian.

It is interesting that for Architecture 3, the performance of SVM and logistic regression methods is comparable,
although the performance of SVM is slightly better due to the extra dimensionality. This is the consequence
of having to make no simplifying assumptions regarding independence of experts. The system is easy to train
and in the absence of quality measurements it achieves the best fusion results among all the fusion architectures.
The only limitations of this approach are practical ones. First of all the suppliers of the individual biometric
modalities in this case have to provide access to the quality information, and to training data. In this respect
Architectures 1 and 2 have an immense advantage over Architecture 3.

The results of the experiments summarised in Figure 4 show that in the case of Architecture 3, for logistic
regression, the arrangement [x, q] works better than the other two arrangements which include quality, but overall
when all possible fusion schemes are looked at, the [x, q, x⊗q] arrangement provides the best performance, albeit
by a small margin. This is shown in Figure 3. Interestingly, the best fusion scheme does not require the inclusion
of all six face experts, but only a subset of them.

5. CONCLUSIONS

We addressed the problem of score level fusion of intramodal and multimodal experts in the context of biometric
identity verification. The focus was on confidence based fusion controlled by biometric data quality. We investi-
gated the merit of using as features not only quality measures but also the cross terms obtained by taking the
product of score and quality to generalise the fusion feature space. The study also explored several architectures
that might be appropriate in different circumstances, namely when score and quality data for each expert and
modality is made available to the fusion stage, and the situation where each modality delivers quality dependent
scores for integration in the fusion system. We showed that the use of quality weighted scores as features in
the definition of the fusion functions leads to improved performance. We also demonstrated that the achievable
performance gain is also affected by the choice of fusion architecture. Whenever practicable, the best perfor-
mance can be achieved when scores and quality features and the associated cross terms are considered jointly
as a basis for decision making. However, when this design approach is not feasible, the conventional multiple
classifier fusion architectures still offer considerable gain in performance when quality information is exploited.

The data available for experimentation somewhat limited the scientific scope of the investigation. Apart from
improving the overall performance of the biometric system, the use of multimodal biometrics is motivated by the
expectation that it makes the system more robust, as in principle one can switch between individual biometric
modalities or dynamically control their influence as a function of their quality. Unfortunately, this scientific
hypothesis could not be tested, as the degradation of quality of the two modalities used (face and speech) was
strongly correlated. We had no evaluation data where the quality of one of the modalities was high while that
of the other quality was low. However, such data is potentially available in the Banca database and we intend
to study this particular aspect in the future.
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